<table>
<thead>
<tr>
<th>Title</th>
<th>Correlation between the leaf turnover rate and anti-herbivore defence strategy (balance between ant and non-ant defences) amongst ten species of Macaranga (Euphorbiaceae)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nomura, Masahiro; Hatada, Aya; Itioka, Takao</td>
</tr>
<tr>
<td>Citation</td>
<td>Plant Ecology (2011), 212(1): 143-155</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/135422</td>
</tr>
<tr>
<td>Right</td>
<td>The final publication is available at www.springerlink.com; This is not the published version. Please cite only the published version. この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>

Kyoto University
Correlation between the leaf turnover rate and anti-herbivore defence strategy (balance between ant and non-ant defences) amongst ten species of *Macaranga* (Euphorbiaceae)

Masahiro Nomura¹, Aya Hatada¹,³ and Takao Itioka²*

¹ Center for Ecological Research, Kyoto University
Otso 520-2113, Japan

² Graduate School of Human and Environmental Studies, Kyoto University
Kyoto 606-8501, Japan

³ Present address: Kyoto University of Foreign Studies
Kyoto 615-8558, Japan

* Corresponding author: E-mail: itioka@z04.mbox.media.kyoto-u.ac.jp

Abstract

We measured variation in the intensities of ant and non-ant anti-herbivore defences amongst ten *Macaranga* species in Sarawak, Malaysia. Intensities of non-ant defences were estimated by measuring effects of fresh leaves (provided as food) of these *Macaranga* species on survival of common cutworm larvae [*Spodoptera litura* (Fabricius), Lepidoptera: Noctuidae]. Intensities of ant defences were estimated by measuring ant aggressiveness in the presence of artificial damage inflicted on plants. As part of our examination of non-ant defences, we measured leaf toughness (punch strength, by penetrometry), and the contents of total phenols and condensed tannin. We demonstrated interspecific variation in intensities of both ant and non-ant defences amongst ten *Macaranga* species and showed that the rank order of ant defence intensity was negatively correlated with the intensity of non-ant defence. We also found that the balance between ant and non-ant defence intensity was correlated with the rates of leaf turnover and shoot growth. Species investing more in ant defence tended to have higher leaf turnover rates. *Macaranga* species that occur preferentially in shadier microhabitats had lower leaf turnover rates, suggesting that non-ant defences are more cost-effective in more shade-tolerant species. Our results also suggest that the total intensity of non-ant defences is positively correlated with both leaf toughness and total phenol content.

Keywords: ant-plant mutualism, herbivore-plant interactions, myrmecophyte, Sarawak, Borneo, South East Asian tropics
Introduction

Plants have evolved various mechanisms of anti-herbivore. Many attract or nourish other organisms that repel grazers (Buckley 1987; Farmer 1997; Huxley and Catler 1991; Williams et al. 1988). Some plants form mutualistic relationships with ants, which in turn provide the anti-herbivore defences (Beattie 1985; Benson 1985; Davidson and Epstein 1989; Davidson and McKey 1993; Fiala and Linsenmair 1995; Huxley and Catler 1991; Oliveira and Oliveira-Filho 1991). These ants are usually rewarded with food and/or nest sites by the plants (Buckley 1987; Davidson and McKey 1993; Huxley and Catler 1991; Janzen 1966; Lincoln et al. 1982; McKey et al. 1993). Here, we refer to anti-herbivore defence through ants as "ant defences".

Almost all plants (including those that use ants for anti-herbivore defence) defend themselves with innate mechanisms that do not involve other organisms (Harborne 1997; Pollard 1992; Rosenthal and Berenbaum 1991). The mechanisms include production of various secondary compounds such as toxins and repellents, as well as physical obstacles such as hairs, spines, and thick cell walls. We refer to these mechanisms as "non-ant defences".

Both ant and non-ant defences require metabolic resources. To maintain non-ant defences, plants synthesise secondary metabolites such as phenolics and alkaloids, and/or fibres (Barker 1989; Simms 1992). To maintain ant defences, plants provide food and/or nest sites for their mutualistic partners. Investment in anti-herbivore defence may increase the efficacy of the mechanism, but it does not necessarily increase plant fitness. Plants allocate resources to anti-herbivore defences and to growth, reproduction and dispersal (Briggs and Schultz 1990; Herms and Mattson 1992; Simms 1992; Simms and Rausher 1987). Because resources for essential functions are limited, trade-offs in resource allocation must occur between ant and non-ant anti-herbivore defence mechanisms (Eck et al. 2001; Heil et al. 2000a, b; Janzen 1966; Linsenmair et al. 2001; Nomura et al. 2000, 2001; Rehr et al. 1973).

How do plants strategically allocate resources between these competing demands? Various hypotheses have been applied to seek explanations in understanding the effects of environmental variations on the balance amongst anti-herbivore defence mechanisms (Coley et al. 1985; McKey 1984). McKey (1984) proposed that carbon-based non-ant defences, such as formation of thick leaves and constitutive defence chemicals, may be amortised only in plants with low leaf turnover rates and that ant defences may be profitable in plants with higher leaf turnover rates ("leaf life span hypothesis"). To maintain ant defences, plants must provide their mutualistic partner with food rewards containing large amounts of lipids, amino acids and carbohydrates (Hatada et al. 2002; Heil et al. 1997, 1998; Rickson 1980). Although relatively high maintenance costs are required for ant defences, plants can relocate ants.
to particular plant parts in which an immediate need exists for anti-herbivore defence; the relocation of ants is achieved by shifting food rewards to sites where anti-herbivore defence is required. Accordingly, McKey (1984) characterised ant defences as adjustable defence mechanisms with relatively low construction costs and high maintenance costs. Here, 'adjustable' defence indicates that the intensity of ant anti-herbivore deterrence can be shifted amongst parts of a single plant on a needs basis. Rewards for ant agents of defence are moved selectively to plant parts that are currently under attack by herbivores.

Accordingly, McKey (1984) characterised ant defences as adjustable defence mechanisms with relatively low construction costs and high maintenance costs. Here, 'adjustable' defence indicates that the intensity of ant anti-herbivore deterrence can be shifted amongst parts of a single plant on a needs basis. Rewards for ant agents of defence are moved selectively to plant parts that are currently under attack by herbivores.

To maintain carbon-based non-ant defences, plants must invest in initial costs for synthesising and stocking a complex suite of carbon-based compounds, including structural material like fibres and/or defensive chemicals such as phenolic compounds. While there are no maintenance costs or modest costs for non-ant defences after synthesis, plants are obviously unable to access invested resources from leaves that have been shed. Hence, McKey (1984) characterised carbon-based non-ant defences as non-adjustable mechanisms with relatively high construction costs but low maintenance costs.

Considering the predictions and patterns of earlier studies, we have hypothesised that the ratio of ant defence intensity to non-ant defence intensity in the genus Macaranga would be higher in species with elevated leaf turnover rates. To test this hypothesis, we measured relationships between (1) variation in intensities of ant and non-ant defences and (2) leaf turnover rates amongst ten Macaranga species. Our hypothesis is based on the premise that interspecific variation in the balance between intensities of the two types of defence should reflect interspecific variation in the balance of strategic resources allocated to one or the other type of anti-herbivore defences. There is an underlying assumption that the the effectiveness of a given form of defence increases in proportion to the quantity of resources invested in it. With the data collected, we examined correlations between leaf turnover rates and the balance between different anti-herbivore defence mechanisms. For non-ant defence mechanisms, we separately measured leaf toughness (physical defence) and concentrations of condensed tannin and total phenolics (chemical
defences) in order to estimate the relative contributions to intensity of total non-ant defence.

Materials

Study site

This study was conducted in Lambir Hills National Park, Miri, Sarawak, Malaysia (4°2′N, 113°50′E, altitude 50–150 m). Most of study site is covered with a primary lowland mixed dipterocarp forest. The park is located in the humid tropics and has no pronounced dry season (Kato et al. 1995). At least 15 species of Macaranga occur at the study site and many of them are dominant pioneer trees (Itioka et al. 2005).

Macaranga

We focused on the following ten Macaranga species: Macaranga winkleri Pax. and Hoffm., M. trachyphylla Airy Shaw, M. bancana (Miq.) Muell. Arg., M. hypoleuca (Reichb. F. and Zoll.) Muell Arg., M. beccariana Merr., M. lamellata Whitmore, M. umbrosa Davies., M. hullettii King ex Hook., M. gigantea (Reichb. F. and Zoll.) Muell. Arg. and M. praestans Airy Shaw. The first eight are obligate myrmecophytes, whilst the other two are non-mymrcophytes.

The myrmecophytes provide their mutualistic ant partners with nest sites inside hollow stems and food bodies inside dome-shaped stipules or on leaf surfaces. Ants patrol leaves of host plants and protect them against herbivores and vines (Fiala and Maschwitz 1991, 1992; Fiala et al. 1989, 1994; Heil et al. 1999, 2001; Itioka et al. 2000). The association between obligate myrmecophytes and their ants is highly species-specific, and almost all of the plants are colonised by only one or two ant species (Fiala et al. 1999; Itino et al. 2001).

The non-mymrcophytic species M. gigantea and M. praestans often attract nonspecific ants with extrafloral nectar (EFN) produced on leaf surfaces. Ants that are attracted to EFN also defend hosts against herbivores, although the effectiveness of defence is much weaker than in myrmecophytes (Fiala and Maschwitz 1991; Heil et al. 2001). In M. praestans, only newly developing leaves produce EFN; the EFN deteriorates as leaves mature, which is not the case for M. gigantea. Hence, we consider the intensity of ant defence in mature leaves of M. praestans to be weaker than that in M. gigantea. Taxonomic fidelity is low amongst EFN-collecting ants associated with the two non-mymrcophyte Macaranga species; to date, more than ten ant species have been observed collecting EFN (T. Itioka et al. unpublished data).

All myrmecophytic species occur preferentially in moderate shade, found, for example, in forest treefall gaps and by riversides. Although there is considerable habitat overlap, five of the eight myrmecophytic species (M. winkleri, M. trachyphylla, M. bancana, M. hypoleuca and M. beccariana) are more often found in slightly better-illuminated habitats than the other three (M. hullettii, M. umbrosa and
M. lamellata [Davies et al. 1998; M. bancana and M. umbrosa as M. triloba and M. kingii, respectively, in Davies et al 1998 (Davies, SJ personal communication, Davies 2001)]. Hereafter, we refer to the first five species as “less shade-tolerant myrmecophytes” and the remaining three as “more shade-tolerant myrmecophytes”. Of the nine species (other than M. praestans), M. lamellata prefers sand-rich soils, M. hulletti is not strongly affected by soil texture, and the other six species prefer clay-rich soils (Davies et al 1998). Of the nine species, M. gigantea grows to 25-30 m tall whereas the other species rarely reach 20 m tall (Davies et al 1998). The maximum tree height tends to be lower in the three more shade-tolerant myrmecophytes than in the less shade-tolerant myrmecophytes although the maximum tree height of M. beccariana is lower than that of M. hulletti (Davies et al 1998). Although M. gigantea preferentially occurs in slightly brighter conditions than these myrmecophytic species (Davies et al 1998), its habitat broadly overlaps those of myrmecophytic species. M. praestans occurs more often than any other species in the shadiest conditions, e.g., forest floor, and its maximum tree height seems to be similar as those of the more shade-tolerant myrmecophytes (personal observation).

Assessment of ant defence level

When myrmecophytic species are injured by herbivores, aggressive behaviour is induced in mutualistic ants (Itioka et al. 2000); ant workers aggregate at the locations of injury and attack herbivores, if any are present. We used this ant behaviour to measure interspecific differences in ant defence level amongst myrmecophytes. For each of the Macaranga species, we randomly selected 1.5–2.2-m-tall saplings without noticeable damage. We cut off a leaf tip (1cm²) collected from a selected sapling and held it with forceps in contact with the second node of another sapling of the same species. We recorded the numbers of ants that aggregated around the leaf tip, climbed onto the forceps and/or hand of the experimenter holding the leaf tip, or bit the experimenter’s hand during a 90-s period. We calculated the average numbers of ants engaging in these four types of aggressive behaviour.

Assessment of non-ant defence level

To assess interspecific variation in intensity of non-ant defences, we measured inhibitory effects of each Macaranga species on survival and growth performance of common cutworm larvae (Spodoptera litura, Lepidoptera: Noctuidae); fresh leaves of Macaranga were provided as the only food source. The cutworm is an extremely polyphagous herbivore (Okamoto and Okada 1968), and the larva have been used to assess levels of tannin-related anti-herbivore defences in target plants (Nomura and Itioka 2002). Hence, we assumed that non-ant defensive effects against generalist herbivores that feed on Macaranga can be represented by effects on cutworm larvae. The larvae can complete their growth even when fed an artificial diet (Insecta LFS; Nihon Nosankougyou, Tokyo, Japan). The strain used in this study had been maintained on an artificial diet in the laboratory for more than 25 years.
To collect leaves for use as experimental diet, we randomly selected 1.5–2.2 m tall saplings (of all species except *M. gigantea*) that had no noticeable damage. For *M. gigantea*, we selected 3–8 m tall saplings. One undamaged leaf located near the apical part of the stem, but fully expanded and fully toughened was collected from each sapling. However, the leaves might be softer than the older leaves that were farther away from the apical parts.

Cutworm larvae that had hatched within a 12-h period were used for the assessment. We prepared 120 plastic boxes (22 × 14 × 3.7 cm) and placed in each box ten first-instar larvae together with a fresh leaf of one *Macaranga* species. The 120 boxes were assigned to ten treatments (12 replicates per treatment) and larvae were reared at 28 °C in the laboratory. Every second day, larval survival was checked and leaves were replaced.

Nomura et al. (2000) measured interspecific variation in intensity of non-ant defences amongst six *Macaranga* species. Their method of assessing anti-herbivore defences was almost identical to ours. We therefore included their data for six species in our comparisons of non-ant defences amongst plants.

Assessment of leaf toughness

To assess the strength of physical defence, we determined leaf toughness (punch strength). Since the leaves used in this study bore very few trichomes or spines, we assumed that leaf toughness would be a good measure of the strength of physical defence. Leaves were sampled from 20 saplings of each species randomly selected in a manner identical to that for our larval cutworm assessment of non-ant defence.

Leaf toughness represented by punch strength was quantified by penetrometry, i.e., the weight needed to push a 3-mm-diameter column through a fresh leaf (CPU; Aikoh Engineering, Tokyo, Japan).

Nomura et al. (2000) measured interspecific variation in leaf toughness (punch strength) amongst five *Macaranga* species using a method similar to ours. We supplemented our own data with those from the earlier study (Nomura et al. 2000) to achieve an adequate sample size.

Quantification of total phenol and condensed tannin

Leaves were sampled via a standard procedure (see "Assessment of ant defence level"). The leaves were vacuum-dried in a freeze-dryer (FDU-810; Tokyo Rikakikai, Tokyo, Japan), and the major veins were excised from the dry leaves, which were ground in an electric mill. Dry leaf powder was stored in Ziploc™ bags over silica gel until analysis. Dry leaf powder (0.2 mg) was extracted at 40 °C with 5 ml of 50% methanol for 1 h using an ultrasonicator. The extract was centrifuged at 3000 g for 15 min and the supernatant, which used for quantifying the condensed tannin and total phenol, was collected. The extraction was performed in duplicate.

Condensed tannin content was measured by the proanthocyaninid method (Waterman and Mole 1994). One millilitre of extract was added to 4 ml of *n*-butanol-conc. HCl (95 : 5). The mixture was
hydrolysed at 100 °C for 2 h. After cooling for 15 min, the absorbance of the reaction was measured at 550 nm. The reference reagent was n-butanol-conc. HCl (95 : 5) with HCl replaced by distilled water. Condensed tannin content was determined using cyanidin chloride.

Total phenol content was measured by the Folin–Ciocalteu method (Waterman and Mole 1994). Two hundred microlitres of extract was diluted with 2 ml of distilled water, and 1 ml of Folin–Ciocalteu reagent was mixed into the solution. One to 8 min later, 5 ml of NaCO₃ solution (20 %) was added, and the mixture was shaken. This solution was made up to a volume of 10 ml with distilled water. After incubation at room temperature for 20 min, absorbance of the reaction was measured at 760 nm. Distilled water replaced normal reagent in the reference tubes. Total phenol content was determined using tannin acid.

Assessment of growth rate and leaf turnover

We randomly selected 1.5–2.2-m-tall saplings without noticeable damage in the field. We measured height and stem radius at the ground level, and numbered the leaves from oldest to youngest with a felt-tipped pen. We re-measured height and stem radius, and counted the number of fallen leaves and newly developed leaves on four or five occasions ca 1, 3, 12 and 36 months later. Based on the volume of plants, we calculated the growth rate as follows:

\[
\text{Growth rate} = \frac{\ln (S_{\text{final}} \times S_{\text{final}} \times H_{\text{final}}) - \ln (S_{\text{initial}} \times S_{\text{initial}} \times H_{\text{initial}})}{\text{Days}},
\]

where \(S_{\text{initial}}\) and \(S_{\text{final}}\) are stem radii of the sapling at times of first and second measurements, respectively, and \(H_{\text{initial}}\) and \(H_{\text{final}}\) are height of sapling at times of first and second measurements, respectively.

We calculated leaf turnover rate as follows:

\[
\text{Leaf turnover rate} = \frac{1}{2} \left(\frac{\text{NFL} + \text{NNL}}{\text{MNL} / \text{Days}} \right),
\]

where \(\text{NFL}\) and \(\text{NNL}\) are the numbers of fallen leaves and newly developed leaves, respectively, and \(\text{MNL}\) is the mean number of leaves between first and second measurements.

Results

Intensity of ant aggressiveness

Significant differences were detected in all measures of ant aggressive behaviour amongst the eight \(Macaranga\) myrmecophytes (Kruskal–Wallis test: adjusted \(H > 41.65, P < 0.0001\) for each behaviour; Table 1). The numbers of ants engaged in the four types of aggressive behaviours tended to be higher on the five less shade-tolerant myrmecophytes than on the three more shade-tolerant myrmecophytes, and were different amongst the five less shade-tolerant myrmecophytes. The numbers of ants engaged in the four types of aggressive behaviours on \(M.\ winkleri\) were significantly higher than those on the other less shade-tolerant myrmecophytes, and the numbers of ants that climbed on the forcep and/or hand on \(M.\ winkleri\).
trachyphylla were significantly higher than those on M. beccariana and M. hypoleuca (multiple comparisons based on Mann–Whitney U-test, $P < 0.05$). Significant differences were observed amongst the eight plant species in the sum of average numbers of ants engaged in the four types of aggressive behaviour (Kruskal–Wallis test: adjusted $H = 48.616$, $P < 0.0001$; Table 1). The sum of the average numbers was significantly higher on M. winkleri than on the other species; significantly higher on M. trachyphylla than on M. hypoleuca, M. lamellata and M. umbrosa; and significantly higher on M. beccariana than on M. lamellata and M. umbrosa (multiple comparisons based on Mann–Whitney U-test, $P < 0.05$).

Effects of eating fresh leaves on the growth of cutworm larvae

The hazard curves of the cumulative cutworm larval survival rates were significantly different amongst the ten species of leaves (logrank test, $\chi^2 = 1135.818$, $P < 0.0001$; Fig. 1). The hazard curves were higher for larvae on the five less shade-tolerant myrmecophytes than on the three more shade-tolerant myrmecophytes, and lower on M. praestans than on any other species except M. hullettii. The larval mandibles were able to penetrate leaves of all species except M. praestans (all larvae died of starvation when fed this species, probably due to their inability to break the leaf surface). The larval hazard curve on M. gigantea was intermediate between those on the more shade-tolerant myrmecophytes and those on the less shade-tolerant myrmecophytes (except M. hypoleuca). Although the larval hazard curves were not significantly different between M. gigantea and M. beccariana, some larvae on M. beccariana were able to survive until the third instar, whereas all larvae on M. gigantea died during the second instar. The larval hazard curves were different amongst the five less shade-tolerant myrmecophytes and amongst the three more shade-tolerant myrmecophytes. The larval hazard curves were highest on M. lamellata and lowest on M. hullettii amongst the three more shade-tolerant myrmecophytes.

Some larvae grew to the adult stage, but only on leaves of M. winkleri and M. trachyphylla; larvae died on the leaves of other Macaranga species.

Leaf toughness

Significant differences in leaf toughness were observed amongst the ten species (ANOVA, $F = 84.033$, $P < 0.0001$; Fig. 2). Leaf toughness tended to be lower in the five less shade-tolerant myrmecophytes than in other species. Leaf toughness in M. praestans was significantly higher than in the other species (Scheffé’s F test, $P < 0.05$). M. gigantea had a leaf toughness intermediate between those of the two types of myrmecophytic species; its leaf toughness was significantly higher than those of M. winkleri, M. trachyphylla and M. bancana, and significantly lower than those of M. hullettii and M. praestans (Scheffé’s F test, $P < 0.05$). Leaf toughness differed amongst the five less shade-tolerant
myrmecophytes, and amongst the three more shade-tolerant myrmecophytes. Leaf toughness was significantly lower in *M. winkleri* than in *M. hypoleuca, M. beccariana* and *M. bancana*, and significantly higher in *M. hullettii* than in *M. umbrosa* and *M. lamellata* (Scheffé’s *F* test, *P* < 0.05).

Contents of total phenol and condensed tannin

A significant difference in total phenol content was seen amongst the ten species (ANOVA, *F* = 31.164, *P* < 0.0001; Fig. 3a). Total phenols content tended to be lower in the five less shade-tolerant myrmecophytes than in the other species, and was intermediate in the two non-myrmecophytic species between those in less shade-tolerant myrmecophytes and those in more shade-tolerant myrmecophytes. Total phenols content was significantly lower in *M. praestans* than in *M. umbrosa* (Scheffé’s *F* test, *P* < 0.05), significantly higher in *M. gigantea* than in *M. winkleri, M. trachyphylla* and *M. beccariana*, and significantly lower in *M. gigantea* than in *M. umbrosa* (Scheffé’s *F* test, *P* < 0.05). Total phenols content differed amongst the three more shade-tolerant myrmecophytes, being significantly higher in *M. umbrosa* than in *M. hullettii* and *M. lamellata*, and significantly higher in *M. lamellata* than in *M. hullettii* (Scheffé’s *F* test, *P* < 0.05).

A significant difference in condensed tannin content was detected amongst the ten species (ANOVA, *F* = 24.575, *P* < 0.0001; Fig. 3b), but no consistent difference was observed between the less shade-tolerant and more shade-tolerant myrmecophytes. The condensed tannin contents for the two non-myrmecophytic species tended to be higher than those for the myrmecophytic species. The contents were significantly higher in *M. gigantea* than in the other species, and significantly higher in *M. praestans* than in *M. winkleri, M. trachyphylla, M. bancana, M. lamellata, M. umbrosa* and *M. hullettii* (Scheffé’s *F* test, *P* < 0.05).

Leaf turnover and growth rates

A significant variation in the leaf turnover rate amongst the ten species was seen (ANOVA, *F* = 70.293, *P* < 0.0001; Fig. 4a). Leaf turnover rates of the five less shade-tolerant myrmecophytes tended to be higher than those of the three more shade-tolerant myrmecophytes. Leaf turnover rate was significantly lower in *M. praestans* than in the other species (Scheffé’s *F* test, *P* < 0.05); that in *M. gigantea* was intermediate amongst those of the eight myrmecophytic species, significantly lower than that in *M. winkleri* (Scheffé’s *F* test, *P* < 0.05), and significantly higher than those in *M. lamellata, M. umbrosa* and *M. praestans* (Scheffé’s *F* test, *P* < 0.05). Leaf turnover rate differed amongst the five less shade-tolerant myrmecophytes, and amongst the three more shade-tolerant myrmecophytes. The rate was significantly higher in *M. winkleri* than in the other less shade-tolerant myrmecophytes, and significantly lower in *M. umbrosa* than in the other more shade-tolerant myrmecophytes (Scheffé’s *F* test, *P* < 0.05).

Significant variation in growth rate amongst the ten species was seen (ANOVA, *F* = 17.241, *P* <
0.0001; Fig. 4b), although no consistent difference was seen between less and more shade-tolerant myrmecophytes. Growth rate was significantly lower in *M. praestans* than in species other than *M. umbrosa* (Scheffé’s *F* test, *P* < 0.05). The growth rate of *M. gigantea* was intermediate amongst those of the five less shade-tolerant myrmecophytes, and significantly lower than that of *M. winkleri* (Scheffé’s *F* test, *P* < 0.05). Growth rate differed amongst the five less shade-tolerant myrmecophytes, and was significantly higher in *M. winkleri* than in the other less shade-tolerant myrmecophytes (Scheffé’s *F* test, *P* < 0.05).

Correlation between anti-herbivore defences and life history traits

The rank order of ant defence intensity was significantly negatively correlated with those of non-ant defence intensity, leaf toughness and total phenol content (Kendall’s coefficient of rank correlation, adjusted $\tau = -0.644$, -0.778 and -0.644 for non-ant defence intensity, leaf toughness and total phenols content, respectively, *P* < 0.01 for all comparisons; Table 2). The rank order of non-ant defence intensities was significantly positively correlated with those of leaf toughness and total phenols content (Kendall’s coefficient of rank correlation, adjusted $\tau = 0.778$ and 0.556, *P* < 0.01 and 0.05, for leaf toughness and total phenol content, respectively; Table 2), and significantly negatively correlated with that of leaf turnover rate (Kendall’s coefficient of rank correlation, adjusted $\tau = -0.511$, *P* < 0.05; Table 2). The rank order of leaf turnover rates was significantly positively correlated with that of growth rate (Kendall’s coefficient of rank correlation, adjusted $\tau = 0.689$, *P* < 0.01; Table 2).

Discussion

Since herbivorous insects that specialise on or constantly utilise a particular plant species in the field tend to overcome plant non-ant defences through coevolutionary processes (Ehrlich and Raven 1964; Feeny 1977), the strength of general non-ant defences of the plant cannot be assessed with bioassay using these specialist herbivorous insects. In contrast, the common cutworm has a broad host range, making it a suitable choice for bioassays of general *Macaranga* non-ant defences. For the same reason, the strength of ant defences in a particular plant species cannot be assessed with a bioassay using herbivorous insects that specialise on *Macaranga* species. Therefore, we measured ant aggressiveness toward artificial leaf damage to estimate the intensity of ant defences against the generalist herbivores that may attack *Macaranga* trees.

In this study, we determined leaf puch strength as an indicator of leaf toughness and as an indicator of resistance to invertebrate herbivory. Recently, fracture toughness has been used as another measure of leaf toughness, and there is uncertainty as to which of the two measures is better correlated with resistance to herbivory (Choong et al. 1992, Dominy et al. 2008, Grubb et al. 2008, Read and Stokes...
This uncertainty requires resolution in future studies on Macaranga plants, but at this point, we believe that punch strength is a good indicator of resistance to herbivory. The rank orders of species presumably differed little between the two types of variables because our comparison were restricted to members of a single genus, whose species probably have similar cell wall structures leaf textures, and materials in and around cell walls.

Wide interspecific variations were seen in the intensities of both ant and non-ant defences amongst the ten species, and there was a tendency for species with more intensive ant defences to have less intensive non-ant defences, supporting Janzen’s (1966) proposal of a trade-off between ant and non-ant defences. As Janzen (1966) argued, high investments into both ant and non-ant defences must place metabolic burdens on plants under resource-limited conditions.

We demonstrated interspecific variation in leaf turnover rate amongst the ten Macaranga species, and the rank order of this rate was positively correlated with that of ant defence intensity and negatively correlated with that of non-ant defence intensity. Assuming that intensities of the two types of anti-herbivore defences increase in proportion to plant investment in defences, and that the relationship between intensity (or effectiveness) and investment does not differ significantly amongst Macaranga species, the balance between the intensities of the two types of defence probably reflects interspecific difference in the investment balance between ant and non-ant defences. If these assumptions are indeed correct, our results are consistent with McKey’s (1984) hypothesis; the balance between ant and non-ant defences was closely associated with leaf turnover rate (except in one Macaranga species), as McKey (1984) hypothesised. The order of species in the Macaranga leaf turnover rate was closely related to variation in microhabitat light availability amongst the species. As McKey (1984) argued, we can infer that ant defences would be more profitable for Macaranga species with high leaf turnover rates. Under constraints of limited resources, each Macaranga species may pay metabolic costs for an optimal balance not only between the two modes of anti-herbivore defence, but also between anti-herbivore defence and growth, including leaf turnover. The relationships between balancing ant and non-ant defences, the total costs of anti-herbivore defence and leaf turnover as components of life history resource allocation strategy have yet to be investigated in Macaranga.

The assumption on a linear relation between investment and effectiveness (intensity) for each defence mechanism seems reasonable (1) because there is unlikely to be significant variation in mechanisms of ant defence and non-ant defence amongst the target species of the genus Macaranga, and (2) because it is generally believed that effectiveness of a defence mechanism is higher in plants that invest more resources in this mechanism (and different species use the same mechanism). However, the validity of the assumption should be examined more rigorously in the future because different Macaranga
species may use different component mechanisms in the suite of non-ant defence mechanisms. Since some of non-ant defences (mainly physical and chemical defences) may be related to other life history strategy functions, such as anti-pathogen defences and resistance to drought (Edwards 1989), exact estimation of investment in non-ant defences would be difficult. In spite of this caveat, the negative correlation amongst species between the rank order of ant defence intensity and that of non-ant defence suggests that McKey’s (1984) hypotheses are correct.

The strength of non-ant defences in *M. gigantea* was much lower than would have been predicted by the across-species negative correlation between ant and non-ant defence strengths. The intensities of ant and non-ant defences in this non myrmecophyte species were lower than those in the three more shade-tolerant myrmecophytes. Furthermore, *M. gigantea* was an outlier amongst the ten *Macaranga* species in the correlation between ant/non-ant defence ratio and leaf turnover rate; its ratio and turnover rate were intermediate amongst those in myrmecophytic species. These exceptional properties suggest that *M. gigantea* does not trade-off resources between ant and non-ant defences in the manner predicted by McKey’s (1984) leaf life span hypothesis, whereas the other nine congeners fit the predictions. The preferential occurrence of *M. gigantea* in microhabitats that are much better-illuminated than those of other species (Davies et al. 1998, T. Itioka et al. unpublished data) might help explain its exceptional attributes. Coley et al. (1985) predicted that plants inhabiting favourable environments (e.g., well lit with fertile soil and appropriate water supply) would allocate relatively large resource quotas into growth and relatively small quotas into anti-herbivore defences (resource availability hypothesis). With abundant resources, plants in more favourable environments are easily able to replace tissues lost to herbivory, reducing the necessity for defences against tissue loss. Thus, Coley et al. (1985) predicted that plants inhabiting resource-poor environments would have stronger anti-herbivore defences than those in resource-rich habitats. Many studies provide corroborative evidence for this prediction (Beadle 1966; Chabot and Hicks 1982; Coley 1983, 1987, 1988; Givnish 1987; Herms and Mattson 1992; Janzen 1974; Reich et al. 1992; Turner 1994) but difficulties raised, e.g. by Grubb (1992). We propose that *M. gigantea* falls into the category of plants living in a resource-rich habitat (light is the resource in this case) and investing more into growth than defence. The postulate awaits further testing.

Davies et al. (1998) demonstrated that eight of the ten species targeted in our study are spatially distributed across gradients of light conditions and soil characteristics. Moreover, Davies (1998) showed that ecophysiological and life history traits of *Macaranga* species are concordant with spatial distributions on the resource gradients. Our measurements of interspecific variation in the mode of anti-herbivore defence are also consistently reflected in species habitat differentiation, probably because leaf turnover rate is closely associated with the tree growth rate (Fig. 4), other leaf traits and preferred
light conditions of individual species. However, the distribution of most of the target *Macaranga* species in relation to sand-richness in the soil (Davies et al. 1998) were not clearly correlated with the interspecific variation in the balance between the two modes of anti-herbivore defences. Davies et al. (1998) did not detect significant differences in tolerance of drier conditions and upper altitudinal limit amongst the eight species. We were also unable to find the clear difference in the traits amongst the target species in this study. Effects of these factors on the variation in anti-herbivore defences remain to be examined.

Non-ant defences have chemical and physical components. We measured leaf toughness as a plausible correlate of physical defence against generalist herbivores, and total phenols and condensed tannin contents as plausible major agents of chemical defence. Species with tougher leaves tended to have more intensive total non-ant defence. Similarly, there was a tendency for species with higher total phenols content to have elevated total non-ant defences. In contrast, species with higher condensed tannin contents did not necessarily have elevated total non-ant defences. The correlation between leaf toughness and the intensity of total non-ant defence was slightly stronger than that between total phenols content and the intensity of total non-ant defence. Leaf toughness contributed slightly more than total phenols content to the interspecific variation in intensity of non-ant defences. Physiochemical and histological mechanisms that affect the efficiency of anti-herbivore defences constitute an issue.

Acknowledgments

We thank Hua Seng Lee and the Forest Department of Sarawak for providing opportunities to conduct this study at Lambir Hills National Park. We also thank Takayuki Ohgushi, Tohru Nakashizuka and Takao Itino for their helpful comments. We also thank Satoshi Tahara for assisting with the chemical analyses. This work was funded by the Japan Ministry of Education, Science and Culture for International Scientific Research (no. 10041163 and no. 21255004) and by Japan Science and Technology Corporation for CREST.

Reference

Beattie AJ (1985) The evolutionary ecology of ant-plant mutualism. Cambridge University Press,

Dominy NJ, Grubb PJ, Jackson RV, Lucas PW, Metcalfe DJ, Svenning JC, Turner IM (2008) In tropical lowland rain forests monocots have tougher leaves than dicots, and include a new kind of tough leaf. Annals of Botany 101:1363-1377

protection of Macaranga trees by Crematogaster borneensis. Oecologia 79:463-470

Lin JH, Ishimatsu M, Tanaka T, Nonaka GI, Nishioka I (1990b) Tannins and related compounds XCIV structures of macarangins and macarinins. New hydolyzable tannins possessing macaronyl and
tergalloyl ester group from the leaves of *M. sinensis* Baill. Muell.-Arg. Chemical and Pharmaceutical Bulletin (Tokyo) 38:1844-1851

Figure Legends

Fig. 1 Cumulative survival rate hazard curves for common cutworm (*Spodoptera litura*) larvae fed fresh leaves of ten *Macaranga* species: *M. winkleri* (solid squares), *M. trachyphylla* (open stars), *M. bancana* (solid circles), *M. beccariana* (open circles), *M. hypoleuca* (solid triangles), *M. lamellata* (open triangles), *M. umbrosa* (open squares), *M. hullettii* (open diamonds), *M. gigantea* (black crosses) and *M. praestans* (solid stars). Hazard curves end on the day when all larvae had died or reached the pupal stage. Curves were significantly different amongst the ten species (logrank test, $\chi^2 = 1135.818, P < 0.0001$). Data for *M. winkleri*, *M. trachyphylla*, *M. beccariana*, *M. gigantea* and *M. praestans* are from Nomura et al. (2000).

Fig. 2 Leaf toughness in ten *Macaranga* species: *M. winkleri* (win), *M. trachyphylla* (tra), *M. bancana* (ban), *M. beccariana* (bec), *M. gigantea* (gig), *M. hypoleuca* (hyp), *M. lamellata* (lam), *M. umbrosa* (umb), *M. hullettii* (hul) and *M. praestans* (pra). Leaf toughness was measured as the weight (mean \pm SD) required to puncture fresh leaves with a 3-mm-diameter penetrometer column. Means sharing lower case letters are not significantly different from each other (Scheffé’s F test, $P < 0.05$). Data for *M. winkleri*, *M. trachyphylla*, *M. beccariana*, *M. gigantea* and *M. praestans* are from Nomura et al. (2000), with additional measurements to increase sample size.

Fig. 3 Total phenol (a) and condensed tannin (b) contents in leaves of ten *Macaranga* species. Phenol content is mg tannic acid/g dry wt, and condensed tannin content is mg cyanidin chloride/g dry wt. See Fig. 2 for the abbreviations of species names. Means sharing lower case letters are not significantly different from each other (Scheffé’s F test, $P < 0.05$). Means \pm SD.

Fig. 4 Leaf turnover (a) and growth (b) rates of ten *Macaranga* species. See text for calculation methods and Fig. 2 for the abbreviations of species names. Means sharing lower case letters are not significantly different from each other (Scheffé’s F test, $P < 0.05$). Means \pm SD.
Fig. 1
Fig. 2

Leaf toughness (kg)

Species

win tra ban bec gig hyp lam umb hul pra
Fig. 4

(a) Leaf turnover (x 10^-3)

(b) Growth rate (x 10^-3)

Species

- win
- tra
- ban
- bec
- gig
- hyp
- lam
- umb
- hul
- pra
Table 1. Number of ants engaged in the four types of behaviours when a leaf tip (c. 1cm²) from a different tree was held with forceps in contact with the second node of their nest plant (Mean ± SE).

<table>
<thead>
<tr>
<th>Species</th>
<th>Sum (Mean ± SE)</th>
<th>No. of ants (Mean ± SD)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aggregated at the leaf tip</td>
<td>Climbers onto the forceps</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>M. winkleri</td>
<td>82.6⁺ ± 8.3</td>
<td>39.2⁺ ± 3.8</td>
<td>24.6⁺ ± 3.0</td>
</tr>
<tr>
<td>M. trachyphylla</td>
<td>31.0ᵇ ± 4.1</td>
<td>19.7ᵇ ± 2.7</td>
<td>8.6ᵇ ± 1.7</td>
</tr>
<tr>
<td>M. beccariana</td>
<td>15.6ᵇᶜ ± 4.7</td>
<td>7.8ᶜᵈ ± 1.3</td>
<td>5.7ᵇᶜ ± 2.4</td>
</tr>
<tr>
<td>M. bancana</td>
<td>13.4ᵇᶜᵈ ± 4.6</td>
<td>9.2ᵇᶜ ± 2.1</td>
<td>3.3ᵇᶜᵈ ± 1.9</td>
</tr>
<tr>
<td>M. hypoleuca</td>
<td>11.3ᶜᵈ ± 1.9</td>
<td>8.2ᶜ ± 1.4</td>
<td>2.1ᵇᶜᵈ ± 0.7</td>
</tr>
<tr>
<td>M. hullettii</td>
<td>10.7ᵇᶜᵈ ± 3.0</td>
<td>8.1ᵇᶜᵈ ± 2.6</td>
<td>2.2ᶜᵇᵈ ± 0.5</td>
</tr>
<tr>
<td>M. umbrosa</td>
<td>4.4ᵈ ± 1.7</td>
<td>4.0ᶜᵈ ± 1.7</td>
<td>0.4ᵈ ± 0.2</td>
</tr>
<tr>
<td>M. lamellata</td>
<td>3.8ᵈ ± 0.8</td>
<td>3.0ᵈ ± 0.5</td>
<td>0.8ᶜᵈ ± 0.3</td>
</tr>
</tbody>
</table>

Significant differences were detected amongst eight species for all types of aggressive behaviours (Kruskal-Wallis test, \(P < 0.0001 \)). Means sharing superscript letters are not significantly different from each other in the comparisons amongst species (multiple comparisons based on Mann-Whitney U-test; \(P < 0.05 \)).
Table 2. Kendall's coefficients of rank correlations between the two of the following seven measurements for ten *Macaranga* species: ant defence intensity, non-ant defence intensity, leaf toughness, total phenol content, condensed tannin content, growth rate, leaf turnover rate.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Non-ant defence</th>
<th>Leaf toughness</th>
<th>Total phenol</th>
<th>Condensed tannin</th>
<th>Growth rate</th>
<th>Leaf turnover rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ant defence</td>
<td>$\tau = -0.644^{**}$</td>
<td>$\tau = -0.778^{**}$</td>
<td>$\tau = -0.644^{**}$</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Non-ant defence</td>
<td>$\tau = 0.778^{**}$</td>
<td>$\tau = 0.556^{*}$</td>
<td>NS</td>
<td>NS</td>
<td>$\tau = -0.511^{*}$</td>
<td>NS</td>
</tr>
<tr>
<td>Leaf toughness</td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Total phenols</td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Condensed tannin</td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Growth rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\tau = 0.689^{**}$</td>
</tr>
</tbody>
</table>

* $P < 0.05$, ** $P < 0.01$,