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Abstract

Objective: Hepatocellular carcinoma (HCC) is difficult to manage due to the high frequency of post-surgical recurrence.
Early detection of the HCC recurrence after liver resection is important in making further therapeutic options, such as
salvage liver transplantation. In this study, we utilized microRNA expression profiling to assess the risk of HCC recurrence
after liver resection.

Methods: We examined microRNA expression profiling in paired tumor and non-tumor liver tissues from 73 HCC patients
who satisfied the Milan Criteria. We constructed prediction models of recurrence-free survival using the Cox proportional
hazard model and principal component analysis. The prediction efficiency was assessed by the leave-one-out cross-
validation method, and the time-averaged area under the ROC curve (ta-AUROC).

Results: The univariate Cox analysis identified 13 and 56 recurrence-related microRNAs in the tumor and non-tumor tissues,
such as miR-96. The number of recurrence-related microRNAs was significantly larger in the non-tumor-derived microRNAs
(N-miRs) than in the tumor-derived microRNAs (T-miRs, P,0.0001). The best ta-AUROC using the whole dataset, T-miRs, N-
miRs, and clinicopathological dataset were 0.8281, 0.7530, 0.7152, and 0.6835, respectively. The recurrence-free survival
curve of the low-risk group stratified by the best model was significantly better than that of the high-risk group (Log-rank:
P = 0.00029). The T-miRs tend to predict early recurrence better than late recurrence, whereas N-miRs tend to predict late
recurrence better (P,0.0001). This finding supports the concept of early recurrence by the dissemination of primary tumor
cells and multicentric late recurrence by the ‘field effect’.

Conclusion: microRNA profiling can predict HCC recurrence in Milan criteria cases.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most common

malignancies worldwide, and is the fourth most common cause of

mortality [1,2]. In addition, its incidence is increasing in many

countries [3,4]. HCC is difficult to manage, as compared with

other common malignant diseases due to the high percentage of

co-existing liver cirrhosis. The impaired liver function caused by

liver cirrhosis often restricts treatment options, even for early

HCC. Liver resection (LR) and orthotopic liver transplantation

(OLT) are considered as the only two potentially curative

treatment options for HCC. Currently, the Milan Criteria (i.e.,

solitary tumor #5 cm, or 2 or 3 tumors #3 cm) [5] are widely

accepted as the selection Criteria for OLT in HCC patients. For

HCC patients with severe liver cirrhosis (Child-Pugh C), OLT is

considered the first-line treatment. In these cases, LR is

contraindicated because of impaired liver function. In contrast,

there has been an intense debate about which treatment option of

LR or OLT is the optimal initial treatment for HCC patients with

no to mild liver cirrhosis (Child-Pugh A/B). Some authors have
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recommended OLT as the first-line treatment for HCC fulfilling

the Milan Criteria given the lower tumor recurrence rate after

OLT[6,7]. On the other hand, due to the shortage of donor

organs, many liver transplant centers choose LR for HCC patients

with Child-Pugh A/B, and who satisfy the Milan Criteria.

Therefore, the strategy of a primary LR and salvage transplan-

tation for intrahepatic HCC recurrence is a reasonable tactic for

early resectable HCC with preserved liver function. In this

strategy, it is important to predict recurrent tumors for selecting

the follow-up protocol of patients after LR.

In our previous reports, we screened prognostic factors from

various clinical features, and found that co-existing cirrhosis

correlated with the outcomes of HCC cases within the Milan

Criteria[8]. Moreover, utilizing clinical factors, we also deter-

mined a safe expanded selection criteria for the indications of

living donor liver transplantation in HCC patients beyond the

Milan Criteria[9]. To obtain better-optimized stratification criteria

and a more accurate prediction of recurrence, biological

information and biomarkers derived from ‘‘OMICS’’ approaches,

e.g., transcriptomics and proteomics, will be powerful tools.

MicroRNAs are a class of small non-coding RNAs [19–23

nucleotides (nt)] that have been found in animal and plant cells. As

of today, 1049 human microRNAs are registered in the miRBase

database (Release 16, September, 2010)[10–13]. MicroRNA genes

are transcribed as non-coding transcripts, and are processed

through a series of sequential steps involving the RNase III

enzymes, Drosha and Dicer. The processed microRNAs are finally

incorporated into the RNA-induced silencing complex (RISC) to

mediate the target mRNA repression of translation and/or

degradation. It has been reported that microRNAs are involved

in physiological and pathological functions, such as the regulation

of developmental timing and pattern formation[14], the restriction

of differentiation potential[15], chromatin rearrangements[16],

and carcinogenesis[17]. Many of the mechanistic details still

remain unknown.

In the last decade, gene expression profiling has been utilized to

classify the type of HCC and to predict the recurrence and survival

of HCC patients [18–21]. Moreover, recent microarray technol-

ogy has been utilized to analyze a comprehensive microRNA

expression profiling of HCC [22,23]. However, a microarray-

based prediction of HCC recurrence, especially for early HCC

patients, have not been reported.

Previously, we developed a highly sensitive platforms for both

mRNA and microRNA expression profiling [24]. Our ultimate

goal is to apply microarray technology into the clinical field.

Thus, we previously evaluated a microRNA-microarray platform

as a future IVDMIA (in vitro diagnostic multivariate index assay)

device using analytical procedures recommended by the Micro-

array quality control (MAQC) project [25]. In this study, we

examined whether microRNA microarray technology can predict

recurrent HCC after LR for patients who satisfying the Milan

Criteria.

Figure 1. Flow chart of the prediction model construction and validation. To establish prediction models, the leave-one-out cross-validation
method (LOOCV), principal component analysis (PCA), and Cox proportional hazard (CoxPH) models were used. In each LOOCV cycle, the variables of
the training datasets or principal component (PC) dataset were prioritized by univariate CoxPH model analysis. Next, multivariate CoxPH models were
developed using 1,30 top-ranked variables, and 30 predicted recurrence-free survival curves were the output for a test dataset. After 73 LOOCV
cycles, 73630 predicted recurrence-free survival curves were generated. For each number of variables used, the time-averaged AUROC was calculated
using a set of 73 predicted survival curves. Finally, a model with the best time-averaged AUROC was selected.
doi:10.1371/journal.pone.0016435.g001
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Materials and Methods

Patients
Between January, 1997 and March, 2007, 639 patients with

HCC underwent hepatic resection as a primary curative

treatment. Among these patients, 73 patients satisfied the following

patient enrollment criteria; 1) no preoperative therapy, 2) within

the Milan Criteria, 3) with Child-Pugh A-B level cirrhosis, 4) no or

minimum vessel invasion (pathological Vp0-2 and Vv0-1 accord-

ing to the General Rules for the Clinical and Pathological Study of

Primary Liver Cancer, the 4th edition [26]), 5) availability of

frozen paired tumor and non-tumor liver tissues, and 6) the quality

of extracted RNA was good enough for microarray analysis. This

study was approved by the Institutional Review Board of School of

Medicine and Kyoto University Hospital, and the Human Tissue

Samples Ethics Committee for R&D, Toray Ind., Inc. All patients

gave their written informed consent to the sample collection and

analyses described in the present study, in agreement with the

Declaration of Helsinki.

RNA extraction
Tumor and non-tumor tissues were obtained and frozen in

liquid nitrogen immediately after hepatic resection, and were

stored in liquid nitrogen until RNA extraction. The total RNA

samples were extracted by a phenol-chloroform RNA extraction

method (Trizol; Invitrogen, Carlsbad, Calif., USA). The quality of

the purified total RNAs was analyzed by a Bioanalyzer 2100

(Agilent Technologies, Palo Alto, Calif., USA). The criteria for the

use of a sample was that the 18s and 28s ribosomal RNA peaks

were twice or more higher than the other peaks, as previously

described [27]. The RNA Integrity Numbers (RIN) of Bioanalyzer

software for all samples was more than 5.

MicroRNA expression profiling
We utilized Toray’s 3D-GeneTM human microRNA chips

(miRBase version 12) for microRNA expression profiling. The

reproducibility and comparability to Taqman RT-PCR, and the

experimental procedures of Toray’s microarray, were described

previously [25]. Briefly, for each patient, 500 ng of total RNA

derived from both tumor and non-tumor samples were labeled

using miRCURY LNATM microRNA Power Labeling Kits Hy5

(Exiqon, Vedbaek, Denmark). The labeled samples were individ-

ually hybridized onto the DNA chip surface, and were incubated at

42uC for 16 hours. The washed and dried DNA chip in an ozone-

free environment was scanned using a ProScanArrayTM microarray

scanner (PerkinElmer Inc. Waltham, MA). The obtained micro-

array images were analyzed using Genepix ProTM 4.0 software

(Molecular Device, Sunnyvale, CA). In this study, the median values

of the foreground signal minus the local background were

represented as the feature intensities. The microRNA expression

profile of all samples was illustrated as a heatmap in Figure S1.

Data analyses procedures
In this study, the recurrence-free survival was defined as the time

between the operation date and the date when the recurrent tumor/

tumors were identified. The clinical dataset consists of 63

clinicopathological information points (Table S1). All data obtained

from the microarray experiments were normalized by a quantile

normalization method [28], and then were filtered (75 percentile of

miR expression .6 in log2 scale). Thus, 193 microRNAs were

selected, and finally 579 data points (579 = 19363, T-miR, N-miR,

and T/N ratio) for each patient were used for further prediction

model construction. The model construction procedure is illustrated

in a flow chart (Figure 1). All statistical analyses and prediction

model construction were performed using Matlab 2010a software

(Mathworks, Natick, MA, USA). The detailed data process

procedures are described in a supplemental file. In this study, p-

values less than 0.05 were considered as statistically significant. All

microRNA microarray data were registered into NCBI’s Gene

Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.

gov/projects/geo/). The accession numbers are GSE21362 for

series IDs, and GSM533698,533843 for sample IDs.

Results

Patients’ characteristics
Table 1 summarizes the clinicopathological characteristics of

the patients. All patients were treated with curative surgical liver

resection. The mean recurrence-free survival of the complete cases

(n = 45) was 618 days (standard deviation: 517 days). The mean

follow-up periods of the censored cases (n = 28) was 1902 days.

Table 1. Clinical Features of 73 HCC patients within Milan
Criteria and Univariate Cox Proportional Hazard Model.

Cox proportional hazard
model

Clinical features hazard ratio p-value

Age mean, range

65.8 (40–88) 0.981 0.228

Gender

female 19 1.077 0.825

male 54

Tumor size
(Max diameter)

mean6SD

3.261.0 0.833 0.235

Child-Pugh
classification

A 69 1.924 0.277

B 4

Cirrhosis

(-) 36 1.246 0.463

(+) 37

Tumor Grade

well 21 0.982 0.938

moderate 45

poor 7

T factor

T1 7 1.692 0.0131

T2 51

T3 13

T4 2

HBV antigen

(-) 61 2.033 0.0490

(+) 12

HCV antibody

(-) 22 1.119 0.734

(+) 51

Tumor Grade and Tumor factor are recorded according to the General Rules for
the Clinical and Pathological Study of Primary Liver Cancer (26).
doi:10.1371/journal.pone.0016435.t001
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Among the 73 patients, 45 had recurrent tumors. The types of

initial recurrences were intrahepatic, extrahepatic, and both for

41, 2, and 2 patients, respectively. According to univariate Cox

proportional hazard model (CoxPH) analysis, T-factor and HBV

infection are significantly associated with a shorter recurrent-free

survival (P = 0.0131 and 0.0490, respectively).

Recurrence-related microRNA signature
As the first step in this analysis, we utilized univariate CoxPH to

identify recurrence-related microRNAs (Table 2). Interestingly,

most of the identified tumor-derived microRNAs (T-miRs) were

negatively associated with HCC recurrence, which suggests that

tumor-suppressor microRNAs are down-regulated in tumor tissues.

On the other hand, most of the identified non-tumor-derived

microRNAs (N-miRs), which are ranked in the top-20, were

positively associated with HCC recurrence, which indicated that

oncogenic microRNAs are predominantly up-regulated in non-

tumor tissues. In addition, the number of miRs significantly

correlated with HCC recurrence was larger in non-tumor tissues

than in tumor tissues (Fisher’s exact test: p,0.0001). As the second

step, we applied principal component analysis (PCA) to the

univariate CoxPH analysis. The five principal components (PCs)

of the microRNA expression profile were significantly correlated to

the recurrence-free survival of HCC (Table 3). To show the clinical

significance of each PC, the correlated clinical features of each PC

are also listed in Table 3. For example, PC3 is a HBV and AFP

related PC, and PC16 is a T-factor related one. A 3-dimentional

scatter plot shows that the top 3 ranked PCs correlated to the

recurrence-free survival of HCC patients (Figure 2).

Constructing prediction models of HCC recurrence-free
survival

The prediction model was constructed by multivariate CoxPH

models with leave-one-out cross-validation method (Figure 1). The

accuracy of each prediction was evaluated by a time-averaged

AUROC (AUROC) between 6 months and 5 years. The

AUROC changes depending upon the sample tissues, inclusion

or exclusion of PCA, the number of variables used for constructing

prediction models. Among the various conditions, the best

AUROC ( = 0.8281) was achieved when the model was

constructed using top-12 PCs data generated from an integrated

dataset consisting of T-miRs and N-miRs, and T/N ratios

(Figure 3). Figure 4 shows the change of AUROCs for different

time points between 6 months and 5 years after LR. This model

can predict early recurrences better (the best AUROC = 0.9276 at

1 year after LR) than late recurrences. Next, according to this

prediction model, the 73 cases were stratified into Low- (n = 37)

and High-risk (n = 36) groups. Consequently, the Kaplan-Meier

recurrence-free survival curve of the Low-risk group was

significantly better than the High-risk group (Figure 5, Wilcoxon

test: p = 0.00006, log-rank test: p = 0.00029).

The best prediction models generated from only the clinical

data (AUROC = 0.6835), T-miRs data (AUROC = 0.7152), and

N-miRs data (AUROC = 0.7530) were obtained when 2 PCs, 6

Table 2. Recurrence-related microRNAs.

Recurrence-related microRNAs in tumor tissues
Recurrence-related microRNAs in non-tumor tissues (Top 20
out of 56 significant miRs)

Rank microRNA hazard ratio miR-type p-value FDR Rank microRNA hazard ratio miR-type p-value FDR

1 miR-100 0.5170 Ts-miR ,0.0001 0.011 1 miR-27a 7.4696 OncomiR ,0.0001 0.004

2 miR-99a 0.6318 Ts-miR 0.0006 0.035 2 miR-24 11.5691 OncomiR 0.0001 0.004

3 miR-99b 0.6087 Ts-miR 0.0013 0.040 3 miR-96 1.4868 OncomiR 0.0002 0.003

4 miR-125b 0.8062 Ts-miR 0.0028 0.048 4 miR-21 1.6847 OncomiR 0.0004 0.006

5 miR-378 0.6339 Ts-miR 0.0043 0.055 5 miR-18a 1.9046 OncomiR 0.0007 0.007

6 miR-129-5p 0.6888 Ts-miR 0.0075 0.083 6 miR-23a 5.5879 OncomiR 0.0010 0.007

7 miR-125a-5p 0.7441 Ts-miR 0.0089 0.080 7 miR-18b 1.6114 OncomiR 0.0013 0.007

8 miR-497 0.7737 Ts-miR 0.0123 0.090 8 miR-142-3p 1.4802 OncomiR 0.0018 0.007

9 miR-22 0.5470 Ts-miR 0.0141 0.085 9 miR-362-3p 1.4718 OncomiR 0.0020 0.006

10 miR-140-3p 0.5603 Ts-miR 0.0306 0.208 10 miR-1202 0.7592 Ts-miR 0.0021 0.006

11 miR-145 0.7531 Ts-miR 0.0341 0.213 11 let-7e 3.3158 OncomiR 0.0025 0.004

12 miR-221 1.4608 OncomiR 0.0441 0.266 12 let-7f 5.6499 OncomiR 0.0039 0.009

13 miR-195 0.7803 Ts-miR 0.0487 0.262 13 miR-191 7.4922 OncomiR 0.0047 0.011

14 miR-107 6.0708 OncomiR 0.0057 0.014

15 miR-148a 0.5922 Ts-miR 0.0061 0.013

16 miR-222 1.5374 OncomiR 0.0077 0.013

17 miR-103 5.5941 OncomiR 0.0086 0.012

18 miR-126* 2.2102 OncomiR 0.0087 0.012

19 miR-425 2.1610 OncomiR 0.0089 0.012

20 miR-378 0.6406 Ts-miR 0.0090 0.011

This table lists hazard ratio and p-value calculated by an univariate Cox’s propotional hazard model for each microRNA. MicroRNAs which hazard ratio is greater than 1
were correlated with frequent recurrence, and are potential oncomiRs. In contrast, microRNAs with hazard ratio less than 1 were associated with good recurrence-free
survivals, and would be a tumor-suppressor miRs (Ts-miR). The number ( = 56) of recurrence-related microRNAs in non-tumor tissues is significantly larger than that
( = 13) in tumor tissues (Fisher’s exact t-test: p,0.00001). False discovery rate (FDR) were estimated by permutation analysis.
doi:10.1371/journal.pone.0016435.t002
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PCs, and 10 individual microRNAs was used. The overall best

prediction model predicts recurrences significantly better than

these three models (paired t-test: p,0.00001). In addition, the

AUROC of the N-miRs dataset was also significantly higher than

that of T-miRs dataset. As shown in Figure 4, the AUROCs of the

T-miRs models gradually decreased over the time course between

6 months and 5 years (Pearson’s p-value ,0.0001), which indicates

that the T-miRs can predict early recurrences better than late

recurrences. In contrast, the AUROCs of the N-miR models

gradually elevated, which suggests that N-miRs can predict late

recurrences better than early recurrences (Pearson’s p-value

,0.0001).

Contribution analysis of microRNAs in the best prediction
model

The best overall model was constructed with the PCA and

CoxPH model. Since the coefficients of the CoxPH model were for

PCs not for individual microRNAs, it is difficult to determine how

much each microRNA contributes to this prediction model. In this

study, we combine the coefficients of the PCA and CoxPH, and

converted them to a hazard ratio formula by PC values into

individual microRNAs expression values. As shown in the

supplemental Description S1, the coefficient of the i-th microRNA

can be expressed as
Pn

j

bjCji, where n, bj, and Cji represent the

number of PCs, the beta value of the j-th PC, and the coefficient of

the i-th microRNA in the j-th PC, respectively. Table 4 shows the

top-20 contributory microRNAs or Tumor/Non-tumor ratios (T/

N ratios) that are positively and negatively correlated with HCC

recurrence. Interestingly, the expressions of miR-96 in non-tumor

tissues and miR-96 T/N ratio are the top ranked microRNAs that

are positively and negatively associated with HCC recurrence,

respectively. To understand how miR-96 plays biological roles

regarding HCC recurrence, it is important to identify target genes

of miR-96. In this study, we identified three genes, LRP6,

FOXO1A, and MAP2K1, that meet several criteria, such as, 1)

possessing cancer-related functions according to an ontology

database, 2) having microRNA target sites predicted by Target

Scan v.5.1 (www.targetscan.org/) in their 39-UTR, 3) inverse

correlation to miR-96 expression level in 146 samples (tumor and

non-tumor paired samples derived from 73 patients), (Table S2).

Furthermore, we also checked whether the miR-96 expression

data by DNA chips was reliable or not. The expression data of

Table 3. Recurrence-related principal components and correlated clinical factors.

Cox proportional hazard model

Rank Principal components hazard ratio p-value Notable correlated clinical factors p-value

1 PC3 0.9592 0.0171 serum, AFP* ,0.0001

serum, total-bilirubin* 0.0009

HBV antigen1 0.0020

2 PC16 0.9044 0.0207 platelet* 0.0040

Max diameter of tumor* 0.0135

T-factor (clinical)** 0.0202

3 PC1 1.0335 0.0244 serum, PIVKA-II* 0.0018

gender1 0.0398

4 PC4 1.0514 0.0246 HCV antibody1 0.0002

serum, AST* 0.0037

platelet* 0.0071

5 PC5 0.9591 0.0434 capsule formation (pathological)1 ,0.0001

presence of liver cirrhosis1 0.0042

ICG-R15* 0.0198

*: continuous variables,
**: category variables,
1: dichotonized variables.
The p-values of correlation between PCs and clinical factors were calculated by Pearson’s correlation analysis, Kruskal-Wallis test, and t-test for continuous, category, and
dichotonized variables, respectively.
doi:10.1371/journal.pone.0016435.t003

Figure 2. Three-dimensional scatter plot of PCA. The x-, y-, and z-
axes represent the top-3 ranked PCs (PC3, PC16 and PC1). The color
graduation scale from green, black to red represent short, intermediate,
and long recurrence-free survival, respectively. The closed circles, and
closed triangles correspond to complete and censored cases, respec-
tively. Patients with poor outcomes tend to be in the right-lower side
from this point of view, whereas patients with good outcomes tend to
be in left-upper side.
doi:10.1371/journal.pone.0016435.g002
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miR-96 by Taqman RT-PCR assay was significantly correlated

with that by DNA chip analysis (Figure S2).

Differentially expressed microRNAs
Differentially expressed microRNAs between T-miRs and N-

miRs are shown in Table S3, S4. Among 73 cases enrolled in this

study, 4 patients had macroscopically normal and pathologically

normal (n = 1) or slightly fibrotic (n = 3) liver tissues. We listed

differentially expressed microRNAs compared to these four normal

liver samples in Table S5. According to Table S3, S4, S5, miR-96

expression level was gradually elevated from normal liver, via non-

tumor liver tissues with accompanied chronic change, to tumor

tissues. We also listed differentially expressed microRNAs depend-

ing upon HBV/HCV status and tumor differentiation grade in

Table S6, S7, S8. Furthermore, using univariate Cox proportional

hazard model, we show microRNAs significantly associated with

HCC recurrence in subgroups categorized by HBV/HCV status

and tumor differentiation grade in Table S9, S10, S11, S12.

Discussion

In this study, we performed microRNA signature analysis and

developed a mathematical model to predict HCC recurrence in

patients within the Milan Criteria and with mild liver cirrhosis (i.e.,

Child-Pugh A/B). To date, there are many microarray-based studies

[18–21] that predict the outcomes of HCC patients. However, our

study is the first microarray-based study that focuses on a potential

population of patients for future salvage transplantation, and that

underwent liver resection and fulfill the Milan Criteria.

Clinical significance of HCC recurrence prediction for
patients within the Milan Criteria

HCC patients who satisfy the Milan Criteria and who have

sufficient liver function have two potential curative therapeutic

options: liver resection and orthotopic liver transplantation. However,

both options have advantages and disadvantages. Therefore, a

compromised option of liver resection plus salvage liver transplan-

tation seems reasonable. Even taking this option, recurrent tumors

must be detected in the early phase; otherwise, the benefits of salvage

transplantation would be diminished. Performing intensive follow-ups

for all LR patients is not feasible. Therefore, a strategy of more

detailed follow-ups for patients with higher risk is necessary. This

prediction model will be a helpful tool to stratify these patients.

In this study, we obtained a relatively high prediction accuracy

(AUROC = 0.8281) using a combined dataset of T-miRs and N-

miRs. Previously, many prediction models of HCC outcomes have

been reported. However, it is very difficult to compare the prediction

accuracy to other models, because the target population in the HCC

patients from this study was different from those in other reports.

Significance of microRNA profile in tumor and non-tumor
tissues

In this analysis, the prediction efficiency constructed using the

N-miRs dataset was better than that constructed using the T-

miRs. It is reasonable, because there are more recurrence-related

microRNAs in the N-miRs than in the T-miRs, according to

univariate CoxPH model analyses (Table 2). Previously, we

reported that co-existing cirrhosis was associated with a higher

Figure 3. Changes in time-averaged AUROCs and the number of variables used for prediction model construction. The prediction
models of HCC recurrence were constructed by the LOOCV method. The prediction accuracy for each model was evaluated by time-averaged AUROC
between 6 months and 5 years after the operation. The AUROC were different depending upon the sample tissues, the inclusion or exclusion of
PCA, and the number of variables used for constructing the prediction models. The best prediction accuracy was achieved when the model was
construct using top-twelve PCs data derived from all microRNA data (*: expression data of T-miRs and N-miRs, and T/N ratios). The best models using
T-miRs, N-miRs, and T/N ratios were obtained from the top-6 PCs, top-10 microRNAs, and top-12 PCs, respectively.
doi:10.1371/journal.pone.0016435.g003

MicroRNA Profile Predicts Recurrence of HCC
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Figure 5. Kaplan-Meier cumulative recurrence-free survival curves. According to the predicted recurrence-free survival rate, the patients
were stratified as low (n = 37) and high (n = 36) risk groups. The recurrence-free survival of the low risk group was significantly better than that of high
risk group by both a generalized-Wilcoxon test and the log-rank test.
doi:10.1371/journal.pone.0016435.g005

Figure 4. The AUROC changes of the best prediction model between 6 months and 5 years. In general, the prediction accuracy depends
upon the time point used to evaluate the prediction accuracy of the survival curve. Thus, we adopted AUROC as an index of prediction accuracy for
the survival curve. To cover both early and late recurrences, we calculated the AUROC between 6 months and 5 years. The black step graph shows
the changes in the AUROCs for the overall best prediction model (AUROC = 0.8281). The red and blue step graphs represent the changes of AUROCs
of the best models using T-miRs and N-miRs datasets. The dotted lines of each color correspond to the AUROC for each step graph. This prediction
model using T-miRs can predict early recurrences better, whereas the model using N-miRs is better for late recurrences.
doi:10.1371/journal.pone.0016435.g004
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recurrence rate after hepatic resection of HCC within the Milan

Criteria. This finding suggests that recurrences due to the

dissemination of primary tumors cells occur more often within

the initial few years after resection, and that late recurrences in

cirrhotic livers are likely attributable to multicentric de novo

carcinogenesis rather than dissemination of the primary tumor.

In this study, as shown in Figure 4, the T-miR models can predict

early recurrences better than late recurrences, whereas the N-

miR models can predict late recurrences better than early

recurrences. This finding suggests that the T-miR profile would

represent the malignant potential of primary tumors, and would

be associated with the presence of dissemination and the

consequent early recurrence, and that the N-miR profile would

reflect the accumulation of genome abnormalities (the ‘field

effect’) in the remaining non-cancerous liver cells, and would be

associated with multicentric late recurrence. Recently, several

papers have reported that an abnormal mRNA expression profile

in non-cancerous tissues is associated with HCC recurrence

[21,29,30]. Moreover, our previous clinical study showed that co-

existing cirrhosis correlated with the prognosis and recurrence of

HCC within the Milan Criteria [8]. Therefore, our finding

derived from the microRNA profile also supports the concept of

early and late recurrence that these previous reports have

proposed.

HBV infection, miR-96, and HCC Recurrence
The contribution analysis of microRNAs in the best prediction

model demonstrated that miR-96 in non-tumor tissues was the

most strongly associated with HCC recurrence. Previously, miR-

96 was identified as HBV infection-related microRNA[31]. In this

study, HBV infection and HBV-related PC3 were significantly

correlated with HCC recurrence, according to the univariate

CoxPH model (Table 2–3). Thus, it was reasonable that miR-96

was identified as a recurrence-related microRNA. In a supplement

analysis, we identified three genes, LRP6, FOXO1A, and

MAP2K1, that meet several criteria, described in result section.

Among them, the TargetScan predicted that FOXO1A has the

highest context score (an index for strength of bond between

mature microRNA and target sites to miR-96. Despite a strong

inverse correlation with miR-96 expression, LRP6 and MAP2K1

were predicted to have the relatively lower context scores than

FOXO1A. Taken together, FOXO1A would be the most

important HCC-related target gene of miR-96 microRNAs. This

finding was concordant with a previous report[32].

Time-averaged AUROCs as an index for survival
prediction accuracy

The CoxPH model can analyze data containing censored cases,

and can predict the survival curves of test cases using a baseline

survival curve by calculating a hazard ratio. However, it is difficult to

evaluate the prediction accuracy of CoxPH models. Usually, analysts

stratify the patients according to the CoxPH model predictions, and

then compare the difference between groups using a generalized-

Wilcoxon or log-rank tests, or calculate the sensitivity, specificity, or

AUROC at a given time point, such as the 2-year survival. However,

the prediction accuracy of survival models depends upon stratifica-

tion criteria of the patients and the selection of a prediction time

point. Therefore, the prediction accuracy of survival models may be

Table 4. Contribution analysis of individual microRNAs in the overall best prediction model.

microRNAs positively associated with recurrence microRNAs negatively associated with recurrence

Rank miR name Tissue type Coefficient 95%CI{ miR name Tissue type Coefficient 95%CI{

1 miR-96 1 N 0.1349 (0.1259,0.1449) miR-96 T/N ratio 20.0865 (20.0941,20.0793)

2 miR-139-5p T/N ratio 0.0750 (0.0661,0.0850) miR-374b T/N ratio 20.0785 (20.0861,20.0710)

3 miR-139-5p T 0.0727 (0.0646,0.0815) miR-182 T/N ratio 20.0604 (20.0659,20.0549)

4 miR-126* T 0.0676 (0.0620,0.0737) miR-378 1 N 20.0561 (20.0612,20.0511)

5 miR-142-3p T 0.0673 (0.0599,0.0749) miR-193b T/N ratio 20.0543 (20.0600,20.0493)

6 miR-142-3p T/N ratio 0.0659 (0.0575,0.0754) miR-193b T 20.0539 (20.0596,20.0483)

7 miR-362-3p T 0.0596 (0.0538,0.0659) miR-214 T/N ratio 20.0535 (20.0585,20.0489)

8 miR-374b N 0.0563 (0.0499,0.0629) miR-125b 1 T 20.0522 (20.0569,20.0479)

9 miR-10b T 0.0548 (0.0482,0.0616) miR-125b T/N ratio 20.0521 (20.0565,20.0483)

10 miR-200a N 0.0544 (0.0486,0.0599) miR-99b T/N ratio 20.0517 (20.0564,20.0474)

11 miR-224 N 0.0530 (0.0466,0.0599) miR-1202 1 N 20.0515 (20.0584,20.0451)

12 miR-483-3p T 0.0529 (0.0459,0.0602) miR-18b T/N ratio 20.0513 (20.0590,20.0440)

13 miR-200a T 0.0527 (0.0477,0.0580) miR-365 T/N ratio 20.0511 (20.0573,20.0454)

14 miR-1202 T/N ratio 0.0507 (0.0441,0.0574) miR-100 T/N ratio 20.0506 (20.0559,20.0456)

15 miR-96 T 0.0484 (0.0423,0.0543) miR-365 T 20.0504 (20.0563,20.0445)

16 miR-665 T/N ratio 0.0474 (0.0413,0.0534) miR-210 T 20.0502 (20.0567,20.0440)

17 miR-1274a T/N ratio 0.0472 (0.0428,0.0518) miR-100 1 T 20.0500 (20.0547,20.0459)

18 miR-10b T/N ratio 0.0471 (0.0408,0.0533) miR-214 T 20.0491 (20.0544,20.0443)

19 miR-665 T 0.0469 (0.0411,0.0528) miR-378 1 T 20.0489 (20.0536,20.0444)

20 miR-1228 T/N ratio 0.0446 (0.0398,0.0500) miR-182 T 20.0476 (20.0534,20.0419)

Positive and negative coefficients indicates that higher and reduced expression of microRNA is associated with recurrence, respectively.
1: overlapped microRNAs in Table 2.
{: CI, confidence interval, calculated by 1000 times bootstrap resampling.
doi:10.1371/journal.pone.0016435.t004
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under- or over-estimated. Thus, we proposed time-averaged

AUROC as a new evaluation index for the prediction efficiency of

the CoxPH model, which will be a robust index.

Future prospects regarding clinical application of
microarray technology

The MAQC project was initiated by the U.S. FDA, and the

second phase (MAQC-II) is currently in progress [33]. Its aims are

to assess the capabilities and limitations of microarray-based

predictive models, and to reach a consensus for the development

and validation of microarray-based predictive models for person-

alized medicine. Although reports from MAQC-II have not been

published yet, their reports will have a great impact on finalizing a

draft guideline of IVDMIA. Prior to finalizing the IVDMIA

guideline by the U.S. FDA, the FDA have already cleared two

microarray-based IVDMIA devices, MammaPrintTM and Path-

work Tissue Origin TestTM. In addition, OncoTypeDXH, a RT-

PCR-based IVDMIA, is widely used because health insurance

companies have adopted it as a criterion for insurance payment.

However, a microRNA-based IVDMIA device has not been

developed and approved yet. MicroRNA can be detected even in

formalin-fixed paraffin-embedded specimens [34], or remote fluid

samples such as blood[35], because of their stability. Therefore,

microRNAs are thought to be good biomarkers. The progress in

this study will be fundamental for the future application of

microRNA-microarray based IVDMIA into the clinical field.

However, our prediction model was only internally validated.

Therefore, prospective and external validation is necessary before

it is introduced to put microRNA microarray into practical use.
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Figure S1 A heatmap and unsupervised clustergram of microRNA

expression in tumor and non-tumor tissues of HCC patients. This

heatmap represents an overview of microRNA expression profile.

The microRNA expression data was centered by 2 directions (i.e., by

genes and patients). Red, green, and black represent high, low, and

intermediate microRNA expression. Blue and yellow bars on the top

of the heatmap represent non-tumor, and tumor tissues.

(DOC)

Figure S2 Correlation between DNA chip and Taqman data for

miR-96 expression. DNA chip expression data for miR-96 were

validated by Taqman microRNA assay. DNAchip data and

Taqman data were significantly correlated (p,0.0001). Left: x-

axis: DNA chip data in a log2 scale, y-axis: Taqman data in an

arbitrary log2 scale. Right: x-axis: DNA chip data in a log2 scale,

y-axis: Taqman data in a log2 scale.

(DOC)

Table S1 Variables in clinicopathological dataset.
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Table S2 Putative miR-96 target genes which expression is

inversely correlated with miR-96 expression. *: these values are

provided by TargetScan v.5.1, **: rank of total context score

among 787 putative miR-96 target genes predicted by TargetS-

can. {: Pearson’s correlation coefficients and p-values, {: Pubmed

hit count using key words of gene symbol and ‘‘HCC, liver cancer,

hepatocellular carcinoma’’, accessed on Dec 26, 2010.

(DOC)

Table S3 Significantly up-regulated microRNAs in HCC tumor

tissues compared to non-tumor tissues. Up-regulated microRNAs

with p,0.01 are listed. T-miRs, N-miRs: mean values of each T-miR

and NmiR expression in log2 scale, fold change: expression ratio of

each T-miR compared with corresponding N-miR, p-value: p-values

of paired T-test. Order of microRNA is sorted by fold-change.

(DOC)

Table S4 Significantly down-regulated microRNAs in HCC tumor

tissues compared to non-tumor tissues. Down-regulated microRNAs

with p,0.01 are listed. T-miRs, N-miRs: mean values of each T-miR

and NmiR expression in log2 scale, fold change: expression ratio of

each T-miR compared with corresponding N-miR, p-value: p-values

of paired T-test. Order of microRNA is sorted by fold-change.

(DOC)

Table S5 Differentially expressed microRNA compared with

normal liver tissues. Differentially expressed microRNAs with

p,0.05 are listed. T-miRs, N-miRs: mean values of each T-miR

and NmiR expression in log2 scale, fold change: expression ratio

of each T-miR or N-miR compared with normal liver tissues

(n = 4), p-value: p-values of unpaired T-test. The miR order is

sorted by fold-change.

(DOC)

Table S6 Differentially expressed microRNAs depending upon

HBV status. *: p-values of Student’s T-test. Differentially

expressed microRNAs with p,0.05 are listed.

(DOC)

Table S7 Differentially expressed microRNAs depending upon

HCV status. * p-values of Student’s T-test. Differentially

expressed microRNAs with p,0.05 are listed.

(DOC)

Table S8 Differentially expressed microRNAs depending upon

cellular grade. *: p-values of one-way ANOVA test. Differen-

tially expressed microRNAs with p,0.05 are listed.

(DOC)

Table S9 Recurrence related microRNAs in HBV-positive

cases. Univariate Cox proportional hazard model identified

microRNAs associated with poor (red) and better (blue) recurrent

outcome, respectively. Top-twenty significant microRNAs with p-

value ,0.05 are listed. MicroRNAs (displayed in red) which

hazard ratio is greater than 1 were correlated with frequent

recurrence, and are potential oncomiRs. In contrast, microRNAs

(shown in blue) with hazard ratio less than 1 were associated with

good recurrence-free survivals, and would be a tumor-suppressor

miRs.

(DOC)

Table S10 Recurrence related microRNAs in HCV-positive

cases. Univariate Cox proportional hazard model identified

microRNAs associated with poor (red) and better (blue) recurrent

outcome, respectively. Top-twenty significant microRNAs with p-

value ,0.05 are listed. MicroRNAs (displayed in red) which hazard

ratio is greater than 1 were correlated with frequent recurrence, and

are potential oncomiRs. In contrast, microRNAs (shown in blue)

with hazard ratio less than 1 were associated with good recurrence-

free survivals, and would be a tumor-suppressor miRs.

(DOC)

Table S11 Recurrence related microRNAs in hapatitis virus-

negative cases. Univariate Cox proportional hazard model identi-
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fied microRNAs associated with poor (red) and better (blue) recurrent

outcome, respectively. Top-twenty significant microRNAs with p-

value ,0.05 are listed. MicroRNAs (displayed in red) which hazard

ratio is greater than 1 were correlated with frequent recurrence, and

are potential oncomiRs. In contrast, microRNAs (shown in blue) with

hazard ratio less than 1 were associated with good recurrence-free

survivals, and would be a tumor-suppressor miRs.

(DOC)

Table S12 Recurrence related microRNAs in grade 1–2 HCC

cases. Univariate Cox proportional hazard model identified

microRNAs associated with poor (red) and better (blue) recurrent

outcome, respectively. Top-twenty significant microRNAs with p-

value ,0.05 are listed. MicroRNAs (displayed in red) which hazard

ratio is greater than 1 were correlated with frequent recurrence, and

are potential oncomiRs. In contrast, microRNAs (shown in blue)

with hazard ratio less than 1 were associated with good recurrence-

free survivals, and would be a tumor-suppressor miRs.

(DOC)
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