Construction of an error map of rotary axes
on a five-axis machining center by static
R-test

Soichi Ibaraki' * , Chiaki Oyama' and Hisashi Otsubo?

! Department of Micro Engineering, Kyoto University,
Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
2 Otsubo Engineering Research Center,
Yuno 266-1, Kannabe-cho, Fukuyama, Hiroshima, 720-2121, Japan.

Abstract

This paper proposes an efficient and automated scheme to calibrate error motions
of rotary axes on a five-axis machining center by using the R-test. During a five-
axis measurement cycle, the R-test probing system measures the three-dimensional
displacement of a sphere attached to the spindle in relative to the machine table.
Location errors, defined in ISO 230-7, of rotary axes are the most fundamental error
factors in the five-axis kinematics. A larger class of error motions can be modeled
as geometric errors that vary depending on the angular position of a rotary axis.
The objective of this paper is to present an algorithm to identify not only location
errors, but also such position-dependent geometric errors, or “error map,” of rotary

axes. Its experimental demonstration is presented.
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1 Introduction

Machine tools with two rotary axes to tilt and rotate a tool and/or a
workpiece, in addition to three orthogonal linear axes, are collectively called
five-axis machine tools. With an increasing need for machined components
with geometric complexity in a high efficiency, they are extensively used in
various manufacturing applications requiring higher machining accuracy. The
improvement of their motion accuracies is a crucial demand in the market.

As a basis to improve the motion accuracy of five-axis machines, it is im-
portant to develop a methodology to measure it in an accurate, and efficient
manuner. ISO 10791-1~3 [1] standards describe no-load or quasi-static mea-
surements with the main focus on evaluating static position and orientation
errors of the axis average line of a rotary axis. Such errors are called location
errors in ISO 230-7 [2], or geometric errors [3], link errors [4] in the literature.
The importance of location errors is well understood by many machine tool
manufactures, as one of the most fundamental error factors in the five-axis
kinematics. There has been many research works reported in the literature on
the identification of location errors based on the measurement of the machine’s
positioning error. Typical ones include the application of the telescoping dou-
ble ball bar (DBB) [3,5,6,7,8]. Its inclusion in the revision of ISO 10791-6 is
currently under the discussion in ISO TC39/SC2 [9,10].

Although the ball bar measurement is widely accepted by machine tool
builders world-wide, it has potentially critical issues in its application to five-
axis machines. Since one setup of ball bar measurement only measures the
displacement in one direction, it requires at least a couple of different setups
to identify all location errors. It requires an experienced operator to be always
with the measurement, and its full automation is difficult.

Weikert [11], Bringmann and Knapp [12] presented the “R-Test,” where

the three-dimensional displacement of a sphere attached to the spindle is mea-



sured by three (or four in [11,12]) linear displacement sensors installed on the
table. Zargarbashi and Mayer [4] recently presented an analogous measure-
ment instrument named CapBall with non-contact capacitive sensors. While
the ball bar measurement is one-dimensional, the R-test collects a three-
dimensional error trajectory in an automated measurement cycle, requiring
no setup change. ISO TC39/SC2 has been discussing the inclusion of R-test,
as well as ball bar measurements, in the revision of ISO 10791-6 [9,10]. Lately,
IBS Precision Engineering [13,14] and Fidia [15] commercialized an R-test de-
vice for machine tool calibration.

In today’s commercial CNC for machine tools, it is common to compen-
sate a linear positioning error or a straightness error of a linear axis based on
the pre-measured error map [16]. Analogous compensation of error motions of
a rotary axis is possible. Compensation of location errors of a rotary axis has
been demonstrated in the literature [17,18,19], and it can be easily extended
to more complex errors. To implement such a compensation on mass-produced
machines, the efficiency and the automation of error calibration are crucial.
Compared to the ball bar, the R-test has a strong potential advantage in this
aspect.

Bringmann and Knapp [12] presented the application of R-test to the
identification of location errors of rotary axes. Zargarbashi and Mayer [4] also
considers location errors only. On the latest small-sized five-axis machining
centers, from our experiences, it is often the case that location errors are tuned
sufficiently small in the machine assembly. In such a case, more complex error
motions, such as the gravity deformation, angular positioning error of a rotary
axis, “run-out” or “coning” of a rotary axis, can be dominant in the machin-
ing accuracy. This paper parameterizes such a larger class of error motions by
geometric errors that vary depending on the angular position of a rotary axis.

They are referred to as position-dependent geometric errors [20], which can be



seen as an “error map” of a rotary axis [16]. The objective of this paper is to
propose the application of R-test to the identification of position-dependent
geometric errors associated with each rotary axes. It will be experimentally

demonstrated on a commercial five-axis machining center.

2 Error parameters to be identified in five-axis kinematic model

2.1 Machine configuration

This paper considers the 5-axis machine configuration with a titling ro-
tary table depicted in Fig. 1. The machine has three linear-axis drives (X, Y,
Z) and two rotary-axis drives (B,C). It must be emphasized that the basic
idea of this paper can be straightforwardly extended to any configurations of

five-axis machines.

2.2  Position-independent and position-dependent geometric errors

Location errors [2] define the position and the orientation of the axis
average line of a rotary axis. ISO 230-7 [2] defines the axis average line as
“a straight line segment located with respect to the reference coordinate axes
representing the mean location of the axis of rotation.” For the machine con-
figuration depicted in Fig. 1, total eight location errors, shown in Table 1, are
sufficient [21,3]. It is to be noted that many 5-axis kinematic models in the
literature, including the one in ISO 230-7 [2,16], define each geometric error
in an absolute sense with respect to the single machine (reference) coordinate
system. In our model [21,6,17,22] geometric errors of each axis are defined in
a relative sense with respect to the axis on which it is mounted. For example,
geometric errors of C-axis are defined with respect to the position and the
orientation of A-axis. Table 1 also shows the correspondence of our notation

of error parameters with that in ISO 230-7 [2].



It is to be emphasized that location errors only represent mean location
and orientation of axis of rotation. The location and the orientation may vary
due to its rotation (described by the term “axis of rotation error motion” in
ISO 230-7 [2]). A larger class of error motions can be modeled as geometric
errors that vary depending on the angular position of a rotary axis [22]. They
are referred to as position-dependent geometric errors [20] in this paper.

For example, location errors, 6%,  and §z%,-, represent an offset of B-
axis average line in X- and Z-directions. By parameterizing them dependent
on B-axis angular position, denoted by dxpy (B) and dypy (B), they can model
a periodic pure radial error motion [2], or “run-out,” of B-axis. Analogously,
a periodic tilt error motion [2] of B-axis, often called “angular motion” [22] or
“coning” [2] in the industry, can be modeled by apy(B) and vpy(B). When
the table is displaced in the Z-direction due to the gravity-induced deforma-
tion, it may be modeled by dzpy (B).

Table 2 shows position-dependent geometric errors for the machine con-
figuration in Fig. 1. It is to be noted that parameters associated with B-axis
are dependent only on the angular position of B-axis, while those associated
with C-axis are dependent on both B- and C-axis angular positions. This is
because an error motion of C-axis may be affected by B-axis angular position
(its typical causes include gravity-induced deformation of bearings or mechan-
ical structure).

In this paper, we represent position-dependent geometric errors as fol-

lows:
(SIBy(B) = (S.’L’OBY + (Sfi’By(B) (].)

where 62%,- is constant. The symbol represents a position-dependent term. All
parameters associated with B-axis, i.e. 0xpy (B), dypy (B), 02y (B), agy(B),
Bey(B), and vpy(B), and two parameters associated with C-axis, namely

dzcp(B,C) and acp(B, (), are represented analogously as a sum of constant



and position-dependent terms. Other C-axis parameters do not have a constant
term; for example,
5yCB(Bi7 Cj) = 5QCB(Bi, Cj) (2)

It is also important to note that this paper assumes geometric errors
of linear axes (X, Y, and Z-axes) are negligibly small compared to those of
rotary axes. As was reviewed in Section 1, many methodologies for 5-axis error
calibration have been recently studied in the literature, such as 1) the ball bar
test, 2) the R-test, 3) the test with a touch-trigger probe [23], 4) the test with
a linear displacement sensor and an artifact (e.g. straightedge) [1], and 5) the
test with a linear displacement sensor and a precision sphere [10]. Notice that
all of them only measure the relative displacement of the spindle tip to the
table, and it is therefore not possible to separate error motions of rotary axes
and linear axes. Some of these works, e.g. [12], includes the identification of
squareness errors or linear “expansion” of linear axes. They are just one of
the most fundamental error motions of linear axes, and linear axes have to be
assumed to have no more complex error motions.

To identify error motions of rotary axes, static error motions of linear
axes are required to be separately pre-calibrated by conventional measurement
(e.g. as shown in ISO 10791-1 [1]). If volumetric errors of linear axes are
not sufficiently small compared to the influence of rotary axes, they must be
properly compensated as in [16]. The influence of linear axis error motions to

R-test measurements was discussed by Bringmann and Knapp [24].

2.3  Kinematic modeling of five-azis machine

The kinematic model to compute the tool center position in relative to
the workpiece is the basis of the error calibration presented in this paper. Al-
though its derivation can be found in many previous publications [3,21,25,26],

this subsection only briefly reviews it.



Define the reference coordinate system (X-Y-Z) as the coordinate system
fixed to the machine frame or bed. Suppose that X*, Y* Z* B* and C* € R
represent the command position of X, Y, Z, B, and C axes, respectively. Since
linear axes are assumed to have no geometric error, the tool center location in
the reference frame is given by "q := [ X* Y* Z*|". The left-side superscript
r represents a vector in the reference coordinate system. The superscript x
represents reference (commanded) values or vectors.

Define the workpiece coordinate system (YX-"Y-"Z) as the coordinate
system attached to the rotary table. The homogeneous transformation matrix
(HTM) representing the transformation from the workpiece coordinate system

to the reference coordinate system is given by:
T, =TT, (3)
"T.= D,(6vcp(B*,C*)D,(syc(B*,C*))D,(5205(B*,C*))
Dao(acs(B*, C7))Dy(Bos(B*, C7))De(ven(B", C7)) D (=C7)
Ty = Dy (0xpy (B")) Dy (0ypy (B*)) D (52py (B7))
Da(apy (B")) Dy(Bpy (B*)) De(ypy (B*)) D" (- B”)

where D,(z), D,(y), and D,(z) represent the HTM for linear motions in X-,
Y-, and Z-directions. D,(a), Dy(b), and D.(c) represent the HTM for angular

motions about X, Y and Z axes. They are respectively given by (e.g. [25,26]):

(1002 (1000
0100 010y
D,(x)= , D
(=) 0010 (9) 0010
0001 ] 0001
(1000] (1 0 0 0
0100 0 cosa —sina 0
D.(2)= , Dy(a) . (4)
001z 0 sina cosa 0
0001] 100 0 1
[ cosb 0 sinb 0 cosc —sinc 00
0O 1 0 O sinc cosc 00
Dy(b) = . D.(c) =
—sinb 0 cosb 0 0 0 10
0 0 0 1 0 0 01



Hence, the tool center location in the workpiece coordinate system, “q €

Ya| a1 |1
BEEEH

The left-side superscript w denotes the vector defined in the workpiece

R?, is given by:

coordinate system.

3 Measurement device and procedure

Figure 2 depicts the R-test device used in this study. A ceramic pre-
cision sphere is attached to the machine spindle. Three contact-type linear
displacement probes are installed on the rotary table. Since the probing sys-
tem is fixed on the table, it measures the sphere displacement in the workpiece
coordinate system. Major specifications of the linear displacement probe are
shown in Table 3. The probes are calibrated over the entire measuring range
by the probe’s manufacturer.

The following parameters must be calibrated in advance: 1) unit vectors
representing sensor directions. and 2) the center shift of sphere from the spin-
dle axis average line. Their calibration procedure was presented in previous
studies [27].

In a measurement cycle, the machine table is indexed at B- and C-
angular positions, B (i = 1,---,N;) and C} (j = 1,---,N.). Measurement
poses, Bf and C, must be distributed over the entire workspace of each ro-
tary axis. The X, Y, and Z axes are positioned such that the sphere follows the
R-test probing system. The nominal sphere position in the global coordinate

system, denoted by "¢*(B;,C7) € R3, is given by:

"¢*(B;, C5)

) = Dy(=B;)D(=C5)




where “¢* = [“’q;, Yq,,"q;| € R? is a constant vector representing the nominal

sphere position in the workpiece coordinate system.

4 Identification of location errors

This section first presents a formulation to identify location errors shown
in Table 1 from a set of sphere displacements measured by R-test. Although
the identification of location errors has been already presented by Bringmann
and Knapp [12], we start from its brief review as the basis. The final objec-
tive of this paper is to extend this formulation to identify position-dependent
geometric errors shown in Table 2. It is to be noted that Bringmann and
Knapp [12] only presented numerically-computed Jacobian matrix of the five-

axis kinematics; we will present its analytical formulation.

4.1 Jacobian matriz

Denote a set of location errors to be identified shown in Table 1 by:

o 0 0 0 0 0 0 0 0 1T
Wo = [5IBY7 OYpy» 02y, gy, Bpy, YRy 0T, aCB] (7)

For the reference poses B} (i = 1,---,N,) and C5 (j = 1,---,N.), suppose that

the actual sphere position in the workpiece coordinate system is measured by
T

the R-test as “q(B},C}) = [“q.(B},C;), q,(B},C}),"q-(B;,C})| . Denote

the Jacobian matrix of the function relating wy to “q(B}, C}) by:

aqu(B:"C’J’!‘) 3‘“%(32‘:0}‘)
. s B (1 T T 9wo(8
0vq(B;,C7) awqﬁOB(;,)C;) awqﬁ%(:,)cj*) (8)
T Ow o Ow
Ouwo B anah )
Awo(1) e Owo(8)

From Egs. (3)(5) and (6), we have:



[caBrC)| L [T (B C)
B

= {D.(62%y) ... De(1py) Do(—B;)Da(02%5) Dulale) Do(~C)}

wq*
1

:DC(C’;) a(— CYCB) o(— 5$CB)

Dy(=B;)De(=C7)

{Dy(B})De(—7py) - - - Da(—02'py) Dy(—B;)}Do(—C5)

oy
1] )

In this paper, we assume that all the (position-independent or position-dependent)

geometric parameters to be identified are sufficiently small. Note that, when

AAOABOand AC' are sufficiently small, the following approximation gener-
ally holds:

1 —-AC AB 0
AC 1 —-AAO

D,(AA)Dy,(AB)D.(AC) ~ 10
AADAB)DAC) ~ | TC T (10)
0 0 0 1

By using it, when AX, ---, AC are sufficiently small, we have:
Dy(B!)D,(AX)Dy(—B})~ D,(AX cos B} )D,(—AX sin B})
Dy(B;)Dy(AY ) Dy(—B;') = Dy(AY)
Dy(B!)D,(AZ)Dy(—B})~ D,(AZ sin B )D,(AZ cos By) (11)
Dy(B)Do(AA)Dy(—B})~ D,(AAcos B )D.(—AAsin B)
Dy(B;)Dy(AB)Dy(—B;) = Dy(AB)
Dy(B;)D.(AC)Dy(—B;}) =~ D,(AC sin B} ) D.(AC cos BY)

Analogous approximations can be derived for D.(C¥) D, () D.(—C7). By using

these approximations, Eq. (9) can be rewritten by:

Yq(B},C7)
1

~ Dy(AX)D,(AY)D,(AZ)Dy(AA)Dy(AB)D.(AC)

where

10



AX = —(02%y cos Bf + 623, sin Bf 4 §2%5) cos CF + 5y%y sin i
AY = —(62Y%, cos B! + 62%. sin B! + 5:5003) sin C} — 5y %y €OS i

AZ =625, sin Bf — §2%, cos B (13)
AA=—(a}y cos Bf + 7y sin Bf + agp) cos Cf + Sy sin Cf
AB = —(apy cos Bf + vy sin B + ag.p) sin Cj — fpy cos C;

AC =a%, sin Bf — 7%, cos B}

The formulation (12), with the approximation (10), represents the sphere dis-
placement “q(B;,C5) as a linear function of each parameter in wy. It gives,
therefore, a unique solution for wy. The Jacobian matrix (8) can be derived
by partially differentiating Eq. (12) by each parameter in wy. For example, its

partial derivative with respect to 3%, is:

" e — Cos CJ’-‘ . :
BBy

cosCJ’-‘-”’ *+smC’*-

4.2 Identification of location errors

It is important to note that R-test probes can only measure the displace-
ment of sphere center from its initial position. For the simplicity of notation,
= C; =0° (i = j = 1) is called the initial position in this paper. For the
reference poses B} (i = 1,---,N) and C7 (j = 1,---,N,), the sphere displace-

ment measured by R-test probes is represented by:
“q(B;, CF) ="q(B},C}) — "q(By, CY) (15)

The symbol ~ represents the measured displacement. The restriction, “¢(By, Cy) =
[0 0 O]T, is called “initial resetting” hereafter.

Then, a set of location errors (7), Wy, is identified by solving the following
problem by using the least square method:

0“q(B;, C;) 8’”61(31‘,01‘)) "

2

1
8w0 8w0 ( 6)

a(5:,¢)) - (

where || x || represents the 2-norm.

11



5 Identification of position-dependent geometric errors

5.1 Measurement Procedure

The sphere displacement measured by the R-test is influenced by both
B- and C-axis error motions. The objective of the algorithm presented in this
section is to separate the influence of B- and C-axis error motions from R-test
results, and to construct an error map, or position-dependent geometric er-
rors, for each of B- and C-axes separately.

It is clearly not possible to observe C-axis tilt error motions from mea-
suring the displacement of single sphere only. To observe it, the R-test mea-
surement cycle must be repeated with three different sphere positions. Figure 3
illustrates three nominal sphere locations in the workpiece coordinate system,

Yg (i=1,2,3).

5.2  Redundancy due to initial resetting

As was discussed in Section 4.2, since linear displacement sensors used
in our R-test device is incremental, all sensor outputs are restricted to be
zero at the initial position (i.e. Bf = C7 = 0° (i = j = 1)). Therefore, the
influence of geometric errors on this initial position are included in all the
R-test measurements, “q(B;, C), as shown in Eq. (15).

As an illustrative example, suppose that dzpy (B}) = 62%,- and all other

parameters are zero. Then, from Eqs. (12)(13) and (15), we have:

—02%y sin B
q(B;,C) = 0 (17)

0 * 0
—02py cos B + 025y

w

where C7 = 0° (j = 1). It can be easily seen that the following position-

dependent errors result in exactly the same sphere displacement in Eq. (17):

12



Sxpy (B}) = 6%, cos B}
§2py (BF) =62%y + 62,y sin B} (18)

with an arbitrary constant 6x%,-. These two cases cannot be distinguished from
measured sphere displacements (17). Notice that this redundancy is caused
by the initial resetting. In practice, however, the constant error, dzpy (B]) =
d2%,-, is more likely, typically caused by the miscalibration of the position
of B-axis of rotation (or, equivalently, the miscalibration of the tool length).
Therefore, in many applications, it is reasonable to first identify constant
terms, 2%, in this example, and then to model the residual as position-

dependent terms.

5.8 Identification of position-independent terms

In practice, the miscalibration of the position of rotation center of a ro-
tary axis, or the miscalibration of the tool length, are often among the most
critical error factors in the 5-axis kinematics. In this paper, they are modeled
as position-independent terms; for example, the miscalibration of the rotation
center of B-axis average line is represented by dx%, and §z%,-, and the mis-
calibration of the tool length is included in §2%,.. This section first presents
the identification of these position-independent terms. The primal interest of
this paper is in the identification of more complex error motions of each rotary
axis modeled as position-dependent geometric errors, which will be presented
in Section 5.4.

As described in Eq. (1), geometric errors are represented as a sum
of position-independent and position-dependent terms. Total eight position-

independent terms, namely:

A [5..0 0 0 0 0 .0 0 0
Wo := [5xBY7 0Ypy>0Zpy: Mgy, Bpys VBY» 0TCB) aCB] (19)

are first identified. Let:

13



0xpy =0xpy(BY),  dypy = dypy(BY)
apy =apy(B), Bpy = By (B)) (20)
Srep = mean {&UCB(BT, C]*)} , abp = mean {&CCB(BI, C]*)}

where Bf = 0°. Then, @y := [02%y + 0285, 0yhy, a%y + alp, 8%y ] can be
identified by solving the following problem analogously as in Eq. (16):

2

(21)

0°q(B;,C;)  9vq(B;,Ci
BT,O* ( Q( 1 ])_a Q(Blac’l))d)m

awm awgl

wo1

wo1 1s identified only by a set of sphere displacements measured at B} = 0°
such that B-axis error motions impose no influence. The other set of position-
independent terms, wWpy := [01%y,02%, %y, 72|, cannot be identified with-
out moving the B-axis. It is identified by solving:

2

(22)

a(B:,C7) (8 q(B;,CY) _ d Q(B1ac1)>@02

awa 8w02

@o2

5.4 Identification of position-dependent geometric errors associated with B-
axis
By using position-dependent geometric errors shown in Table 2, the for-

mulation (12) is extended to:

“q(B;,C}) = Do(AX) Dy(AY) D.(AZ) Do(AA) Dy (AB) Do (AC) q"

AX =—(0xpy(B]) cos Bf + dzpy (B})sin B} + dxcp(B;, C})) cos Cf
+(6yBy(B:‘) + 0y (B;, Cy)) sin C;

—(0xpy (B;) cos Bf 4 0zpy (B;) sin B} + dzcp(B;,C;)) sin C;
—(5yBY(B;‘) +yon(B;, C;)) cos C;

AZ =6y (B})sin B — dzpy (B;) cos B] — dzcp(B;, C}) (23)

i)s
AA=—(apy(B}) cos Bf + ypy(B}) sin Bf + acp(B],C})) cos C}
(BBY( )—l-ﬁCB(B;,C;)) SinC’;
AB = —(apy(B]) cos Bf + vpy (B}) sin B + acp(B],C})) sin C;
—(Bpy (B}) + Bes(B;,C})) cos Cf
AC = apy(B;)sin Bf — vpy (B;) cos Bf —vcs(B;,C})

14



The influence of position-independent terms, wg, on the measured sphere

displacement, “q(B}, C}), is represented by:

gO(Br, C7) m Dy(AX) Dy (AY) D, (AZ) Dy(AA) Dy (AB)D(AC) "
Yq(B;,C;) ="¢"(B;,C;) = "q"(B}, CY) (24)

where AX - -+ AC are given in Eq. (13). The symbol "represents the simulated
position by using identified error parameters. Position-dependent terms are
identified by subtracting “’ch(B;‘,C’;-‘) from measured sphere displacements,
vq(B;, C7).

First, to avoid the redundancy, position-dependent terms in C-axis error

motions are assumed to meet:

cosCf sinCy 0| | 67on(B], ]) 1 Jo]
Z —sinCj cosCs 0| | 0gcn(B;,C5) | ¢ =10
’ 0 0 1] [dZen(B;,CH) ) |0]
cosC7 sinCy 0 aCB(B Cs )11 [o]

> < | —sin C:cosCi 0| | Ben(Bf,C5) | ¢ =10 (25)
’ 0 0 1] |des(B:CH|) |0]

which suggests that, in the workpiece coordinate system, the mean of
97es(B;,C)), 0en(B;, C5), 0%en (B], C5)| ([aes(B;, C), Bon(B;, C)), Fen(B], C)))
(j =14, +-,N,) is at the origin.

Then, from the first equation in Eq. (23), we have:

ZAX Z{ (0x gy (B}) cos B + dzpy (B}) sin B} + dx¢.5) cos C;

(5?JBY( 7) + 0yép) sin C } (26)

where position-dependent error motions of C-axis impose no influence. The

same observation can be made on all equations in Eq. (23). Therefore, at each

15



Bf (i=1,---,N,),

)

wp(B}) i= |02 py (Bf), 65y (B;), 02py (BY), any (B;), By (B}, sy (B;)|

(27)
can be identified by solving:
ey e e oy (QUUBLCY 9B ODY
( (Bf,C5) qo(Bz'aCj))_< (%)B(B;‘)] B 8wB(1]9;<)1 wp(B;)
(28)

9vq(B;,C;)

“Gwn(Br) » Can be derived from Eq. (23).

where the Jacobian matrix,

5.5 Identification of position-dependent geometric errors associated with C-
aris
First, define the B-azis coordinate system (°PX-PY-PZ) as the coordinate
system fixed on the B-axis. In this coordinate system, the measured sphere

position is described by:

{ (Blc)} iy C*){ q(B1 c>} (29)
where the left-hand side superscript ? represents a vector in the B-axis coor-
dinate system.

The influence of the identified @y (Eq. (19)) and wg(B;) (Eq. (27)) on

the measured sphere position, “q(B;, C}), is given from Eq. (9) by:

b, * ES w .k
Q(Bz'aoj) _bj-vw q
1 1

"Iy = Da(~ag.p)Da(~0 °c) b(BY)De(=78v(B;)) - ..
Dy (=02py ( Z‘)) b(=B7)De(=C7F) (30)
*4(B;,C;)="4(B;,C;) = "4(By, Cf)

Then, define:

"B(B},C) :="a(B},C;) = "4(B;, Cy) (31)

16



which represents the influence of C-axis error motions only.

As has been stated in Section 5.1, tilt and angular error motions of C-
axis are identified by observing two sets of measured sphere displacements
at different locations. The tilt error motion of C-axis around the "X-axis,

acp(Bj,C}), is computed by comparing o(B;, C7) at #1 and #2 in Fig. 3:

dcn(B;,C;) = —angley, {"Ra(B;, C3) = "pu(BL,C)), a3 (C}) — a1 (C}))
(32)
where bqr(C¥) (n = 1,2) represents the nominal sphere position for #1 and
#2 in the B-axis coordinate system. The function angle, ,(a, b) represents the
angle of the projection of a vector a € R? to the YZ plane with respect to that
of b € R®*. When a = [a,, a,, az]T and b = [b,, by,bz]T, it is given by:

1 axbm + azbz
Va2 + a2 /b2 + b2

angley , {a, b} := cos™

Analogously, we have:

Ben(BY, Cp) = —anglex, {"P2(B, C5) = "hu(B;, C5),"45(C;) = "4 (C5)
Yo (B, C;) = —anglexy {"ps(B}, C;) = "mi(B;, C3), a5 (C5) =i (C5)

Finally, translational error motions of C-axis, namely 0Z¢(B}, C}), 6Gcs(B;, C;),

and 6Z¢p(B},C5) (i =1, Ny, j = 1,---N,), are identified to meet Eq. (23).
They can be computed by eliminating the influence of identified acp (B}, C]’-‘),
Ber (B, CF) and Yop (B, CF) from py (B}, C7):

Sicp(B;,CF)
6ycs(B;,C5)

] pu—

"p1(Bf,C5)

6zon(B;, C)) 1
1
~Dy(acn(B;. C}) Dy FenlB;. C)Deliicn(B;. C5) {wﬂ (35)
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6 Experimental demonstration

6.1 FEzxperimental setup

To illustrate the present error map construction scheme, its experimen-
tal application to a commercial small-sized 5-axis machining center will be
presented. Its configuration is shown in Fig. 1, and its major specifications are
shown in Table 4.

Its C-axis (rotary table) has a well-calibrated rotary encoder to the axis
of rotation, and we thus assume that the C-axis angular positioning error is
sufficiently small. Thus, to simplify the measurement procedure, only Mea-
surements #1 and #2 in Fig. 3 are performed. The nominal sphere locations

in the workpiece coordinate system are:

pt = [~42.30, —2.00,147.72]  (mm)
Upy=[—42.77,—0.60,307.42] (mm) (36)

B =-90°,—-60°---,90° (i=1,---,7)

C:=0%30%---,330" (j=1,---,12) (37)
Total 7 x 12 = 84 points are measured. Figure 4 shows command X*, Y*, Z*,
B*, and C* trajectories for Measurements #1 and #2.

Prior to experiments, the volumetric accuracy of linear axes (X, Y, and
Z axes) of the experimental machining center was evaluated. By the machine
manufacturer’s standard calibration procedure based on ISO 10791-2, linear
positioning errors, straightness errors, and squareness errors of linear axes
were pre-calibrated. By combining them, the combined standard uncertainty
of three-dimensional positioning by linear axes within their moving range
(X298xY85%xZ191 mm in Measurement #1, and X615xY85x7Z350 mm in

Measurement #2) is estimated 4.9 pym in Measurement #1, and 8.7 ym in
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Measurement #2.

6.2 Measurement result

Figure 5 shows sphere displacements measured by R-test probes, “q(B;, C¥),
in the workpiece coordinate system. For more intuitive understanding, they

are viewed in the global coordinate system by:
"q(Bi, Cj) = Dy(=Bj)Dc(=C7)"q(B;, Cf) (38)

Figures 6(a) and (b) show measured —"q(B;,C7) at Bf = —90° and
B = 0° as examples. Note that —’"cj(B;‘,CJ’-‘) represents the position error
of the R-test probe system in relative to the sphere attached to the spindle.
Assuming that linear axes have no positioning error, it represents the table
displacement. It is hereby referred to as measured probe displacements.

In Fig. 6, the error from the reference position is magnified by 10,000
times. “Table” represents rough location of rotary table. Fig. 6 only shows the
projection of measured three-dimensional displacements onto the XZ plane.
As another example, Fig. 7 shows their projection onto the XY plane of the
B-axis coordinate system (i.e. the top view from the table) at B = —90° and
0°.

Many observations can be made on these plots to intuitively understand

the machine’s error motions. For example:

e At Bf = —90° (Fig. 6(a)), measured trajectories is shifted from reference
positions to +X direction by about 20 ym, and to -Z direction by about 25
pm. The largest contributor for this error is the mis-calibration of B-axis
center position, parameterized by dz%,- and §2%,..

e At all B/’s, the diameter of measured trajectories is enlarged by about 15

pm. This is mostly caused by the mis-calibration of C-axis center position,
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parameterized by dy%, and 0x%y + dzl 5.
e At B = —90° (Fig. 6(a)), measured trajectories are slightly tilted from the
vertical direction. This represents a small B-axis angular positioning error.
e At Bf = —90° (Fig. 6(a)), no significant difference is observed in diameters
of measured trajectories in Measurements #1 and #2. This suggests that

no significant tilt error motion (or “coning”) of C-axis is observed.

6.3 Construction of error map
(1) Identification of position-independent terms

First, by using the algorithm presented in Section 5.3, total eight position-
independent terms (19) are identified. Table 5 shows identified values.

The contribution of position-independent terms in measured probe dis-
placements is studied by Eq. (24). Figure 8 compares measured displacements
at Bf = —90° (same as in Fig. 6(a)) and the simulated influence of parameters
in Table 5. Such a comparison shows that position-independent terms, wg, are,

in this particular case, largest contributors for measured displacements.

(2) Identification of position-dependent geometric errors of B-axis
Position-dependent geometric errors of B-axis, namely dz gy (BY), 0ypy (B}),

dzpy (BY), apy (B}), By (Bf), and vy (B}) (i = 1,---,7), are identified by ap-

plying the algorithm in Section 5.4. Figure 9 shows identified values. Note that

position-independent terms identified above are included as an offset.

(3) Identification of position-dependent geometric errors of C-azis
Position-dependent geometric errors of C-axis, namely dxcp(B;,C}),

oycn(B;,C5), 0zcop(B;, C5), acs(B}, C5), Bes(B;, C5), and vop(B;, C) (i =

1,---,7, 7 =1,---,12), are identified by applying the algorithm in Section 5.5.

Identified values at B = —90° and 0° are shown in Figs. 10 and 11, respec-
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tively.

(4) Observation

In Figs. 9 to 11, no significant position-dependent error is observed both
on B- and C-axes in this particular machine. The angular-dependent variation
in tilt error motions of B- and C-axes is smaller than about 3 x 10~ deg over

180° (for B-axis) or 330° (for C-axis). The B-axis angular positioning error at

B = —90° is only —1.5 x 1073 deg.

7 Conclusion

e Compared to ball bar measurements [3,5,6,7,8], the R-test has a strong po-
tential advantage in its applicability to high-efficient, fully-automated cali-
bration of “error map” of five-axis machine tools in their mass-production.

e The “error map” of five-axis kinematics is parameterized by position-dependent,
geometric errors of each axis. The algorithm presented in Section 5 aims to
separate the table’s error motion, measured by the R-test in relative to the
spindle, into the error map of each rotary axis.

e [ts application example is presented in Section 6 to experimentally demon-
strate the construction of error map of each rotary axis.

e The measurement uncertainty analysis of the R-test device itself was pre-
sented in [24,27]. The uncertainty in the present scheme will be studied in

more details in our future research.
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Table 1

Location errors for the machine configuration in Fig. 1.

Symbol [21]

Symbol [2]

Description [2]

Location errors associated

with rotary axes

0
apy

60
BY
0
YBY
0
Qcp
5x%y
0
Yy
0
02py

592’3

AOB
B0OB
COB-C0Y
A0C-A0OB
X0B
YOB
7Z0B
Y0C-Y0B

Squareness error of B- to Z-axis
Orientation of B-axis around Y-axis
Squareness error of B- to X-axis
Squareness error of C- to B-axis
Linear offset of B-axis in X direction
Linear offset of B-axis in Y direction
Linear offset of B-axis in Z direction

Linear offset of C-axis from B-axis in Y

Location errors associated

with linear axes

0
Ty x
0
gy

0
ﬁZX

CoY
A0Z
B0Z

Squareness error of Y- to X-axis
Squareness error of Z- to Y-axis

Squareness error of Z- to X-axis
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Table 2
Position-dependent geometric errors for the machine configuration shown in Fig. 1

(global coordinate system (X-Y-Z) and B-axis coordinate system ("X-PY-PZ).

Symbol Symbol [2] | Description

Position-dependent geometric errors of rotary axes

apy(B) EAB Tilt error motion of B-axis around X-axis

Bey (B) EBB Angular positioning error of B-axis

vBy (B) ECB-CO0Y | Tilt error motion of B-axis around Z-axis
acp(C,B) | EAC-EAB | Tilt error motion of C-axis around PX-axis
Bep(C,B) | EBC-EBB | Tilt error motion of C-axis around PY-axis
voB(C,B) | ECC-ECB | Angular positioning error of C-axis

dxpy (B) EXB Radial error motion of B-axis in X-direction
dypy (B) EYB Axial error motion of B-axis

dzpy (B) EZB Radial error motion of B-axis in Z-direction
szcp(C, B) | EXC-EXB | Radial error motion of C-axis in PX-direction
Sycs(C,B) | EYC-EYB | Radial error motion of C-axis in ®Y-direction
dzcp(C,B) | EZC-EZB | Axial error motion of C-axis
Position-dependent geometric errors of linear axes

yx(Y) ECY Yaw of Y-axis

ayx(Y) EAY Pitch of Y-axis

By x (V) EBY Roll of Y-axis

dry x (V) EXY Straightness error of Y-axis in X

dyyx(Y) EYY Linear positioning error of Y-axis

dzyx(Y) EZY Straightness error of Y-axis in Z
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Table 3

Major specifications of the linear displacement probe.

Measuring principle

Photo-electric scanning of an incremental

scale with spring-tensioned plunger

Measurement range 12 mm
System accuracy +0.2pum
Gauging force 0.35 to 0.6 N
(vertically upward)

Signal period 2 pm
Mechanically permissible | 30 m/min

traversing speed
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Table 4

Major specifications of the experimental machining center.

axis X Y 7 B C

Stroke 850mm | 450mm | 450mm +110° 360°

Drive servo motor + ball screw direct drive servo motor + worm gear
Max. speed 20 min~! 100 min~!

Guide way slide guide way tapered-roller bearing ball bearing

Table size $400mm
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Table 5

Identified position-independent error terms.

Symbol | Identified value
oy —1.0 x 1073 deg
B 0.2 x 1073 deg
Yoy —0.5 x 1073 deg
ol 1.3 x 1072 deg
6%, | 6.4 x107% mm
Sy%y 7.8 x 1073 mm
629 —13.2 x 1073 mm
oy, | —3.4x107% mm
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Fig. 1. The configuration of a five-axis machine tool considered in this paper.

Machine's spindle

Precision sphere

Displacement
sSensors

Sensor bed
(fixed on machine
table)

Fig. 2. R-test device.
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Fig. 3. Reference sphere locations to identify the orientation of C-axis.
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Fig. 4. Command X*, Y* Z* B* and C* trajectories.
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Fig. 5. Measured sphere displacements in the workpiece coordinate system,

Yq(B},C}), (Measurement #1).
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Fig. 6. Measured sensor displacements in the global coordinate system,

—"qr(B;, C;)(Measurements #1 and #2).
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Fig. 7. Measured sensor displacements in the B-axis coordinate system,
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Fig. 8. Comparison of measured sensor displacements and the simulated influence
of identified position-independent terms shown in Table 5 in the global coordinate

system (at B = —90°, projected onto the XZ plane).
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Fig. 9. Identified position-dependent geometric errors of B-axis.
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Fig. 10. Identified position-dependent geometric errors of C-axis at B; = —90°.
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Fig. 11. Identified position-dependent geometric errors of C-axis at B; = 0°.
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