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SUMMARY

The purposes of this thesis are primarily to research on behavior of
groundwater flow in saturated and unsaturated zone, to present the fundamentals
of the theory of groundwater flow, and to develop the most effective methods for
solving groundwater flow problems related to civil engineering practice. The
mathematical model provides a finite element solution to two- or three-dimen-
sional problems involving transient flow in the saturated and unsaturated domains
of nonhomogeneous, anisotropic porous media. In order to.determine relationships
between volumetric moisture content (§) and hydraulic conductivity (x), and
between pressure head (¢) and volumetric moisture content (g) in a laboratory,
an apparatus was constructed and test procedures were developed to measure pre-
ssure head and volumetric moisture content by using pressure transducers and
low-energy gamma ray attenuation. The validity and the accuracy of the two- or
three-dimensional finite element approach have been investigated with comparing
the numerical results with the laboratory experimental data. The relationships,
K-g and y-9 , which were obtained by the new apparatus were used as input data
for numerical analyses. Good agreements between computed and measured pressure
head profiles have been obtained. To estimate hydraulic properties of aquifers,
new methods of analyzing drawdown test data were developed and illustrated with .
some examples. Namely, analyses of drawdown test data for partially pemetrating
well in a confined or an unconfined aquifer have been shown to determine aniso-
tropic hydraulic conductivities and storage coefficients, and analyses of draw-
down test data which are obtained in the much groundwater supplied aquifer were
developed with a conception of "Island Model". To demonstrate the flexibility
of the finite element approach and its capability in treating complex situations
which are often encountered in the field, the groundwater flow through sand.bank
at flood water levels and the flow through aquifer due to an excavation were ana-

lyzed.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Water is an essential commodity to mankind, and the largest available
source of fresh water lies underground. While throughout recorded history
there is evidence that mankind has feared and respected the destructive power
of water. In the form of tides and floods, it is one of the most powerful
forces of nature. Hidden in rock crevices and soil pores, it exerts unbeliev-
able forces that tear down mountainsides and destroy engineering works. Dam
designers and builders, highway people, railroad engineers, and many others
have long known of the great importance of controlling water in pores and cracks
in earth and rock formations. When groundwater and seepage are uncontrolled,
they can cause serious economic losses and take many human lives.

In brief, most failures caused by groundwater and seepage can be classi-
fied in one of two categories.
(1) Those that take place when soil parcticles migrate to an escape exit and

cause piping or erosional failures.
(2) Those that are caused by uncontrolled seepage patterns that lead to satu-
ration, internal flooding, excessive uplift, or excessive seepage forces.

Category 1 includes failures of dams, levees, reservoirs, and the like, caused
by the migration of soil particles induced by a variety of defects. Category 2
includes failures of dams, drydocks, and retaining walls caused by excessive
saturation, seepage forces, and uplift pressures. In this category are listed
the deterioration and failure of pavements from internal flooding, the uplift-—
ing of canal linings after drawdown, failures of fills and foundations caqsed

by seepage forces, and uplift pressures in trapped water, landslides, and



similar cases.

The specific problems which are to be dealt with can be divided into

three parts:

(1) Estimation of the quantity of seepage

(2) Definition of the flow domain

(3) Stability analysis

In general, these problem is to determine the velocity and the pressure of the
water in the interior of a soil mass with given boundaries, under certain im-
posed conditions along these boundaries. Mathematically speaking, the problem
is in the class of boundary-value problems. During the last few decades great
progress has been made in the mathematical analysis and the simulation tech-
niques of these problems.

In the first preceding works, the Laplace equation was commonly used as
the governing equation of steady state flow in porous media. Namely there is
no change in conditions with respect to time, and regarding water as an incom-
pressible flow makes the density of water a constant. In dealing with the
steady state seepage of water through, for example, earth dams and embankments,
civil engineers have traditionally relied on the graphical method of flow nets,
theory of complex variables, and conformal mapping.

However, as a great many kinds of civil engineering works are perfomed
with expedition by using many kinds of construction machineries, it becomes
necessary to obtain useful solutions to seepage conditions during the non-
steady period. For many years, the hydrologist has been accustomed to analy-
zing the flow behavior with approach of analytical mathematics. Engineers and
hydrogeologists who have attempted to use analytical methods are well aware
that these approach is very useful in some cases, but unfortunately, there are
far too many situations where the real geologic system under investigation does

not match the simplified version adopted by early researchers. In other words,
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if one attempts to analyze almost any given hydrogeologic problem in the field,
he soon finds that the natural variation in the hydraulic properties of the
flow regime presents many problems if he limits his approach to analytic mathe-~
matics.

With the advent of the digital computer, however, various numerical meth-
ods have been perfected in recent years that have made it possible to solve
rather complex problems in the flow of groundwater. Such methods have enabled
engineers and hydrogeologists to develop a much better understanding of the way
in which complex geological conditions control water movement. ' The methods
have been concerned with both regional groundwater flow problems and the ques-
tion of the local distribution of seepage around wells and structures such as
dams and canals.

In all of the preceding work, the effect of flow in the unsaturated zomne
on the position of the free surface has been consistently neglected. While
there are many steady state situations where one can safely make this assump-
tion, the case of transient, free surface movement is an entirely different
matter. There are probably a number of situations where drainage or imbibition
is rapid enough that one does not commit a serious error in using the nonsteady
numerical methods, but it is becoming clear that the role of the unsaturated
zone in contributing to groundwater seepage needs more attention than it has
received and with considering the effect of unsaturated zone in analysis it
will be possible to solve the problems, which are almost impossible to be
solved by the conventional method, such as behaviors of flow through an earth
dam when water level raised at the upstream side, flow through an embankment
when the water level of a river changed and ground water level fractuation due
to water injection to a well or infiltration of rain.

Therefore the purpose of this thesis is primarily to research on behavior

of groundwater flow in the saturated-unsaturated zone and its application to



fundation engineering. Namely in this thesis following four steps of investi-

gation will be taken'systematically:

(1) Evaluations and discussions of the governing equation of flow in the satu-
rated-unsaturated porous media

(2) Development of numerical methods to analyses the behavior of groundwater
flow in both zones using two-and three-dimensional finite element method

(3) Improvement of some methods to determine hydraulic properties of both zones
in the laboratory and the field

(4) Application of developed methods to real geologic systems

1.2 Review of Previous Studies

The study of physics of flow through porous media has become basic to
many scientific and engineering fields, quite apart from the interest it
holds for purely scientific reasons. Such diversified field as soil mecha-
nics, groundwater hydrology, petroleum engineering, water purification, indus-
trial filtration, ceramic engineering, powder metallurgy, and the study of gas
masks all rely heavily upon it as fundamental to their individual problems.
All these branches of science and engineering have contributed a vast amount of
literatures on the subject.

When the previous studies on the flow through porous media are reviewed,
it is convenient to classify them into the following groups;
(1) Studies on fundamentals of groundwater flow
(2) Studies on methods for determining hydraulic properties in the field
(3) Studies on methods for determining hydraulic properties in the laboratory
(4) Studies on methods for estimating groundwater behaviors.

The objects of the studies in (1) are to investigate the governing equ-
ation of flow through porous media. Although the fundamentals of groundwater

flow were established more than a century ago, it is only within recent years



that the subject has met with scientific treatment. Information on flow through
porous media is scattered in a multitude of journals and books. Among the books
that deal generally with this topic,one that must be mentioned is a comprehen-
sive text book published by ézskat, which in spite of its age, still contains many

useful informations. More specialized aspects of the physics of flow through

porous media are contained in books for specific applications. Thus, on ground-

2) 3)
water hydrology one must mention a classic books by Todd, Harr, and Polubarinova—
4) 5) 6) 7)
Kochina . On soil physics, there are books by Childs, Scheidegger, and Hillel.
8) )

De Wiest edited a compilation of recent development on the‘subject. Bear pre-
sented, in an ordered manner, the theory of dynamics of fluids in porous media,
as applicable to many disciplines of science and engineering.

The objects of the studies in (2) are primarily to develop methods of
determining the hydraulic characteristics of aquifers or water bearing layers
with a drawdown test. The previous studies in dealing with a drawdown test are
summarized in section 1.2.1.

The studies in (3) are to develop experimental methods of determining the
hydraulic properties of unsaturated soils. This subject has been mainly studied
in agricultural engineering. Recently, it isrecognized that in the movement of
the groundwater the water content and permeability of the unsaturated region
usually play very important roles as well as the hydraulic properties of satu-
rated soils, so that many researches have been done on this subject. Some of
these previous works will be reviewed in section 4.1.

The objects of the studies in (4) are to develop rational techniques of
the seepage analyses and to predict the distribution of pressure head and the
velocity in soils taking into account the geological formation and the hydraulic
boundary. In dealing with steady state seepage traditionally the graphical
method of flow netg)has been relied by civil engineers. For unsteady state

seepage the earliest investigators attempted to solve unsteady governing equation



by finding analytical solutions, using such techniques as separation of varia-
bles, Laplace transformation, Green's functions and conformal mapping. A dis-
tinct advantage of such analytical methods is that the solutions are derived in
algebraic forms and it is easy to study the behavior of the systems in terms of
convenient dimensionless variables. However, the process of finding an analy-
tical solution becomes cumbersome and difficult except in the case of simple
initial and boundary conditions and material composition of the flow region

In many practical problems, however, the degree of heterogeneity and ani-
sotropy that the engineer encounters in the field may be such that these tradi-
tional methods are extremely difficult to apply unless certain simplifying as-
sumptions are made. Such difficulties have led to the development of numerical
methods. The previous studies on the numerical approach will be presented in

section 1.2.2.

1.2.1 Previous studies on drawdown test

The following is a summary of theoretical and experimental work that has
been done in the area of flow to wells. Several major areas outside the scope
of the present study have been excluded from this compilation. These include
multi-phase flow, anisotropic and heterogeneous porous media, compressible fluid
flow, stratified and multiple—aquiﬁer situations, multiple-well problems, and
leaky-aquifer boundaries. With the above exclusions, the field of flow toward
wells in porous media breaks down into the following classifications.
(1) Steady-state, confined flow in an aquifer of finite thickness; totally
penetrating well (Fig.l1l.1)

For the purposes of this discussion, confined flow means that the aquifer
is bounded of above and below by horizontal, impermeable surface. An aquifer
considered is finite in lateral extent. Confined flow toward a totally pene-‘

trating well is purely radial flow and is often modeled by flow between two



concentric circles of constant piezometric head. The governing differential

equation is

1 3 dh

_;_—3;(r_§;_) =0 (1.1)

11) 12)
where h=y+x3. Muskat and Polubarinova-Kochina have derived the solution, which

can be found in any basic text on ground water flow. The outer circle is the

"radius of influence' of the well. This concept is not well difined, since the
11)

piezometric head varies logarithmically with the radius. However, Muskat ob-

served that any reasonable assumption for the '"radius of influence" gives suf-

ficiently precise values for the discharge flow rate.
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Fig.1l.1 Totally penetrating well



(2) Steady-state, confined flow in an aquifer of finite thickness; partially

penetrating well (Fig.l1l.2)

Now there is an additional velocity component in the vertical direction.

Thus, the differential equation is

1 39 9h 3’h 1.2
TR 5z = 0 -2

11)
Muskat distributed sinks along the well axis and adjusted their intensity to

approximate the boundary condition of constant potential along the well bore.
A theoretical solution for the case of a finite well radius was proposed by

13)
Kirkham. Kirkham used numerical techniques to evaluate coefficients of a

Fourier-Bessel series.
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(3) Steady-state, unconfined flow in an aquifer of finite thickness; totally
penetrating well (Fig.1l.3)

Unconfined flow means that part of the boundary of the flow domain is a
free surface whose location is initially unknown. This makes the mathematical
solution much more difficult to obtain. The most common way to handle the free
surface theoretically has been to use the Dupuit-Forchheimer theory. This
theory is based on the assumptions, as presented by Dupuit, that 1) for small
inclinations of the free surface, the stream lines are essentially horizontal;
and 2) velocities are proportional to the slope of the free surface and inde-
pendent of depth. Actually, one does not need the assumption of depth-indepen-
dent velocities to formulate the theory. Flow that obeys Darcy's law and that
has negligible vertical velocity (implied by assumption 1) enables the equations

of flow to be averaged in the vertical direction yielding the Dupuit equation

3
r —5;(r or ) =20 (1.3)

As mentioned previously, surfaces of seepage are neglected in this theory.

Flow rates are exact, but the free-surface profiles are in error, especially
where curvatures of the free surface are large; e.g., in the neighbourhood of a
well bore. The mathematical difficulties of free-surface flow motivated many
researchers to turn to experimental and numerical methods. Finite difference
techniques were used by Boultiz)to obtain flow rates and free-surface profiles
which included the surface of seepage. Boulton also worked with a sandbed model
for experimental verification. Kirkhii)gave an analytical solution based upon
a fictitious flow region above the free surface and employing an interation
procedure. - An alternate approach, using force analysis and trialngles of filt-

16)
ration requiring no iteration, was developed by Kashef.
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(4) Steady-state, unconfined flow in an aquifer of finite thickness; partially
penetrating well (Fig.l.4)
Dupuit theory cannot be applied to this case because the vertical velo-

city near the bottom of the well is not negligible. The finite difference tech-

17)
niques, similar one by Boulton was also employed by Boreli for the flow to a
18)
partially penetrating well. Taylor and Brown obtained numerical solutions from

19)
a finite element analysis. Dagan used matched asymptotic expansions to derive

an analytical solution. The well was modeled by a line sink of uniform strength,
and the surface of seepage was neglected. An inner expansion, valid for dis-
tances far from a well bore, was obtained by the method of matched asymptotic ex-
pansions. The zeroth order term of the outer solution is the Dupuit solution
for a totally penetrating well. This technique gives an approximate analytical

solution to the problem plus insight into the validity of the Dupuit solution
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10)
and Muskat's confined flow solution for a partially penetrating well.

Ground level

ya

|
¥

| Free surface

Aquifer ! h"Surface of seepage
i
(|

wda

Impermeable stratum
V. /4
+ig.1.4 Partially penetrating well

(5) Steady-state, partally penetrating well in an infinitely thick aquifer
with an impermeable roof (Fig.l.5)

An approximate solution was first presented by Haig? The well was re-
presented by a line-sink of constant intensity per unit length, and the well
wall became an ellipsoid of constant potential. Polubarinova—Kochii; gave the
same solution and showed that it was valid for free-surface flow with the linea-
rized, free-surface boundary condition. She mentioned that improved accuracy
can be obtained by varying the strength of the sink distribution alog the well
axis. Mathemetically, the linearized, free-surface boundary condition says that

the free-surface for unconfined flow is at the same elevation as the piezometric

head for confined flow.
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Fig.1l.5 Confined flow in an infinitely thick aquifer

(6) Unsteady, confined flow in an aquifer of finite thickness;ltotally pene-
trating well (Fig.1.6)

The introduction of time complicates the mathematical solution consider-
ably. Here one is concerned with time-dependent, radial flow. The aquifer con-
sidered is infinite in lateral extent. The differential equation, which in- )

21

cludes water and aquifer compressibility effects, was lucidly derived by Nomitsu

in the form as follow

1 3 oh _ S oh 1
r ar(r or ) = T 9t .4

where h is the piezometric head, S is the storage coefficient [S=Yb(a#nB)], and

T is the transmissivity of the aquifer. Note that the vertical coordinate

- 12 -
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dependence has been integrated out of the equation.

Theis, known as the father of unsteady well solutions, gave the first,
widely popularized, unsteady solution. His'"well function'" solution to the above
equation has been extensively tabulated. The differential equation strictly
describes a confined, artesian aquifer, but Theis' solution has also been used
as an approximate solution for free-surface flow with a linearized, free-surface

boundary condition.

22)
Jacob and Lohman solved the case of the time-varying discharge under con-
23)
ditions of constant head and compared their results with field tests. Hantush

24)
dealt with wells in sands of non-uniform thickness. Boulton introduced elastic

and delayed-yield effects to the Theis model by adding a time-dependent integral

term to the differential equation. Discharge flow rates that were certain spe-
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cified functions of time were treated by Abu-Zied and Scoiz)and Hantuzg? Peri-
odic pumping rates were investigated by Lennox and Bef;? Kriz, et ai?)derived

the Theis solution by reducing the partial differential equation to an ordinary
differential equation through a similarity transform of dimensionless variables.

They developed an improved procedure for determination of the storage coeffici-

ent and transmissivity using graphical "type curves".

(D) Unsteady, unconfined flow in an aquifer of finite thickness; totally
penetrating well (Fig.1.7)
The basis for many analyses in this area is the Boussinesq equation uti-

lizing the Dupuit assumptions:

19 3h Sy o

ar(rh or ) = k ot (1.5)

where h is the piezometric head. This non-linear partial differential equation
must still be linearized in order to obtain an analytical solution. As mentioned
previously, the Theis solution has been applied as an approximation to the case
of unconfined flow. Thus, the free-surface drawdown near the well is quite in-
accurate because no account is taken of the vertical velocity. This vertical
velocity is significant near the well bore.

The potential theory formulation was solved by Boultgz)using a linearized,
free-surface, boundary condition which was valid for relatively small drawdowns.
He modeled the well with a line-sink of constant discharge per unit length. The
surface of seepage was neglected, but a correction was applied to the solution
to compensate for this assumption. The solution for the free-surface drawdown

as a function of time was obtained for constant discharge conditions by using a

Fourier-Bessel analysis. The Theis’ solution was shown to be valid for flow in
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an unconfined well provided the duration of pumping was sufficiently long.
Through numerical integration, correction curves were obtained for times near

the start of pumping.
30)
Glover and Bittenger improved the Theis’ solution by employing an iteration

procedure to take into account the reduction in saturated thickness of the aqui-

fer as the free surface falls. A linearized Boussinesq equation was derived by
31)
Hantush for wells in sloping sands under conditions of constant discharge.
32)
McNeary, et al. solved the case of constant-head operation with variable stora-

tivity and transmissivity by numerical integration of the parabolic Boussinesq
equation.
33)

Boulton extended his earlier solution in the case of constant-head pro-
duction for a well of finite radius by Fourier-Bessel analysis and contour
integration. For this type of pumping operation, the surface of seepage can be
retained in the mathematical formulation. The solution for the well discharge
as a function of time is nearly constant at first, but then approaches the Jacob
and Lohmﬁi)result for an artesian aquifer at long times after pump startup.

An analog model using an RC network was built by Stallmazf)

Numerical integration of the non-linear Boussinesq equation was performed
by Kriz, et ai?)for constant discharge flow rates and large drawdowns. The
partial differential equation was transformed into and ordinary differential
equation by a dimensional similarity transformation. An approach using the
hydraulic theory of free-surface flow was taken by Mahdaviaiiz who numerically

integrated the characteristic equations obtained from the energy and continuity

equations for the system. Hydrostatic equilibrium was assumed, which made this

37)
approach similar to the Boussinesq theory. Fox and Ali duplicated this work.
38) 35)

Esmali and Scott extended the results of Kriz, et al. to constant-head opera-
tion.

33) 39)
Boulton's analytical solution was verfied by Herbert with a resistance
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network analog. This solution is particularly useful for short times after the
start of constant-head well drawdown test. Taylor and Luthig)have treated a
finite-radius well with a surface of seepage and partially saturated flow above
the free-surface using a finite-difference method. Boultgi)analyzed some draw-
down tests for totally penetrating wells in an unconfined aquifer. He took into
account the slow yield of water from above the free surface as it falls, and

concluded that drawdown versus distance curves were less sensitive to delayed

yield effects than drawdown versus time curves.

/ Ground level

v

Free surface

— v . o —

Aquifer

Impermeable stratum

/7

e - - — —_——— —

Fig.1.7 Totally penetrating well

1.2.2 Previous studies on numerical approach
The explosive development of the numerical approach in recent times has
been mainly due to the rapid evolution of high speed digital computers in the

last twenty-five years. Thanks to the numerical approach, in several fields of
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science and technology, complex problems have now come within the reach of cri-
tical analysis. Finnemore and Perii)have adapted a relaxation technique in ana-
lyzing steady seepage through an earth dam. Another finite difference approach
to the steady state seepage problem has been described by Jeppsoi?),ii)recent
years an increasing number of attempts have been made to simulate nonsteady flow
with a free surface by means of finite difference model by Desiiz Szabo and
McCraig?)

Finite difference models have certain restrictions as to the kind of geo-
logical situations that can be handled. The finite element method, on the other
hand, has been found to be easily adapted to problems of seepage through complex
systems where a free surface exists. The finite element method, which was first
devised as a procedure for structural analysis, has come to be recognized as an
effective analysis tool for a wide range of physical problems. Among these are
problems in the field of flowanalysis, a subject of which is herein interpreted to
encompass not only the flow of fluids but also heat flow.

The application of the finite element method to flow analysis problems was

47),48)
developed by Zienkiewicz in relatively recent years, but, nevertheless, a sig-
nificant literature on the topic has already emerged. Taylor and Broig)and Figi
were the first to apply this method to steady state,free surface problems. Finn's

51) 52)

approach has been extended by Volker to include nonlinear flow. Neuman was
able to develop an iterative method of converging to a solution that eliminates
the ambiguity effect reported by Taylor and Browﬁ?) Neumii)has developed a
finite element method for analyzing nonsteady flow with a free surface that is
an extension of the technique used in solving steady state problems [Neuman
and Witherspoon, 1970]. The method is based on the original form of the non-
linear governing equations and therefore enables one to investigate nonsteady

free surface problems for a wide variety of conditions. Large vertical gradi-

ents are easily handled in systems with complex boundaries and arbitrary degrees
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of anistropy and heterogeneity. When dealing with radial flow to a well operat-
ing at é prescribed rate, one must take into account both storage in the well
and the actual distribution of velocities along the well bore. The method can
also handle the effects of elastic storage, an important consideration in ana-
lyzing multiple aquifer systems. In addition, water can be added to or taken
away from the free surface at prescribed rates to simulate infiltration and
evaportranspiration. To obtain variations with time, the method uses an impli-
cit, time centered scheme that is accurate and unconditionally stable. As a
result only a small ﬂumber of time steps are required to reach the final steady
state.

In all of the preceding work, the unsaturated region above the free sur-
face is not considered in the calculation. It stands to reason that in order
to model a flow region where both saturated and unsaturated regimes coexist,
one should combine the physical features governing the nature of each of these
important phenomena. In recent years, there have been a growing number of
attempts to consider flow in the saturated and unsaturated zones simultaneously.
Finite difference schemes for simulating both of these zones have been employed

54) 55) 56) 57),58) 58)

by Rubin, Taylor and Lutin, Verma and Brutsaert, and Freeze. Freeze has been
able to simulate transient subsurface flow in a three-dimensional. With this
three-dimensional model, Freezzsgas been able to simulate natural flow systems
in hypothetical basins and develop an insight into the mechanisms involved in
the development of perched water tables and in the areal variation of water
table fluctuations. These problems are almost impossible to be solved by the
preceding work. The finite element method was first appligg)to problems in-

volving saturated-unsaturated flow in porous media by Neuman, but not many

researches have been done yet.
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1.3 Scope of This Study

The present work is essentially an attempt to develop the finite element
method for analyzing transient, multi-dimensional fluid flow in saturated-un-
saturated, heterogeneous porous media. This new method makes it possible to
identify those field situations where flow in the unsaturated region is an
important factor that cannot be neglected and in the multiple-aquifer with free
surface. Unfortunately, consideration of the unsaturated zone involves added
mathematical complexity and requires data on unsaturated soil properties.

Then, the purposes of this thesis are to break the ice in treating both zones
simultaneously.

Chapter 2 discusses the physics of the saturated-unsaturated groundwater
motion. The governing equation of saturated-unsaturated flow is derived from
the law of mass conservation and from the Darcy's law and Richard's equation of
motion and is compared with the Klute's diffusion equation which has been wide-
ly used in the analysis of unsaturated flow. Typical boundary conditions are
enumerated.

In Chapter 3, the governing equation of flow through saturated-unsaturated
zones is formulated into the finite element discretizations which are evolved
into the study of either two-dimensional models or three-dimensional models
with radial symmetry. These models take into account the effects of hysteresis
in the volumetric moisture content-pressure head relationships in unsaturated
zone. In conjunction with the finite element discretization weighted residual
procedures, particularly the Galerkin method is used.

Chapter 4 deals with the experimental study of hydraulic properties of
unsaturated soil. In treating unsaturated zone, a great deal more data are
required than are required for the saturated zone, but these properties of
soils must be known to apply the finite element approach to actual flow
problems. The main purposes of this chapter are to propose a rational basis of

getting experimental relationships between pressure head (y) and hydraulic
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conductivity(K) and between preséure head () and volumetric moisture content (8)
with "the instantaneous profile method" by using the source of low-energy gamma
ray attenuation and pressure transducer, and to utilize these experimental data
in Chapter 5 to check the numerical solutions.

In Chapter 5,in order to check the validity of the finite element ap-
proach developed in Chapter 3, laboratory experimental study on infiltration
and drainage in two-and three-dimensional sand model box is carried out respec-
tively. The.numerical model is then used to solve these typical problems and
the results are compared with experimental results for consistency. The rela-
tionships of the pressure head - moisture content and the hydraulic conductivity

- moisture content which are obtained in Chapter 4 are used as input data.

In Chapter 6, new methods of analyzing drawdown tests are described and il-
lustrated with some examples to determine hydraulic properties that are required
to simulate a practical flow problem in the field. Firstly, some methods of
analyzing drawdown tests with partially penetratingwell is developed to deter-
mine anisotropic hydraulic conductivities which are taken into account quite
easily in the finite element method. Methods of handling the effect of partial
penetration are described in section 6.2, where the results of such methods are
successful, one can not only determine the anisotropic permeabilities and
storage coefficient but also obtain some idea of the thickness of the aquifer
being tested. Secondarily, the analytical solutions of unsteady flow due to
drawdown test are derived in the conceptionof "Island Model'" that the shape of
groundwater level is fixed by the circular water supply which is equilibrium
with the pumping rate. By using these solutions, newmethods of analyzing draw-
down tests which are performed in a confined aquifer and an unconfined aquifer
are given respectively and the effect of influence region is evaluated.

In Chapter 7, having looked into the reasonableness and validity of this

finite element model in Chapter 5, the possible application of this model is
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finally described. Before progressing into the various levels of applica-
tions the input data and boundary conditions are discussed and evaluated. The
applications of models to field situation are the flows through sand bank at
flood water levels and the flow through aquifer due to excavation.

Finally, in Chapter 8, the summary of this thesis is presented and the

. various suggestions for future studies are given.
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CHAPTER 2

PHYSICS OF SATURATED-UNSATURATED GROUNDWATER MOTION

2.1 Introduction

In solving a specific physical problem, such as the flow of a liquid through
a specified porous medium domain, it is necessary to develop the fundamental
equations describing the transport of fluid in a porous medium.

In this chapter, firstly, Darcy's law is discussed as the equation of mo-
tion. The experiment of Darcy will not be uniquely defined, therefore, there is
considerable ambiguity in postulating a differential equation which would be
equivalent to the results of the experiments. In fact, the differential equa-
tion which is now commonly called " Darcy's law " is not an equivalent expres-—
sion for Darcy's finding, although these do follow from it. However, they would
equally well follow from other types of differential equationms.

This is especially true if generalizations of Darcy's law to anisotropic
compressible and unsaturated porous media are attempted. Some discussion will be
devoted to this subject later in this chapter.

It is to be expected that Darcy's law will have limitations. Indeed, such
limitations occur generally as high and‘low flow rates, as well as in relation
to various other effects. The range of validity of Darcy's law and its limita-
tions will also be discussed in this chapter.

Secondly, Richard's equation is discussed as the law of continuity or con-
servation of mass. Coupled the equation of motion with the law of continuity,
the governing equations for saturated-unsaturated flow will be derived and com-
pared with the Klute's diffusion equation which was widely used in the analysis
of unsaturated flow.

When a problem is described simultaneously by a number of dependent varia-
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bles, the same number of equations is needed for a complete solution. Being a
general description of an actual phenomena, it is obvious that the partial dif-
ferential equation itself does not contain any information concerning the spe-
cific values of quantities characterizing a specific case of a phenomenon.
Therefore, any partial differential equation has an infinite number of possible
solutions, each of which corresponds to a particular case of the phenomenon.

To obtﬁin from this multitude of possible solutions corresponding to a certain
specific problem of interest, it is necessary to provide supplementary to a cer-
tain specific problem of interest, it is necessary to provide supplementary in-
formation that is not contained in the partial differential equation. Finally
section 2.5 will include a discussion of the initial and boundafy conditions

of flow of fluids through porous media.

2.2 Equation of Motion

In 1865, Henri Darcy published in an appendix to his book " Les Fontaines
Publiques de la Ville de Dijon " the results of his experiments on the flow of
water through granular material. Using a cylindrical sample, the direction of
flow being along the cylinder, he found the discharge per unit area of cross-
section to be proportional to the gradient of piezometric head in the direction

of flow, i.e.

el

Here, Q is the discharge through the sample, A is the gross area of the sample's
cross-section, Ah is the head lost in a length A% and K is constant for a given

sample. This expression, and various rearrangements of it, have been named
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Darcy's law and it is the basic relationship in quantitative study of the flow
of fluids through porous media.

Darcy's law originally was limited to one-dimensional flow in a steady
state for a homogeneous incompressible fluid. When Darcy's law is extended to
a formal generalization of the equation of motion, some problems arise as follows:
(1) to three-dimensional flow
(2) to the flow in an isotropic medium
(3) to the flow in an anisotropic medium
(4) to unsteady state flow
Several researchers have derived Darcy's law from the general Navier-Stokes equa-
tions for viscous flow to extend Darcy's law to above problems. Under unsteady
state conditions the Navier-Stokes equation for low Reynolds numbers ( neglecting
the higher order inertial term ) becomes

BVi + 8@ = VZV . (2 2)
P3¢t pgéx WYy .

Here ¢ is a force potential defined as

_ _P_
X8, + 0 (2.3)

gi—(O 0 -g) is the acceleration due to gravity, p, U and p are respectively the

1) *
pressure, viscosity and density of the fluid. The mass average velocity vy is in-

troduced into Eq.(2.2).

ov. * 30
p——+0p o = WVlv (2.4)

ot

* .
In above equation uviv represents the density of the force due to the fluid's

i
viscosity, which resists the motion. It is a viscous force per unit volume of

fluid. These resistance forces depend upon the friction of fluid particles with
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soil particles. The forces of internal friction — fluid particles with fluid
particles —— are negligibly small in comparison with the forces of external
friction. The resistance forces offered by a single sphere for the special case
of slow viscous flow of a Newtonian fluid is given by Stokegz’%gw. This law can

be expressed in a generalized form as

*
f_ = Audv, (2.5)
) i

in which fp is the resistance or drag of a single particle, U represents the dy-
namic viscosity of the fluid, d is the particle diameter; for irregular-shape
nonuniform particles, d would be the characteristic length of the averége—size
particle and would have to be determined by some appropriate technique. v: de-
notes the local average velocity of flow around the particle ( i.e., the seepage
velocity ), and A represents a cqefficient that takes into account the effects
of neighboring particles. The coefficient A will depend upon the local stream-
line configuration around the particle and, hence, must be some function of the
geometry of the pore system. More specifically A will depend upon the porosity,
the shape of the particles, and the distribution of the sizes of the particles.
The total resistance F_, offered by all of the particles in the element will

R
thus be

F, = Nf (2.6)
P

in which N represents the number of particles in the element. FR is rewritten in

the another form
*
= 2.7)
F, = (W/B)v, (
Considering that the coefficient B retains the same value for the unsteady move-

ment as for the steady. Eq.(2.4) with the help of Eq.(2.7) becomes

*

v, *
i v _ (2.8)
Sl T !
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and this equation can be shown in the next form

x B . 30 I (2.9)
vi =t T QO '
4)
Averaging over the cross-section we obtain
K * = ov¥
* La .
o & 5 ¢ (¢ B ) i (2.10)
i ny ax, v 7 9t

where V is the average kinematic viscosity ( =ﬁ/5 ). Thus, the equation of motion
derived in the form of Eq.(2.10) is valid for an inhomogeneous fluid in laminar

. — the medium's
ij
permeability —— will be discussedin detail in other chapter. Eq.(2.10) is the ge-

flow through an anisotropic porous medium. The coefficient K

neralized form of Darcy's law for nonsteady state flow and the form of the exten-
sion of Darcy's law to three-dimensional flow in anisotropic media.

Another derivations of Darcy's law from Navier-Stokes eq. are presented by

4),5),6) 7),8),9)
Whitaker ( 1966, 1967, 1969 ) and by Slattery ( 1967, 1969, 1972 ). They used
the Slattery-Whitaker averaging theorem which discovered simultaneously and inde-
pendently by Slatter;)( 1967 ) and by Whitakes)( 1967 ). This theorem enables
one to express the volume averages of space derivatives in terms of the space de-
rivatives of volume averages, thereby making it possible to proceed with the in-
tegration of differential equations from one scale of measurement to another in
a mathematically reigorous fashion.

The second term on the right-hand side of the motion equation Eq.(2.10) ex-
presses the average acceleration. Since in practice Darcy's law is always ex-~
pressed in the form neglecting the last term in Eq.(2.10), it is important to
know under what conditions can one justify neglecting this term. For flows in
which the 1qca1 inertial forces can be neglected with respect to the viscous (

10)

resistance ) forces, Polubarinova—Koching ( 1962 ) has indeed shown that the
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acceleration term in the equation of motion tends very rapidly ( e.g., within a
fraction of a second ) to zero after the onset of flow. Hence, one is justified
in deleting this term from the equation,

The same interesting way of looking at this problem has been suggested by
Whitaker. To use the author's own words ( Whitakegzl969,pp.25 ) " If a tube fill-
ed with fluid is subjected to a sudden change is the pressure drop, essentially
steady flow occurs for times greater than to where to =d2?/4v. Here d is the tube
diameter and vV is the kinematic viscosity. For the purpose of estimating micro-
scopic transient times in porous media, a practical lower bound on V is 10" %cm?/
sec, and an upper bound on d might be on the order of 10 ‘cm. This gives a micro-
scopic transient time on the order of 1 sec, and if the transient time for the
macroscopic process is much larger ( say on the order of minutes ), we should be
treat the flow as quasi-stead ..." When the fluid is incompressible and the por-
ous medium is rigid, all the transient effects are caused entirely by temporal
change in the external boundary conditions. In practice the characteristic time
of such changes is usually at least on the order of minutes, indicating that the
time derivative in Eq.(2.10) can probably be neglected in many situations.

Then for a homogeneous incompressible fluid, p=const, ﬁ=const and the motion

Eq.(2.10) may be written in terms of the piezometric head E=z+§/?.

* -,-. dh
= - 2.11
v, = (Kin/u) axj ( )

This equation is Darcy's experimental law.

Although upper evaluations do not contribute to the formulation of a new
law, these confirm the early belief that Darcy's law is of the nature of statis-
tical result giving the empirical equivalent of Navier-Stokes equations.

It is important to define a range of validity of Darcy's law, because Darcy's
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law is not universally valid for all conditions of liquid flow in porous media.
In derivation of Darcy's law from Navier-Stokes equation, it is assumed that the
flow is laminar ( i.e., non turbulent slippage of parallel layers of the fluid
one atop another, and inertial forces are negligible compared to viscos forces ).
Laminar flow prevails in silts and finer materials for any commonly occurring
hydraulic gradients found in nature. In coarse sands and gravels, however, hy-
draulic gradients much in excess of unity may result in nonlaminar flow condi-
tions, and Darcy's law may not always be applicable. In flow through conduits,
the Reynolds number ( Re ), a dimensionless number expressing the ratio of iner-
tial to viscous forces, is used as a criterion to distinguish between laminar
flow and turbulent flow. By analogy, a Reynolds number is defined also for flow

through porous media:

R = v*d/v (2.12)
e

where v¥* is the mean flow velocity, 4 the effective pore diameter, and v is the
kinematic viscosity of the fluid.
The limit can be found by plotting the dimensionless fanning friction fac-

tor f, used in hydraulics, against Re' The factor f is defined by

§ = —dbp ' (2.13)
2va*2
where Ap 1s the pressure difference over a length of porous media, L measured
along the line of flow and other quantities are as defined above. Data from sev-
eral investigations are plotted in Fig.2.l. Departures from a linear relation-
ship appear when Re reaches the range between about 1 andlié, thus indicating

an upper limit for the validity of Darcy's law.

If we take v=0.018cm?/sec ( for water ), then

v*d < 0.018 ~ 0.18 (2.14)
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where v* is expressed in cm/sec , d - in cm next, we take d=0.1 cm, then

v¥ < 0.18 ~ 1.8 (cm/sec) (2.15)
10°
N
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Fig.2.1 Relation of fanning friction factor to Reynolds number for
12)

flow through granular porous media
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this means used Darcy's law, then,

vk = K gz < 0.18 ~ 1.8 (cm/sec) (2.16)
when we take K=1.0%x10"2cm/sec

9h

5 < 18 ~ 180 (2.17)

this values are very large hydraulic gradient, and Darcy's law can be employed
in the vast majority of cases concerning the flow of water in soil.

On the contrary, for very low velocities, some investigators ( Swartzen-
druberiié62), Miller and Low%fg63) ) have claimed that, in clayey soils, low hy-
draulic gradients may cause no flow or only low flow rates that are less than
proportional to the gradient, while others have disputed some of these findings
( Olsen(196;;)). A possible reason for this anomaly is that the water in close
proximity to the particles and subject to their adsorptive force field may be
more rigid than ordinary water, and exhibit the properties of a "Bingham liquid"
( having a yield value ) rather than a "Newtonian liquid." The adsorbed, or
bound, water may have a quasicrystalline structure similar to that of ice, or
even a totally different structure. Some soils may exhibit an apparent "thresh-
old gradient," below which the flux is either zero ( the water remaining appar-
ently immobile ), or at least lower than predicted by the Darcy relation, and
only at gradients exceeding the threshold value does the flux become proportion-
al to the gradient Fig.2.2.

Finally there seem to be a very important hydrological problem that may re-
quire the application of the Darcy's law to the flow in unsaturated soils. For
the above problem, an experiment for the direct verification of Darcy's law in

16)

unsaturated materials has been carried out ( Childs and Collis-George,1950 ).

They devised a method whereby the moisture content and suction down a long column
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Fig.2.2 Possible deviations from Darcy’s law at low gradients

of porous conductor were uniform, the potential gradient being due solely to the
gravitational component. Various magnitudes of potential gradient were imposed

by suspending the column at various angles of inclination to the vertical. From
the results it could be safely inferred that the rate of flow for a given degree
of saturation was proportional to the potential gradient; as in the case of sat-
urated materials. Thus if may be possible to assume that the Darcy's law is ap-

plicable to unsaturated flow in anisotropic media in the form:

v, = "Kij (lp) P

oh (2.18)
1 X,
J

where vy is the (volumetric) flux (volume of water per unit area unit time),
Bh/Bxiis the hydraulic head gradient, which may include both suction and gravi-
tational components and Kij is a function of the pressure head (y) or a function
of the volumetric water content (6), and not a constant, as in saturated flow.
Eq.(2.18) is sometimes called the Richard's equation, because Richa%gg has shown
firstly that the modified Darcy's law applies to unsaturated soils. Miller and
Miller (lggiﬁlilint out an important difference that since the moisture charac-

teristic is subject to hysteresis, the pressure head (or suction) () is not uni-

quely related to the volumetric moisture content (0), for it depends also upon
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the history of wetting and drying by which that volumetric moisture content
is reached.

However, the relation of hydraulic conductivity (sometimes called capil-
lary conductivity) to volumetric moisture content Kij(e) is affected by hyste-
resis to g much lesser degree than is the Ki.(W) function, at least in the
media thus for examined (Topp and Miller, 1966). Thus, Darcy's law for unsatu-

rated soil can also be written as

(2.19)

d3h
Vi T _Kij(e) 3%,

which, however, still leaves one with the problem of dealing with the hysteresis
between Y and 6. A more complete review of this problem will be brought at a

later chapter of this research.

2.3 Equation of Continuity

In trasient groundwater motion, the distribution of potential within the
flow region undergoes continual change with time. The nature of the time-
dependence of conservation of mass, subject to the constraints of the equations
of motion and of state. The conservation law as applied to fluid or heat
transfer is also known as the equation of continuity.

Consider a finite subregion of the flow region as depicted in Fig.2.3,
Under transient conditions of flow, water enters and leaves the flow region at
different rates at different parts of the enclosing surface (control surface).
The amount and identity of matter in the control volume may change with time,
but the shape and position of this volume remain fixed. The special case, when

the inflow exactly equals the outflow so that there is neither a mass excess
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Fig.2.3 Fluxes crossing boundary surface of an arbitrary

subregion of the flow region

nor a mass deficiency, is the phenomenon of steady state flow. Since mass can
neither be created nor destroyed, the mass condition has to be adsorbed into or
released from the particular small part of the flow region under}consideration.
The equation of continuity, then, is a statement, equating the summation of

the rates at which mass enters or leaves the control volume of the flow region
and the rate at which mass is absorbed by the subregion. According to Sokolnikoff

21)
and Redheffer (1966), the law of conservation of mass can be stated as

J Ven dd = J div V av (2.20)
S v
where V is the velocity of the fluid
>
n is the unit normal
S is the control surface

and d§ is the differential surface area. Physically, the right hand side of

- 38 -



Eq. (2.20) amounts to dividing a finite region S into a large number of small
voume elements and summing up the rate of fluid increase in each elemnt in
order to obtain the overall fluid mass increase in V. The left hand side of
Eq(2.20) simply states that the fluid excess arising out of trasient flow of
fluid across control surface (left hand side of Eq.(2.20)) is accommodated by
an equivalént increase in the fluid conteﬁt within the element (right hand side
of Eq(2.20)). This is but a restatment of the conservation equation. Note
also that the left hand side of Eq(2.20) is the cause and the right hand side
is the effect.
17)

In soil physics literature, Richards (1931) was probably the earliest to

express the equation of continuity for transient soil water movement in the

form of a parabolic, partial differential equation. Familiarly known as the

Richard's equation, it can be written in cartesian coordinates as,

3
TG (2.21)

-divpV = —_V)‘DV =

+ ry
where p is the density of water, V is specific flux or Darcy velocity vector
and 0 is the volumetric moisture content, defined as the volume of water per
unit volume of soil. In Eq.(2.21) the density of water p is assumed to be inde-

pendent of space and time, Eq.(2.21) reduced to,

- aid = 7 = 2 (2.22)

which is also an expression of the conservation of mass.
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2.4 Governing Equation of Flow in Porous Media

In practical problems of fluid flow in porous media, the most easily
measured physical parameter is the fluid potential. Also, in itself, the
variation in fluid potential is a phenomenon of considerable interest in
studying flow through porous media. Hence, in the practical use of Eq. (2.
22), it is convenient to make fluid potential the dependent variable. Thus,

substituting Eq.(2.19) into Eq.(2.22), assuming that x, is a constant

3
during the time interval
9
div K(8) Vh = —(8) (2.23)
Eq. (2.23) is the governing equation for flow through porous media.

Rewriting Eq.(2.23) in the cartesian coordinate and in the tensor

notation, one has

98

8 _ _3_ _96 2.24
ot - ox, [ D(6) o, + K;300) ] (2.24)

(i,j = 1,2,3)

22
which is the so-called diffusion equation derived by Klute, ) and

- 3 :
D(8) = Ky, (B)—55 (2.25)

where D(B) is the soil-moisture diffusivity in soil physics literature.

It may be appreciated that 3y/386 is a measure of the storage properties of
the geological material and is the first derivative of the pressure head, V,
to the increment of the volumetric moisture content, 6. The functional re-
lationship between | and 6 (so-called water retention curve) is shown in Fig.
2.4. As seem from Fig.2.4, the moisture content 8 tends to become constant
which is equal to porosity of soil, n, as soon as w>wcr, i.e., when the
suction is less than the air entry value (wcr) and D becomes essentially
discontinuous as 9Y/d0 + © ., Therefore Eq(2.24) cannot be used for the satu-

rated zone. With this equation, since the movement of water in unaturated

- 40 -



(Unsaturated zone)
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Fig.2.4 Variations in the moisture content

zone must be distinguished from the movement of water in saturated zone, it

is quite inconvenient to solve the problem such as advancement of wetting

front in the saturated - unsaturated soil media. Although Eq.(2.24) has been
22)23)24)

used quite often in the flow analysis, solutions are obtained only in the

problems for unsaturated zone.

Meanwhile, it is known that the volumetric moisture content 8 is ex-

pressed as

©=mn§ (2.26)

where n is the porosity of soil and Sw (OSSwil) is the degree of saturation.

Choosing { as only one dependent variable and applying the chain rule of
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differentiation to the time derivative on the right hand side of Eq.(2.23),

Eq.(2.23) can be transformed to the following equation.

div KWV ¥ + x5 ) 33 (ns, )

-4 L
Ty (n Sw ) ot
ds
- dn 2 31{) 227
[Soq Y3 ! o (2.27)
The two terms on the right hand side of Eq.(2.27) denote two distinct physi-

25)
cal phenomena. The first term represents the deformability of the soil

skeleton which is anologous to the cosolidation problem wxpressed by Biot's
equatijf? This term is usually ignored in the problems of flow through porous
media by assuming that the porous media is rigid. Here we consider that the
soil medium is slightly compressible and also includes the last term which
represents the desaturation of the pores, that is, the capacity of the soil
to absorb or release moisture due to saturation changes.

Assuming that the porosity n does not change due to the variation of

pressure Y in unsaturated zone, Eq.(2.27) may be resuced to:

a .
aiv KW ¥ (¥ +xs ) = (CW) + 85, ) 5=+ (2.28)
where (
0 : Unsaturated zone
B =
| 1 : Saturated zone

where Ss denotes the speeific storage(defined as the volume of water instantane-
ously released from storage per unit bulk volume of saturated soil when P is

lowered by one unit ), C (¢) is the specific moisture capacity (defined as
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d6/dy ) and S is a sink or source term. In Eq. (2.28), the advantage Seing
that C(y) remains finite throughout the range of flow.

C(Y) attains a maximum value in coarse sand, near the air entry value
(wcr),where large changes in 6 occur at small changes of Y. It vanishes at
suction smaller than the air entry value or for w>¢cr (loosely called, "at
saturated soil").

Clearly Eq.(2.28) has the advantage over Eq.(2.24) that is applied for
the whole flow region, including saturated and unsaturated flow. So Eq.(2.28)
is called "the governing equation for saturated - unsaturated flow through

porous media."

2.5 Initial and Boundary Conditions
The supplementary information that, together with the partial differen-
tial equation, defines an individual problem should include specifications of:
(a) the geometry of the domain in which the phenomenon being considered
takes place,
(b) all physical coefficients and parameters that affect the phenomenon con-
sidered (e.g., medium and fluid parameters),
(c) initial condotions which describe the initial state of the system con-
siderd,
(d) the interaction of the system under consideration with surrounding

systems, i.e., conditions on the boundaries of the domain in question.

2.5.1 Initial condition

Let us now consider the surface integral in Eq.(2.28). At any instant of
time to’ there is an initial distribution of wo within the flow region bound-
ary by the surface S. This region may be a part or all of the flow region.
This distribution of wo forms the initial condition for the transient fluid

flow problem.
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V(=0 =y Cx; ) | (2.29)

2.5.2 Boundary conditions

The folw region as a whole communicates across its boundaries with its
surroundings. The nature of this communication is reflected in the conditions
that exist on the houndary of the flow region. The natures of these conditions
are termed boundary conditions and, in general, these are four types. In addi-
tion, there many exist '"mixed boundary conditions" of special types, which will

be omitted for the present.

a. No-flow boundary

When no fluid enters or leaves the flow region across its boundary, the
boundary is called a no-flow boundary. In fluid flow, an impermeable barrier or
a plane of symmetry of flow is an impermeable boundary. Mathematically, this is
identical to the condition that there is no gradient in potential across this

boundary and hence,

-« Kij(w)—gy}:—-+ R;s ) my =0 (2.30)
3

in which o denotes the nomal to the boundary.

b. Prescribed flux boundary

It may so happen that the flow region receives fluid from or discharges
fluid to its surroundings at a known or prescribed rate. For example, a soil
may be receiving rainfall infiltration at a constant rate or a well may be dis-

charging the flow region at a constant or variable rate. Such a condition is
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known as a prescribed flux boundary condition. Mathematically, this amounts
to saying that, for a unit surface area of the boundary, Bh/BK is known, and

hence,

( Kij(w)—%gg— + K3 ) = -v(x,,t) (2.31)
Such a condition is called a Neumann problem in potential theory. Indeed, the
no flow boundary condition, (a), can be considered as a special case of
Neumann problem.

c. Prescribed potential boundary

The third type of boundary condition arises when the flow region inter-
acts with a very large reservoir of the fluid and receives fluid from or dis-
charges fluid into this practically infinite reservoir. In this case, the
potential on the boundary will be determined by the fluid potential in the in-
finite reservoir, which may fluctuate in time in a known, hence,

bx,t) = by (x5, 1) (2.32)

This type of boundary condition is called a Dirichlet problem in potential
theory.

In most problems of practical interest different parts of the boundary
of a flow region may experience different typea of boundary conditions and thus

these problems are mixed initial-boundary-value problems.

d. Seepage faces

A seepage face is an external boundary of the saturated zone where water
leaves the system and Y is uniformly zero as shown in Fig.2.5. Under transient
conditions, the length of the seepage face varies with time in a manner that
cannot be predicted a priori. If one treats the seepage face as a prescribed

pressure head boundary with =0, the length of this face remains fixed, and

- 45 -



this is contrary to the reality of transient flow. On the other hand, the see-
page face cannot be treated as a prescribed flux boundary because the values of

Q are generally unknown there.

Free surface

Seepage face(h=x3)

Av4
k3
Downstream

reservior

V=44

Fig.2.5 Seepage face

Along the seepage face, water emerges from the porous medium into the ex-
ternal space. The emerging water usually trickles down along the seepage face.
(Fig.2.5). The seepage face is part of the boundary of the phreatic flow domain,
Its geomeﬁry is generally known, except for its upper limit, which is also lfing
on the (g priori) unknown free surface. The location of this point is, therefore,
part of the required solution.

The seepage face is exposed to the atmospheric pressure (neglecting the
thin layer of water flowing above it). Actually, in order for water to emerge

from the porous medium domain, the pressure just inside the boundary should be
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somewhat higher than atmospheric. With y=0 along the seepage face, the bounda-

ry condition is described as

h = x3 on Se (2.33)

2.5.3 Sources and Sinks

In addition to the movement of fluid that is caused by the initial and
boundary conditions, fluid may be arbitrarily extracted from or added to the
flow regidn at one or more locations. Such locations, usually of very small
or infinitesimal spatial extent are called sinks or sources. Sources and sinks
materially affect the mass balance expressed by Eq.(2.28). Hence their effects

would have to be duly incorporated into Eq.(2.28), as will be done subsequently.
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CHAPTER 3

FINITE ELEMENT ANALYSIS OF FLOW IN SATURATED-UNSATURATED SOILS

3.1. Introduction

The application of the finite element method to flow analysis problems
is a relatively recent development but, nevertheless, a significant litera-
ture on the topic has already emerged.

The finite difference method has been mainly used before the develop-
ment of the finite element method in solving the flow problems numerically.
One might reasonably inquire what advantages the finite element method has
when compared with the finite difference meéthods. For simple regular mesh
networks, the difference equations derived by the two methods are identical.
However, for certain complex problems, the finite element method has several
advantages. Boundary conditions are handled naturally by the method in con-
trast to the finite difference method, where special formulas have to be de-
veloped for the boundaries in many instances. The mesh size can be varied
readily. Small elements may be used in areas of rapid change and large ele-
ments may be used where variations are less severe. Also the presence of in-
homogeneities and anisotropy is taken into account quite easily.

Although a lot of seepage flow problems have been solved by the finite
element method, most of ghligare merely concerned with ground water in the
saturated region, so that the unsaturated region (capillary zone and absorbed
water zone) above the free surface is not considered in the calculation. In
the movement of the ground water the water content and permeability of the
unsaturated region usually play very important roles as well as the storage
coefficient and permeability of the saturated region. Particularly in analyz-
ing the problems of the free surface change due t& the water rising or infil-

tration of rain fall, the method which is merely concerned with the saturated
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region may not be possible to obtain the satisfactory results.

Problems of seepage in the unsaturated region lead to quasilinear partial
differential equations that are extremely difficult to solve by analytical
methods. Only one-dimensional flow problems were solved by Younz; and Phili;.
Many attempts to solve these two- or three-dimensional equations by the finite
techniques have been reported in the literatizg? The finite element method was
first applied to problems involving saturated-unsaturated flow in porous media

7)8)
by Neuman but not many researches have been done yet.

Boundary conditions in the form of prescribed heads and non-zero quality
of flow can be dealt with easily in the conventional finite element formulation.
However, more difficult circumstances arise when there is a free surface in the
unconfined flow problem. Free surface for steady flow is determined usually by
using iterative procedures. The location of the free surface is first guessed
and then modified successively on the basis of the values of fluid heads com-
‘puted at each step of iteration, and the procedure is carried out until the
movements of the free surface become essentially negligible. Location of the
transient free surface is more difficult and a number of procedures have been

1)2)
proposed.

But, these methods have fundamental limitations in determination of free
surface. The first limitation is that it is impossible to solve the behaviors
of flow through an earth dam when water raised at the upstream side in the case
which there is no saturated zone at the bottom of earth dam or bank. It is the
reason that these methods, as indicating above, treat the ground water in the
saturated region, so that only the saturated region is divided into finite ele-
ments.

The second limitation is that it is impossible to solve the behavior of

flow in an inhomogeneous domain, such as illustrated on Fig.3.1(a). In this

case, for example, one solved after these method the change of transient flow
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pattern due to the sudden drawdown on the righthand side. The result must be-

come as shown in Fig.3.1(b).

Material 1 _.-7 Sudden fall ="~
in water level

/ 7777777 3
'/ Material 2 ///m Prs
LLLLLL L PPTad
Material 3
T

Fig.3.1(a) Flow in an inhomogeneous domain

Fig.3.1(b) Result of calculation of Fig.3.1(a)

This result is distinctly in error at the point that the geological conditions
are changed in the coordinates. This error is caused by the method of deter-
mination of free surface after these method.

On the other hand, the finite element method with saturated-unsaturated
flow does not recognize this cumbersome difficulty and can easily handle ir-
regularly shaped flow region. A general procedure proposed by Neuman shows that

the so-called free surface is located by finding points where the pressure
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head vanishes and the surface of seepage is handled by a special iterative
method. With this method one will be able to have a clue to solve the problems,
which are almost impossible to be solved by the conventional method, such as
behaviors of flow through an earth dam when water raised at the upstream side,
flow through an embankment when the water level of a river changed and ground
water level fractuation due to water injéction to a well.

In this chapter, finite element method will be used to solve the initial-
boundary value problems of saturated-unsaturated groundwater motion in two-di-

mensional, axisymmetric and three-dimensional region.

3.2 Two-Dimensional Finite Element Analysis

3.2.1 Application of Galerkin method
Variational and weighted residual methods have been employed commonly for
arriving at a finite element representation. Variational procedures were pri-
marily used in the initial stages of the finite element method. However,
weighted residual procedures, particularly the Galerkin method, have been found
to be more general for the flow problem which is governed by hon—linear equa-
tizii?) The possible advantage of such methods is that:
(a) The search for a 'functional' equivalent to the known differntial equa-
tion is made unnecessary. A
(b) That the methods can be extended to a range of problems for which a
'functional' may not exist, or has not been discovered.
These approaches will be outlined here. Let us consider a.problem of solv-
ing approximately a set of differential equations which the unknown function{¢}
has to satisfy in the region V.

The governing equation will be written as

Al =0 | (3.1)
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and its boundary condition as

c ({¢e})=0 ' (3.2)

this having to be satisfied on boundary S.
If a trial function which satisfies the boundary conditions is written in

the general form
{3, = [ N 1{¢} (3.3)

in which, as before, [N] are prescribed functions of co-ordinates and {¢} is a

set of n parameters, then in general
AC{el,)=Rr#0 (3.4)

The best solution will be one which in some sense reduces the residual R to a
least value at all point of V.
An obvious way to achieve this is to make use of the fact that if R is

identically zero everywhere, then

J WRAV = 0 (3.5)
\'

where W is>any function of the coordinates. If the number of unknown parameters
{¢} is n then if n, linearly independent, functions Wi are chosen we can write

a suitable number of simultaneous equations as

Qn(Q) = vaiadv = JWiA([ N ]{éhHav =0 (3.6)

from which {®} can be found. In other words, the function Qn(®) must vanish for

each value of n. W, is the weighting function.

i

Galerkin method is that the weighting function is made equal to the shape
function defining th approximation, i.e.,Wi=Ni. This process leads in general
9)

to the best approximation.

Eq.(2.28) is a non-linear differential equation, in which Kij and C are
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dependent upon the unknown parameter Y. And the finite element formulation of
this equation may be done most easily with the Galerkin method.

Rewriting Eq.(2.28) in the vector form, this equation becomes,

VeAVh - a—%%— =0

(3.7)
where
A =K®)
B=C@) + BSS
h =y + x;
Initial and boundary conditions are also rewitten asbfollows;
(A) Initial condition 1
h(xi,O) = HO(xi)
(B) Boundary conditions
(a) Prescribed head boundary > (3.8)

h(x;,t) = B (x,,t)

(b) Prescribed flux boundary

dh
5 = V(xt)

on J

. S
where HO’ Hb’ V are prescribed functions and n is the unit outer normal vector.

3.2,2 Formulation by weighted residual procedure

At the beginning, one chooses a trial function h which satisfies the given

initial and boundary conditions as follows.

h(x;,t) = N_(x;)h_(t) (0=1,2,++) (3.9)

where N (xi) is a set of linearly dependent coordinates functions and hn(t)
n
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are time-dependent coefficients yet to be determined.
Since Eq.(3.9) may not completely satisfy Eq.(3.7) with Eq.(3.8), substi-

tution of Eq.(3.9) into Eq.(3.7) may produce a residual R such as

9 -
'v’oA‘v’(Nn(ximn(t)) - Bo—(N_(x)h_(t)) = R (3.10)

In order to find the best solution, one must choose a trial function h such
that the residual R vanishes everywhere in the flow domain.
Following the weighted residual procedure, integration of Eq.(3.10) over

the entire flow domain V with a set of weight functions wk(xi) yields

3 =
vak(xi)RdV = vak(xi)[?7-A’v’{Nn(xi)hn(t)} - BN (x)h (£)}]dV = 0 (3.11)

Since the Galerkin method sets the weight functions Wk(xi) equal to the shape

functions Nk(xi); Eq. (3.11) becomes

J Nn[ii-Aiithm - B——a—z—(thm)]dV =0 (3.12)
v .

11)
By using Green-Gauss theorem,

aN_h
AN UN h +ndo + | BN —=24V = 0 (3.13)
n m m n t

S \' 8

jVA‘v’Nnﬁthmdv - {

where the entire flow domain is discretized into N elements of the finite ele-
ments of the finite element mesh, Eq.(3.13) is also applied to the each element

(Vi) of the mesh, i.e.,

e
e e, _ e T ¢ - B—2 T Jdv (3.14)
Vn(thm) " J eNn[ v A§thm ot
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For the entire flow domain,

N 3N h .

o[ J AVN +UN h dV + J BN —20 gy - § AN VN hendo ] = 0 (3.15)
i n m m i'n ot in m

i=1 v, v, 5

At this moment, we define the permeability tensor Kij(w) as
s
K.. =
13 W) = KK W) (3.16)
where Kij is the permeability tensor at the fully saturated condition, Kr(w) is
a function of pressure head Y or a function of volumetric moisture content 6
and OfKrfl. In saturated region, Kr becomes 1.

It is assumed that the permeability tensor (Kij) and the specific storage

(Ss) are constant in each element while Kr(W) and C(Y) vary linearly according to

_ ,r.e

Kr = K£N£ (3.17)
_ e

C = CQNQ (3.18)

where ¢ stands for the corners of the triangle as shown in Fig.3.2.

2.p

Fig.3.2 Single triangular element

For a triangular element as shown in Fig.3.3, Eq.(3.15) is deduced to a

set of quasilinear first-order differential equations
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ay
Anm‘pm * an at Qn - Bn - Dn mm o= 1,2, 0,N

(3.19)

Fig.3.3 Two-dimensional triangular elements

where, for a vertical cross-section described by the coordinates X, and x,,

e e

N rs e BNn BNm
I K K..J N o———dV
e=1 2713 ve 2 Bxi ij

>
]

nm

o
4A

5 % s + &5 s
: r[ Kiib b K13(anm+men) + K3sc ¢ ]

(3.20)
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N
e .e e
F =ZJ(CNN + N RS )dVv
nm o=1 Ve 2% n n s
) 48s_ 1 (n=m)
= +C 4+C + S : n=m
) 12[(ZCnCp q) Bs
¢ (3.21)
=0 :  (ofm)
N N
Q = -z§ VNSdo = -Ia (L—‘Z’)“— (3.22)
n e e n e
S
N aN¢
B = I KK, J N; 5 04y = & ‘; K" ( K?abnﬂ(?acn ) (3.23)
o e=1 Lis Ve Xi e
e
Pn = EJ eSNndV (3.24)

v

where bn and c, are the values dependeqt on coordinates. The subscripts n, p, q
refer to the three corners of each triangle as shown in Fig.3.2, A is the area
of the triangle, o=1 for plane flow, K' is the average relative conductivity
given by ir= (K£+K;+K;)/3. The term (LV)n represents the flow rate across any
side of the triangle, of length L, which includes nodal point n, V is assumed

to be uniform along L.

3.2.3 Integration over time

The matrix differential equations obtained in the previous sections are of
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a type in which specified values of the functions and, when necessary, of its

first time derivatives at the start, uniquely define this function throughout

the time interval.

Such a category of problems known as 'initial value' or 'marching' can be

solved by writing suitable recurrence relations.

process allows a full solution of the problems.
The recurrence relation can be established

a finite difference scheme may be used directly

From these a step-by-step

in different ways. For instance,

or the Glerkin weighted residu-

al process applied within each interval. However, since general use of the sec-
ond process will require further studies, the conventional semidiscretization
procedure, i.e., finite difference is adopted to integrate Eq.(3.19) in time
domain.

If the entire flow system remains unsaturated at all times, good results

12)
can be obtained by employing the time-centered scheme (Crank-Nicolson scheme),

1
- 2Qk+ /2

1 1
kt'/o okt /2
k nm n n

- 2B
n

At

k+1/, 2 _k+'/a  ktl
(a '+ F o

-( A

1 1
k+ /2_ Zk Fk+ /z)lj)k
nm I i o

(n,m=1,2,°*°N) (3.25)

k+1

and At=t —tk. In order to evaluate the coef-

§+1/2 at tk+1/2=tk+Atk/2.

where k represents the time t=tk
ficients in Eq.(3.25), one must know the values of {
At the beginning of each time step, these are predicted by linear extrapolation

from previously calculated values according to

X _
k+'/o ok, At ok k-1 .
U R e (¥ =¥y ) (3.26)
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The resulting set of simultaneous linear algebraic equations is then solved by

9)
a highly efficient Gauss elimination method for the values of wﬁ+l at all nodes.

Due to the nonlinear nature of Eq.(3.25), these results must be improved

by an iterative process. At each iteration, the most recent values of wﬁ+l are
used to obtain an improved estimate of wﬁ+l/2 from
k+i/y _ k k+1
vy =1/2Cy_+¥ ) (3.27)

After having reevaluated the coefficients, the equations are again solved by
Gauss elimination for improved values of wi+l. The iterative procedure contin-

ues as long as it is necessary to achieve a satisfactory degree of convergence.

If apart of the system is saturated and SS in this part is zero, the values
of an corresponding to nodal points in the saturated zone vanish because C is
zero, and the governing equations there become elliptic. This means that sudden
changes in boundary conditions around the saturated zone have an instantaneous
effect on the values’of y everywhere in this zone, and y is no longer a conti-
nuous function of time. For example, by imposing a certain bouhdary condition at
time t=tk, all values of Y in the saturated zone change instantaneously and the
values of wi at the start of the time step, Atk, become unknown. Thus, the
right-hand side of Eq.(3.25) is unknown, and the equations cannot be solved.

To overcome this problem, one must adopt a fully implicit backward differ-

ence scheme in terms of y,

1 1 1 1 1
( P Sar R N S yoktL o gkt 2 _gk+ /2-n§+ lo, _1_ght'/zk
m

nm At nm n n Atk nm m

k

(3.28)
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3.2.4 Treatment of seepage faces

A seepage face is an external boundary of the saturated zone where water
leaves the system and y is uniformly zero. Under transient conditions, the
length of the seepage face varies with time in a manner that cannot be predict-
ed a priori. If one treats the seepage face as a prescribed pressure head bound-
ary with Y=0, the length of this face remains fixed, and this is contrary to
the reality of transient flow. On the other hand, the seepage face cannot be
treated as a prescribgd flux boundary because the values of Qn there are gener-
ally unknown. How, then, should a seepage face be treated?

The inherent difficulty in treating seepage faces has been overcome in the
present work owing to the ease with which prescribed pressure head and prescrib-
ed normal flux boundary conditions can be assigned at each node with the finite
element method. The proposed iterative procedure would be quite cumbersome to
use with conventional finite difference techniques, particularly in anisotropic
media with irregularly shaped seepage faces, because prescribed flux boundaries
are relatively difficult to handle.

Reference is made to all nodes which, at any stage of the calculation, can
belong to a given seepage face by having zero values of wn and negative value
of Qn ( recall that Qn is negative when the flow at node n is directed out of
the system ). Suppose that, knowing the position at time tk+1. During the first
iteration, Y is set equal to zero along the initial length of the seepage face
and the latter is treated as a prescribed y boundary. At the same time, Q is

set equal to zero at all nodes with P<0 and this segment is treated as a pre-

scribed flux boundary. The solution is expected to yield negative values of Q
at nodes where Y is prescribed to be zero, and negative values of } at nodes

where Q is prescribed to be zero. If, instead, a positive value of Q is encoun-
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tered at a node where =0, the value of Q there is set equal to zero and, in
the next iteration, this node is treated as a prescribed flux boundary.

On the other hand, if a positive value of Y is encountered at a node where
Q=0, the value of Y there is set equal to zero and, in the next iteration, this
node is treated as a prescribed pressure head boundary. Experience has shown
that in order for the solution to converge, this modification of the boundary
conditions should always proceed sequentially from node to node, starting at the
saturated end of the seepage face.

In addition, after having set Q equal to zero at any node during a given
iteration, Q at all the subsequent nodes must also be set equal to zero. The
iterative process continues in the manner described earlier until a sufficient
degree of convergence is achieved at each node in the network.

It shoud be noted that due to the ease with which prescribed flux boundary
conditions are treated in the finite element method, the handling of seepage

faces is considerably more simple than in the finite difference approach.

3.3 Axisymmetric Finite Element Analysis

3.3.1 Finite element discretization

The application of the finite element method to certain axisymmetric satu-
rated-unsaturated flows through porous media is presented in this section. The
typical problem of radial flow to a well penetrating an unconfined aquifer is
shown in Fig.3.4. The formulation of the general axisymmetric flow problem us-
ing finite element analysis will first be discussed, after which the approach

will be used to solve the axisymmetric flow to a well.
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Fig.3.4 Flow through an unconfined aquifer to a
well with storage

The physical situation is one of three-dimensional flow with axial symme-
try. Thus, cyiindrical coordinates are the natural selection. The medium will be
devided into concentric rings of constant triangular cross-section in the axi-
symmetric case ( Fig.3.5 ). In this case, the solution will be a function of
only two space coordinates, r and z. As shown in‘Fig.3.5, A represents the
cross-section of an axisymmetric annular element of volume V, then, the func-
tions Nn for any given element remain independent of the position of this ele-
ment. The integral of NmNn over the volume of the element in Eq.(3.20) can

therefore be written as

2
= Tdo = 2mr| N N dA
J Nndev = J [ J NndeA ]rd6 ZNrJ o (3.29)
A 0 A A
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Fig.3.5 Axisymmetric element with constant
triangular cross-section.

where r is the average value of r for the triangle

= _Iitrotrsy ' (3.30)

r 3

this becomes simply

if n#m

J N N dV = (3.31)
yoom

(2mT)2.—2- if n=m

then, the finite element analysis for axisymmetric flow is simply formulated by

using the factor a=27mr in Egs.(3.20),(3.21),(3.22) and (3.23).
3.3.2 Axisymmetric flow to a well
When a. well has been completed in an unconfined aquifer and discharges at

a rate Qp(t), flow into the well bore is not uniform along its length. As shown
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in Fig.3.6, the boundaries alongvthe well bore consist of an upper segment (I';)
across which no water can flow into the well due to the unsaturated state of the
porous medium, a seepage face (S), and a boundary (I';) where the total head at
any instant of time is uniform and equal to the elevation of the water level,
L(t). The total discharge from the pump, Qp(t), consists of two components, the
discharge from the aquifers into the well, QA(t), and the amount of discharge

contributed from well storage.

Qp (¢)

£

119} Water table

Le)f | ¢

i
D S
¥
>O
~
~

r

i

T T T YT P T T T Ty T Y T T TT Iy T YT T YT T T TTTTITTY
r

Fig.3.6 Diagram of well in unconfined aquifer.

If one assumes that L, Qp, and QA vary linearly during each time step, then

a material balance calculation for the well leads to

1 1
o= —AE (g (3.32)
,n(r2_r2) P
w t

where AL is the change in the height of the water level in the well during At,
T, is the effective radius of the well, and r, is the outside radius of the pro-
duction pipe.

The total discharge from the pump can be regulated at the ground surface
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by controling the capacity of the pump. In this case, Qp(t) is a prescribed

function of time and Eq. (3.32) involves only two unknowns, AL and Q§+l/2.
During each time step, an estimate of AL for the first iteration is ob-
tained from Eq.(3.32) on the basis of Q§+l/2 and Q§+1/2, and ngi/z in Eq. (3.

33) below is set equal to Lk. The average value of the water level in the well
for the time step is then adjusted according to

1 1
e o K+,

k
new o1d T 1-2) @ +L) 0.5<X<1 (3.33)

where A is an under-relaxation factor. Experience has shown that A should in-
crease as QA approaches Qp and should usually exceed 0.7. During subsequent it-
erations, Eq.(3.32) is used repeatedly with Eq.(3.33) until a desireq degree of
convergence is achieved for wn at all nodes. At the end of the time step, the

kt+1/2

k+
value of L 1 is calculated as Lnew + AL/2.

3.4 Three-Dimensional Finite Element Analysis
3.4.1 1Isoparametric elements

In sections 3.2, 3.3,emphasis was placed on the solution of the relatively'
simple two-dimensional problems. However, the method is equally applicable in
the more important field of three-dimensional flow. The purpose of this section,
therefore, is to consider the extension of the finite element method so that a
general three-dimensional saturated-unsaturated aquifer system can be consider-
ed. Three-dimensional problems embrace clearly all the practical cases, though
for some, the various two-dimensional approximations give an adequate and more
economical 'model’.

The simplest two-dimensional continuum element in sections 3.2, 3.3 was a

triangle. In three dimensions its equivalent is a tetrahedron, an element with
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four nodal corners. But a difficulty not encountefed previously is presented.
It is one of ordering of the nodal numbers and, in fact, of a suitable repre-
sentation of a body divided into such elements. It is immediately obvious that
the number of simple tetrahedral elements which has to be used to achieve a
given degree of accuracy has to be very large. This will result in very large
numbers of simultaneous equations in practical problems, which may place a se-
vere limitation on the use of the method in practice. Further the band width of
the resulting equation system becomes large leading to big computer storage
requirements. Therefore, in case of three-dimensional analysis, isoparametric
element is adopted to reduce total computations and data preparation effort. A
detailed formulation of the complete family of isoparametric elements is given in

9)13)
the text by Zienkiewicz. Then, only the essentials will be summarised in this
section as the element characterictics are later utilized for computing the
problem of saturated-unsaturated flow.

The volume defined the flow domain is first subdivided into a number of
elements interconnected at a discrete number of points or nodes. In this study
cubic isoparametric elements shown in Fig.3.7 are used as these can if desired

14)
permit close approximation to curved surface. Let the variable ¥ throughout the

domain be approximated by:

i=n ,
Y= iilNiwi (3.34)

in which Ni are the appropriate interpolation functions defined piecewise ele-
ment by element, wi are the nodal values of ¥ in the discretised domain and n
is the number of degree of freedom.

These are the very same methods as using in section 3.2 to formulate the
governing equations into finite element discretization except for adoptting ele-
ment shape functions (or interpolation functions).

Consider the cubic isoparametric element shown in Fig.3.7 with positions
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Fig.3.7 Three-dimensional continuum element node numbering
convention

defined within it by curvilinear co-ordinates r, (which take up values of +1 on

opposite faces). Let these co-ordinates be related to the cartesian x, by expres-—

]
sions:
'i i
{xj} = IN (rk)xj (3.35)
(i=l,2,°°”',21)

where x;isthenodal co-ordinates and N'l(rk) are given by known functions of LW

( the interpolation functions corresponding to node i of element listed in

15
Table 3.1)).

To perform finite element analysis the matrices A.nm in Eq.(3.20), etc.,

have to be found. These will be of the form
'e 1
r.'e BNn aNm e
Em = KijJ KNo 3%, ox, &V (3.36)
Ve i j »

e

in which the expression BN'e/Bx, depends on derivatives with respect to local
n i

co-ordinates.
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Table 3.1

Interpolation function

Ni (1/8)RST
N, (1/8)RST
Ny (1/8)RST

4 (1/8)RST
Ny (1/8)RST
Né (1/8)RST
NJ (1/8)RST
Né (1/8)§ST
Né (lla)fiT
Nio (1/4)§fT
Nj; (1/4)R§T
Niz (1/4)553
Ny (/o
Nié (1/4)5?3
Ny ok
Ni6 (1/4)RSE
Ni7 (1/4)553
Ni8 (1/4)5?3
N, awmE
2%0 (1/4)22;

21

R=1+r

S=1+r

T=1+4r

R=1-1
S=1-r

T-l—r2

ah/arl
(1/8)ST

-(1/8)ST
-(1/8)ST
(1/8)ST
(1/8)ST
-(1/8)ST
-(1/8)ST
(1/8)ST
-(1/2)x ST
-(1/A)sr
-/ ST
(1/a)sr
(1/2)r ST
-(1/6)sr
-2 5T
(1/4)sr
(1/4)sT
-(1/4)sT
-(1/4)5T
(1/4)5T
-( 2 )r1§¥

*
R=1-r

*
S=1-r

WD

*
T=1-r
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3h/8r2
(1/8)RT

(1/8)RT
-(1/8)RT
-(1/8)RT

(1/8)RT

(1/8)RT
-(1/8)RT
-(1/8)RT

(1/4)§r
-(1/2)r RT
-(1/A)RT
-(l/Z)r RT

(1/6)RT
-(1/2)r RT
-(1/4)xr
-(1/2)rRT

(1/4)RT

(1/4)RT
- (1/&)RT
-(1/4)RT
-( 2 )rzif

3h/3r3‘
(1/8)RS

(1/8)RS
(1/8)RS
(1/8)%8
~(1/8)RS
-(1/8)Rs
-(1/8)Rs
-(1/8)RS
(1/4)kS
(1/4)RS
(1/4)8S
(1/4)RS
-(1/4)Rs
~(1/4)FS
-(1/4) 88
~(1/4)RS
-(l/2)r3RS
-(1/2)r3RS
-(1/2)r,%
—(1/2)r RS
-( 2 )r RS



To evaluate this matrices it must be noted that two transformations are
necessary. In the first place as Ni is defined in terms of local (carvilinear)
co-ordinates it is necessary to devise some means of expressing the global deriv-
atives of the type occurring in Eq.(3.36) in terms of local derivatives.

In the second place the element of volume (or surface) over which the inte-
gration has to be carried out needs to be expressed in terms of the local co-or-
dinates with an appropriate change of limits of integration.

Consider for instance the set of local co-ordinates r, and a corresponding
set of globalco-ordinatesxi- By the usual rules of partial differentiation one
can write for instance the r; derivative as

My Ny by N Bxy BN Oxy (3.37)
dr) ~ 3x) dr; " 3x, 9r ~ ox, or, '

Performing the same differentiation with respect to the other two co-ordi-

nates and writing in matrix form one has
. —

— 3 ( 3
Brl Brl , Brl s Brl Bxl Bxl
oON 9x 9x 9x oN oN
43_1 V= a_l 5_2 a_é 4a_iL=[J]<§—i> (3-38)
r, r, , 9T, , Ir, X, X,y
3r3 3r3 s 3r3 . 8r3 3x3 3x3
L J Leee 1 \ J \ P,

In the above, the matrix [J] is known as the Jacobian matrix.

To find now the global derivatives one inverts [J] and writes

( A

Bxl arl

N, 1] Ny (3.39)
1 » = [J] 4 . r

X2 2

3x3 L ar3
L) J
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In terms of the shape function defining the co-ordinate transformation [N'] »

the Jacobian matrix is written

i

oN
[J] = [2—5;;*xj] (3.40)

Here, the Jacobian matrix has the following form:

5 =g i (3.41)
kj _ark i

The inverse of [J] can be found

a -a a
11 21 31
[J]_l = _]_-_ -a a -a (3.42)
17| 12 22 32
a Y %33
13
L |
where
Jl= ( 311322733 + J12J23731 + J13J21732 )
l l (3.43)
- ( J13J22031 + J12J21733 + J11J23732 )
and
J22 J23 J21 J23 J21 J22
ayl = ayz = ays =
J3z2 Js33 J31 Jss J31 Js32
Jiz2 Jis Jir Jis Jin Ja2
azy = azz = azs =
Jz2 J33 J31 Jss J31 Js32
Ji2 Jas Jin Jas Jin Ji2
as) = azz = aszs =
Ja2 J23 J21 J23 J21 J22
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Then the inverse of [J] can be given

17 = [by,] (3.44)

where

By using Eqs.(3.39) and (3.44), it is possible to devise some means of express-

ing the global derivatives of the type in terms of local derivatives:

[ ]
N oN

m m
= [b..] (3.45)
axi ij Brj

Interporating Eq.(3.45) into Eq.(3.36), the integrand in Enm can be expressed

in terms of local co-ordinate.

3.4.2 Numerical integration by Gauss quadrature

The transformation of the variables and region, with respect to which the

integration is done, is achieved by the following

dx,dx,dxs = det[J]dridr,dr; (3.46)

which is valid irrespective of the number of co-ordinates used.
By using the inverse of [J], the evaluation of the element properties has
been reduced to that of finding integrals of the form of Eq.(3.36). By trans-

formation, this can be written as

v '

Jl Jl 1 r'e 3Nn ] 8Nm
E =K., J K N, [b,, 1{—=——t[b., ]{—s—tdet[JI]dridradr;
nm ij 1101 L ik Brk jk ark

(3.47)
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To perform integration of the form indicated in Eq.(3.47), a Gaussian quadrature

scheme is used.

grated exactly

16)
Gaussian point,

Table 3.2

gration.

In this technique a polynomial f(x) of degree 2n-1 may be inte-
as the weighted mean of its Hi particular values of specified

that is,

1 (1 (1
= [ J j f(ri,r2,r3)dridrodrs
-1

-1/-1
n n he} m R i
=% I I umH.Hif(rl,ri,rs) (3.48)
m=1 j=1 i=1 J

shows the positions and weighting coefficients for Gaussian inte-

Table 3.2 Sampling poins and weights in Gauss-

Legendre numerical integration

n ri Hi
2 +0.57735 02692 1.00000 00000
+0.77459 66692 0.55555 55556
3 0.00000 00000 0.88888 88889
+0.86113 63116 0.34785 48451
4 +0.33998 10436 0.65214 51548
+0.90617 98459 0.23692 68851
5 +0.53846 93101 0.47862 86705
0.00000 00000 0.56888 88889

- 74 -



References

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

Tayor,G.S. et al.: Computer methods for transient analysis of water-table
aquifers, Water Reso. Res., 5(1), 1969, pp.l44-152.

Neuman,S.P., P.A.Witherspoon: Analysis of non-steady flow with a free
surface using the finite element method, Water Reso. Res., 6(5), 1970,
pp-889-897.

Youngs,E.G.: Moisture profiles during vertical infiltration, Soil Sci.,

84, 1957, pp.283-290.

Philip,J.R.: The theory of infiltration;l, the infiltration equatioﬁ and its
solution, Spil Sci., 83, 1957, pp.345-357.

Rubin,J.: Theoretical analysis of two-dimentional transient flow of water in
unsaturated soils, Soil Sci. Am. Proc., 32, 1968, pp.607-614.

Freeze,R.A.: Three-dimensional transient saturated-unsaturated flow in a
ground water basin, Water Reso. Res., 7(2), 1971, pp.347-363.

Neuman,S.P.: Saturated-unsaturated seepage by finite elements, Proc.,

ASCE HY, Vol.99, No.12, 1973, pp2233-2250.

Neuman,S.P.: Galerkin method of analyzing non-steady flow in saturated-
unsaturated porous media, Finite Element Method in Flow Problems, edited by
C.Taylor, 0.C.Zienkiewicz, R.H.Gallagﬁer, John Wiley & Somns, Chap.19, 1974.
Zienkiewicz,0.C.: The Finite Element Method in Engineering Science,
McGraw-Hill, New York, 1971.

Finlayson,B.A.: The Method of Weighted Residuals and Variational Principles,
Academic Press, New York, 1972.

Sokolnikoff,I.S. and R.M.Riedheffer: Mathematics of Physics and Modern
Engineering, McGraw-Hill, New York, 1966.

Richtmyer,R.D. and K.W.Morton. : Difference Method for Initial-value

Problems. Wiley-Interscience, New York, 1967.

- 75 -



13)

14)

15)

16)

Zienkiewicz,0.C. et al.: Iso—éarametric and associate elements families for
two and three dimensional analysis, chapter 13, in Finite Element Methods
in stress Analysis, ed. I.Holand and K.Bell, Techn. Univ. of Norway,

Tapir Press, Norway, Trondheim, 1969.

Ergatoudis,J., Irons,B.M. and Zienkiewicz,0.C.: Curved isoparametric,
"quadrilateral" elements for finite element analysis, Int.J. Solids Struct.,
43 1968, pp.32-42.

Bathe,K.J., H.Ozdemir, and E.L.Wilson: Static and dynamic geometric and
material nonlinear analysis, Report No.UCSESM 74-4, Univ. of Calif.Berkeley,
1974.

Zienkiewicz,0.C., and Y.K.Cheung: The Finite Element Method in Structural

and Continuum Mechanics, McGraw-Hill, New York, 1967, p.263.

- 76 -



CHAPTER 4
EXPERIMENTAL STUDY ON DETERMINING UNSATURATED PROPERTY OF SOIL
4.1 Introduction

The hydrologic behavior of soils is to a large extent determined by how
the hydraulic cénductivity of partially saturated soil varies widely as a func-
tion of the volumetric moisture content and/or the pressure head which is also a
function of the volumetric moisture content as shown in Fig.4.1. These proper-
ties of soils must be known if the analysis of finite element method on flow

through porous media is to be applied in field situations.

Pressure head (Y)
Conductivity(K)

Volumetric moisture content

(6)

Fig.4.1 Unsaturated property of soil

Since there is no reliable way to predict these values from more fundamen-

tal soil properties, these properties must be measured experimentally. A number

of techniques for measuring hydraulic conductivities have been reported in the
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literature. Most methods are based on the solution of the one-dimensional con-
tinuity equation for steady and unsteady flow, with or without the gravity term.
In steady flow systems, flux, gradient, and water content are constant with
time, while in transient flow systems, they vary. The most commonly used methods
1),2),3),

z§e5?ased on steady flow. While many such methods are described in the litera-
tu;e, they are all based on essentially the same procedure. The tested sample,
or core, is mounted either in a plexiglass tube or in a pressurized rubber
sleeve, and a steady flow of water is established through it. A steady flow,
i.e., inflow equals outflow, is reached within 2-40 hours, depending on the
sample's permeability and the method used. At this stage the pressures at either
end of the sample, the rates of flow and the saturation are determined. But
steady-state methods have the disadvantage of requiring relatively long times to
establish steady flow. During this time, changes can occur in the hydraulic pro-
perties of the sample and the porous end barriers. The use of mercuric chloride,
phenol, or thymol in the water to reduce biological activity is customary. If
the water that is used in the measurements differs markedly in ionic strength
and composition from the soil solution initially present in the pores of the
sample, there may be considerable change in the conductivity of soils containing
clay during the flow. Therefore steady-state methods are primaril& laboratory
methods.

Now a widely used transient-flow methods (unsteady-state methods) for
measurement of conductivity and diffusivity in the laboratory may be grouped
into : (1) outflow methods and (2) instantaneous profile methods.

The outflow method has been used to obtain estimates of the measurement of
the volume of water outflow as a function of time from a sample placed in a pre-
ssure cgii?) The slab of soil is placed on a porous plate or membrane and is

brought to equilibrium with a certain gas-phase pressure in the cell. By in-

creasing the gas (e.g., air) pressure in the cell by a small increment, water is
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forced out through the membrane. The volume of water draining out of the sample
is measured as a function of time. The procedure is then repeated by further in-
creasing the gas pressure. These data are then introduced into the solution of
the unsteady, one-dimensional continuity equation in which the effect of gravity
is neglected. By fitting the experimental outflow-time curve to the theoretical
curve, one can obtain a value of the soil wafer diffusivity that can be associ-
ated with the mean water content (or pressure head) of the soil sample during the
increment of outflow.

But in many cases the theoretical and experimental outflow curves cannot

7)
be matched, indicating that the assumption of negligible membrane resistance in
8)
the analysis is not valid. Jackson has examined the method and concluded that

it is not practical to use pressure increments small enough to validate the as-
sumption of constant K and C, and that it is extremely difficult to obtain re-
plicated results with the method.

Laboratory measurements of conductivity can also be made on long columns
of soil, not only on small samples contained in cells. In such a column, steady-
state flow can be inducez? If the column is long enough to allow the measurement
of pressure gradients and of water-content gradients, the K(0) and K(y) relation-
ship can be obtained for a considerable range of 6 with a single column. If
periodic pressure and wetness profiles ére measured, the flux values at different
time and space intervals can be evaluated by graphic integration between succes-
sive moisture profiles. This procedure has been called the "instantaneous pro-
file" method, and it can be applied in the field as weli?) The theory does not
assume uniformity of the hydraulic properties of the flow system, and the bound-
ary conditions do not need to be constant, or known in detail. Methods of this
type seem to offer the best possibility for hydraulic characterization of sample
or field soils. 1In the laboratory, pressures are measured by pressure trans-

11),12),13),14)
ducer tensiometers. Moisture content may be measured by a gamma-ray attenuation
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11),13),14).15) 16)
system, by a neutron scattering device.

The purposes of this chapter are to propose a rational basis of getting
experimental relationships between moisture content () and hydraulic conductivity
K(8) and between pressure head(y) and volumetric moisture content (8) by the
instantaneous profile method by using the source of low-energy gamma-ray attenu-

ation and pressure transducer tensiometer.

4.2 Instantaneous Profile Analysis

In essence, the method of instantaneous profiles consists of determining
down the column the profiles of the macroscopic flow velocity, the potentiai
gradient, and the volumetric moisture content at any instant of time after the
commencement of drainage or infiltration. Once these are known for a particular
time, it is then possible to find the instantaneous hydraulic conductivity for
each elevation by dividing the appropriate velocity value by the potential gradi-
ent value.

The continuity equation which already has been given Eq.(2.22) in section

2.3 may be applied to one-dimensional flow system as

d | v
(e ) (5

5 ) (4.1)

t

where vy is the flow velocity (cm/sec), O is the volumetric moisture content
(cc/ce), and z is the elevation above the datum plane defined as positive in the
upward direction as sketched in Fig.4.2. In the case of drainage, the curves
presented in Fig.4.3 which will be obtained from the experimental information
give the variations of water content with time for several column elevationms.
Using this information, it is a straightforward matter to find the relation

between 90/3t and z at several required times as shown in Fig.4.4.
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Fig.4.2 Schematic picture of vertical drainage

Water content (cm?/cm?®)

t t t t t Time

Fig.4.3 Variation of moisture content with time at several column

elevations (after Watsonll))
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Change of water content(36/3t)

Elevation
Fig.4.4 Changes of water content at each elevations with time

Integration of Eq.(4.1) with respect to z yields:

96
J—a;——dz = -V + C(t) ( 4.2 )

It should be noted the velocity is zero at the surface, then Eq.(4.2) becomes

z
-V( z,t ) =jz gi dz (4.3)
S

where V(z,t) is the velocity at position z and zg is the elevation of surface.

The velocity profiles are obtained by integrating graphically with respect to
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z-00/3t profile curves, and the resulting velocity profiles are given in Fig.
4.5. These profiles represent the instantaneous velocities down the column

at time stated.

Elevation

. - -—
Velocity (cm/sec)

Fig.4.5 Instantaneous velocity profiles

The first part of the method is the determination of the pressure head (y)
profile with time at several elevations in the column as shown in Fig.4.6.

Since the total potential h is equal to the negative pressure~head(w5 (in the
case of drainage) and the gravitational component z, the total potential profiles
at each time may be readily plotted and are presented in Fig.4.7. These curve
may then be differentiated graphically to give the positive potential gradient
(dh/3z) profiles as shown in Fig.4.8.

From Fig.4.5 and Fig.4.8, it is a relatively simple matter to determine
the instantaneous hydraulic conductivity for any elevation and time from Darcy's
law which already has been given Eq.(2.18) in section 2.2.

(v),

K = t

h (4.4)
(_55_)z,t
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Pressure head
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Time

Fig.4.6 Variation of soil water suction with time at several
column elevations

Total potential

Elevation

Fig.4.7 Instantaneous total potential profiles
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Potential gradient

Elevation

Fig.4.8 Instantaneous potential profiles

Water content (9)

1 Il A L i — A

Instantaneous hydraulic conductivity (K)

Fig.4.9 The water content~instantaneous hydraulic conductivity
relation showing the computed values

The last step of the method is the plotting of the curve relating the
values of the instantaneous hydraulic conductivity and the water content. This
relationship is given in Fig.4.9, where the conductivity scale is logarithmic

to enable the lower conductivities to be presented accurately.
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4.3 Experimental Apparatus and Procedure
4.3.1 Measurement of moisture content by gamma ray attenuation

In the determination of unsaturated permeability of columns of soil, some
experimental methods of measuring the distribution of soil water content along
the length of the column have been reported. Gravimetric samiiz;;8is the common
method used. This disturbs the system so that information about water distribu-~
tion as a function of time must be put together from measurements made on repli-
cated systems. Because of undetected density gradients, cracks and other flaws
which may occur, true replicated systems are difficult to produce; thus, serious
errors may result in water distribution-time studies.

Then, some methods of nondestructive measurement are desirable. Methods
involving measuring electricii)or thermal properties of porous blocks are second-
arily applied, however, these methods have the following limitations:

(1) 1lag in following water content changes
(2) insufficient range

To conquest these limitations, two radioactive techniques have been used
for measuring soil water content, the neutron-scattering method and the gamma
ray absorption method. In the neutron-scattering method, the region of neutron
scattering is very wide, and so it is difficult to get an accurate coordinate of
measuring point. While, the gamma ray method enable accurate measurement of
soil densiig)and water content at given positions in a column of soil, based on
the fact that scattering and absorption of gamma rays are related to the density
of matter in their path.

The method is not specific for water, as in the case of the neutoron-scat-
tering method. However, it has the advantage that gamma rays may be collimated

by suitable geometry and shielding to a narrow beam which gives resolution in

position at which readings are taken. As neutrons are not readily collimated,
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and as the counting technique commonly used counts the scattered neutrons rather
than the unscattered, the neutron method is more suited to water-content measure-
ments of a large bulk of soil.

To use the gamma ray method to determine water content, the soil density
must be known to the same degree of accuracy. This may readily be determined at
a fixed value of water content and used for subsequent determinations of water
content prqvided the soil density remains unchanged thereafter. Then, the method
has one major limitation which restricts its use in measuring soil water content.
A change in density which occurs in the soil because of shrinking and swelling
will affect gamma absorption. Hence, use of the method is restricted to condi-
tions where bulk density changes are negligible compared with changes in moisture
density to be measured, or where independent measurements permit correction for
changes in bulk density. Then, in this study, the water content was measured by

21) 11)
using gamma ray attenuation, following the procedure of Davidson et al., Watson.
However, in contrast to previous works as indicated in Table 4.1, low-energy
gamma radiation ( 100U curies of cobalt 60 ) rather than cesium 137 or americium

241 was used as the source of gamma photons.

Table 4.1 Summary of gamma attenuation method

Reference Gamma ray source
22) 137
Gurr.C.G 25 millicuries of CS 1962
23) 137
H.Ferguson et al. 20 millicuries of Cesium 1962
21 137
Davidson et al. 200 millicuries of CS 1963
24) 137
Topp G.C et al. 200 millicuries of Cesium 1966
25) 137
G.C.Topp et al. 100 millicuries of Cesium 1967
26) 137
Yen et al. 200 millicuries of Cs 1968
27) 137
Topp 200 millicuries of CS 1969
13) 241
G.Vachaud et al 100 millicuries of americium 1971
28) 137
R.S.Saksena 100 millicuries of CS 1974
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The arrangement of the sourée and detector is shown schematically in
Fig.4.10. The Cgo source holder was made of lead bricks arranged in a cube
about 6.0cmon a side. The source was placed in the center of one of the block
faces in such a way that it was about 2 cm from the face.

The total thickness of the lead collimator was 5.0 cm, and the collimator
slit was 7.0 cmhigh and 0.6 cmwide. The detector was inserted in a lead annular
ring with the front of the probe flush against the rear of the collimator so
that the collimation slit was centered on the face of the probe. Thus, with
minor exception, the probe detects only those gamma rays which pass directly

from the sourte through the sample and collimation hole to the probe.

Y-source ) 1\ E
60¢o 100uCL ol /} 50
} o
2 e GM-721x3
SR T
3 e Lead
Detector
D | |lshield
" .Sand .
2g)) | - Sand: .
60 R
o 100 } 225

Fig.4.10 Schematic position of the gamma beam

( Schematic representation of the gamma source holder, collimation
and probe )

A small conveyor was placed on a vertical guide track between the source
holder and the coilimator in such a way that the conveyor could be moved verti-
cally through the stationary gamma beam. The guide track maintained the convey-
or at a constant position with regard to the collimator face. During a run,

soil through which water was moving was placed on the conveyor in such a way that
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the gamma beam passed through the soil in a direction perpendicular to the direc-
tion of water movement. By moving the conveyor it was possible to pass the
beam through any vertical section of soil.

It was necessary to calibrate counts against moisture content. The vari-
ous content soils were packed with same dry density ( Yq = l.5g/cm3 ) in acry-
lic rectangular boxes 7.0 cmhigh, 10.0cmwide, and 20.0cmlong. The cuve as
shown in Fig.4.11 was obtained by plotting the record of the counts per 10
seconds obtained at a particular moisture content. This graph of moisture con-
tent against counts was used to transform the counts obtained during a run to

moisture content.

4001
3001
3 ;
o Yd=l-5g/cm
Z L
~, 250
o
—
X
=
200 4 ! 1
0 0.1 0.2 0.3 0.4
8(cm®/cm?®)
Fig.4.11 Calibration cur&e for sand
4.3.2 Measurement of pore water pressure

To know the relation of moisture content and pore water pressure, it is
necessary to measure pore water pressure at the same time. The satisfactory use
of a pressure transducer for pressure head measurements requiring rapid response

, 29)30) 31)
has been previously reported by Klute, and Watson.
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Then, in this experiment, pressure head was measured at the same time for
5 different depths in the column by using tensiometers and transducers ( the

2 to +100g/cm2 ), each tensiometer was connected

range of measuring from -100g/cm
to its own transducer. Five tensiometers were arranged vertically along the

column at 10 cm intervals as shown in Fig.4.12. The active area of each tensio-
meter was a ceramic plate which has a bubbling pressure of approximately 2000 cm
of water. The tensiometer units, illustrated in Fig.4.13, are screwed directly

into the acrylic box. Each transducer was connected by a multichannel data ac-

quisition system.

Ls]-
Mariotte
burette
ar’////
y Pressure Detector
e transducer probe
— R o .
i%{ No.1l c jiz —
5 amma-source f:ﬁ
o No.2 S
B No.3 @
e © @
ivi No.4 .'1} | |
; No.5
e Lﬂ
70
100
(A)Front view (B)Side view

Fig.4.12 A schematic representation of the experimental apparatus:
(A) front view showing relative position of the gamma sys-
tem, (B) side view showing relative positions of tensiometers
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Fig.4.13 Pressure transducer assembly details

4.3.3 Experimental procedure

The soil sample used in the experiment was Toyoura standard sand with a
specific gravity of 2.65. The material was carefully packed into the acrylic
ractangular box 7.0 cmheigh, 10.0cm wide, and 60.0 cm long with a particular dry
density(Yd=l.50g/cm3) using a tremie to prevent segregation and tamped frequent-
ly to producezitight packing. The mode of packing was identical inall experiments.
Both ends of column were made of fine screen through which water moved into soil.
A. Series 1 ( Water applied on top of the column )
Test 1-1. The air-dried column of sand at an initjial uniform water content
( 0.0lcm®/cm® ) had water applied on top of the surface by keeping a head of
wéter 8.5cm in height as shown in Fig.4.12. The quantity of water entering the

column was measured by using a Mariotte burette as shown in Fig.4.12.
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Pore water pressure was meaéured by pressure transducers. The use of this
equipment permitted accurate (¥0.5mmof water) pressure measurements to be made
on a dynamic system.

To measure moisture content 10-second counts was made at each 10 cm inter-
val along the column. The conveyor was then positioned to the place where the
first water measurement was desired water flow into the soil was started, and a
10-second count was made.

Both the count and the time at which it was started were recorded. Because
of the rapid entry of water into the air-dry soil, counts were made as frequently
as possible during the early part of the run. As water moved into the soil, the
conveyor was moved to whatever position a water determination was desired. 1In
this way a record of counts per 10seconds as a function of time was obtained at
various positions along the soil column.

Infiltration occurred for l6minutes after which the wetting front reached
the bottom (z=0). Infiltration examined for a period of 25 minutes.

Test 1-2. At the end of Test 1-1, to obtain the hydraulic conductivity Ks,(
Sr%lOOZ) in saturated state constant-head permeability test was performed. Fig.
4,14 shows the setup. The lowest elevation in the sand column was thus a fixed
piezometric surfacej this surface was taken as datum in gradient measurements.
Under these conditions the hydraulic gradient was known and, from measuring the
rate of volume outflow from the bottom of the column, the saturated hydraulic
conductivity (KS) could be determined.

Test 1-3. In the third test of experiments, the columns were first allowed to
become saturated by infiltrating water, keeping the surfaces saturated, until
water drained from the bottom. Since the flow condition was that of drainage of
the saturated column to atmosphere at its base, the base of the column was con-
structéd so that air at atmospheric pressure was always maintained during an

experiment on the under side of the screen supporting the sand.
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Fig.4.14 Setup for constant-head permeability test

The drainage process commenced the moment the ponded water disappeared through
the upper soil surface. Drainage examined for a period of 35 hours measuring the
variations of pressure head and volumetric moisture content to obtain the rela-
tionship during the drying process.

Test 1-4. A fourth test of experiments was initiated at the end of Test 1-3.

The soil column was submitted to another cycle of infiltration and redistribution
to obtain a séanning curve. On rewetting, water was ponded constantly on the
soil surface to adepth of 8.5cm, but the initial water content distribution in
the soil column was that obtained at the end of the Test 1-3 redistribution and

was very close to a static equilibrium water profile. Infiltration occurred for

22 minutes.
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B. Series 2 ( Water applied from the base of the column )

Test 2-1. The air-dried column of sand at an initial uniform water content

(0.0lcm®/cm?®) had water applied from the base of the column by a constant head of
water 31.5cm. in height as shown in Fig.4.15. So the lower end of the column
was then immersed under a free water surface. The rate of infiltration was re-
duced to slower constant rates by means of capillaries fed from a constant head,
and the moisture profiles were allowed to attain their equilibrium conditions.

In this test, the variations of pressure head and volumetric moisture content

s

were measured.

. XN

>Savnjd' - f:‘:.-.. -

31.5cm

Fig.4.15 Setup for water applied from the base

Test 2-2. At the end of Test 2-1, the initial water content distribution in
the soil column was obtained. The potential head was suddenly lowered to a head
of water 15.2cm in height at the bottom. The pressure head and volumetric mois-

ture content was changed by this process. These variations were measured for a

long period of time.
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4.4 Experimental Results and Discussions

4.4.1 Relationships between hydraulic conductivity (K), volumetric moisture

content (0) and pressure head ()

The results relative to Test 1-1 are reported in Fig.4.16 (a), Fig.4.16 (
b). Fig.4.16 indicates the variation of the volumetric moisture content (8) with
time at five elevations in the column for the 25 minutes of infiltration. These
values of the moisture content (8) were obtained by using the calibration curve
in Fig.4.11.

As it is clear from Fig.4.16, the moisture content at the wetting front
changed so rapidly that it is difficult .to obtain hydraulic conductivity at low
moisture contents. Therefore the results relative to drainage process (Test 1-3)
was mainly used to determine the relationships between hydraulic conductivity (K)
and volumetric moisture content (6).

The experimental information obtained from Test 1-3 has been summarized in
Figs.4.17, 4.18, and 4.19. Fig.4.18 indicates the volumetric moisture content
variation with time for each depth. If these lines are replotted with time as the
parameter, as shown 'in Fig.4.18, useful soil-water relations may readily be cal-
culated. It is possible to calculate moisture flux through each depth increment
by integrating moisture-time curve with respect to depth. The slope (d6/dt) is
measured at particular points in time.

In a similar manner, Fig.4.19 gives pressure head changes with time at the
same column elevations. From this results hydraulic head profiles can be calcu-
lated by adding pressure head to depth for each tensiometer. By using Eq.(4.4),
the hydraulic conductivity can be calculated by dividing fluxes by the corres-
ponding hydraulic gradient values. The gradients are obtained by measuring the
slopes of hydraulic head versus elevation. Correlating each time the value of K
with the mean water content 8 obtained in z during the mean time (t -t )/2

j K+l K

permitted us to obtain the K(8). The results are given in Fig.4.20.
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Fig.4.16 (a) Change of moisture content with time during
infiltration ( Test 1-1 )

® No.1(z=10cm)
30 A No.2(z=20cm)
O No.3(z=30cm)
20 - Ao No.4(z=40cm)
10 o No.5(z=50cm)
5 10 15
0
-10 F
=20
-30 F

Fig.4.16 (b) Change of pressure head with time at five column
elevations during infiltration
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Fig.4.17 Change of moisture content with time during drainage
( Test 1-3 )

Volumetric moisture content(8) cm®/cm®

0.3
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Fig.4.18 Distribution of water content for sand during
drainage ( Test 1-3 )
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Fig.4.19 Change of pressure head with time at five column

elevations during drainage ( Test 1-3 )
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Fig.4.20 The moisture content - instantaneous hydraulic conductivity
relation for sand ( Test 1-3 )
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The hydraulic conductivity which was obtained from the results of constant—

head permeability test of Test 1-2 was K = 2.084x10™%cm/sec
s .

In Fig.4.20, the relation between K~8 is shown. On the other hand, the re-
lations between K and { was sometimes used heretofore. Various empirical equa-
tions for that relation of conductivity to pressure head () or moisture content
(6) have been proposed by many researcﬁers as indicated in Table 4.2. 1In Table
4.2, the empirical parameters are depend upon the liquid, the soil, and the capi-
llary pressure history of the system and the values of the parameters must be
determined experimentally. And then no fundamentally based equation of general
validity is available for the relation, and existing knowledge does not allow the
reliable prediction of unsaturated conductivity from basic soil properties.

There is general agreement that the relation of conductivity to pressure
head depends upon hysteresis, and is thus different in a weﬁting than in a drying
soii?’éggely, if Fig.4.21 is compared with Fig.4.22, of which results are obtained
in the same condition, it is clear that the relation of conductivity to moisture

content is affected by hysteresis to a much lesser degree. One may thus neglect

any hysteresis in K(0) and use a unique relationship.
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Table 4.2 Empirical equations for the relation of hydraulic conductivity

of unsaturated soil to pressure head or moisture content

Empirical equation Reference
a
K= ——- Gardner,W.R32)
(=) +b
K = KO( a/y )m Schleusener,R.A.
and A.T.Corey33)
Scott,V.H. and
A.t.Corey34)
m
K=al °°Sh[(w/b)m] =1 King,L.G>>)
cosh[ (¥/b)"] +1
36
K = KO exp( myp ) Gardner,W.Ré7)
Philip,J.R. )
K = at" Ahuja,L.R3®)
6 -8
r 3 39)
- S - i,v:
K KO( 55 ) Kroszynsk
s r
K=K, + af + b2 Bruch,J.C. and
0 . 40)
G.Zyvoloski
where

a,b and m : Empirical parameters depending upon the liquid,
the soil, and the capillary pressure history of
the system.

KO ¢ The hydraulic conductivity in saturated state.
9S ¢ Volumetric moisture content in saturated state.
r ¢ Residual volumetric moisture content.
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4.4.2 Relationships between pressure head (y) and volumetric moisture

content (8)

To get the relationships between pressure head (Y) and volumetric moisture
content (6), the variation of the volumetric moisture content and that of the
pressure head with time are used.

The results from Test 1-1 are reported in Fig.4.16 (a) and Fig.4.16 (b) and
those from Test 1-3 are shown in Fig.4.17 and Fig.4.19. Using the these figures,
it should be noted that a relationship (6-y) is obtainable by plotting, for any
elevation, the pressure head at successive times. When this process was carried
out for different elevations, the relationship (8-{) on the sand was defined

as shown in Fig.4.23.

In Fig.4.23, data points (closed squares) for the scanning curves which is
obtained from selections of data from Test 1-4 for rewetting, the tensiometer
position at 20 cm from the top of the column, are added and line was drawn by
eye as a best fit.

In soil science, the curves in Fig.4.23 are called "retention curves", as
they show how water is retained in the soil by capillary forces against gravity.
Some authors refer to the drying retention curve as a 'desorption curve" and to
the wetting curve as a "sorption curve'.

It is evident from Fig.4.23 that hysteresis in the relationship between
pressure head and volumetric moisture content exists in soils. Tzi reasons why
the hysteresis loop exists in the retention curve may be as follows?

(1) The geometry of the void space of soil with many bottlenecks, i.e., the

ink bottle effect.
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Fig.4.23 Relationships between volumetric moisture content
and pressure head
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(2) The angle of contact ac is a function of the direction of the displace-
ment, ac may have different values if equilibrium is approached by
advancing or receding over a face. Fig.4.24 shows this phenomenon for
an air-water interface.

(3) The air in the void space may be trapped in the process of water ad-

vancing.

Alr

Water

NONUNNNUN OO
M HTHIHIIIRRRRR .-

(a) Water wetting (b) Water drying

Fig.4.24 Contact angle between a water—air interface and a solid

Point A in Fig.4.23 is the critical capillary head wcc. If the drainage
process is start from a saturated sample, no water will leave the sample until
the critical capillary head is reached. As the value of wcc is increased, the
initial small reduction in 0 is associated with the retreat of the air-water

meniscii into the pores at the external surface of the sample. Then, at the
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critical value wcc the larger pores begin to drain.

The reason of this phenomenon may be the time lag in air entry into soil.
The soil pores are probably smaller at the soil surface than they are in the in-
tefior of soil mass. There is a "skin effect" due to the smaller surface soil
pores. When the surface soil pores are emptied, the water declines in the capil-
laries for a considerable distance downward, since the soil pores are larger
beneath the soil surface. The soil water tension at the soil surface would very
quickly increase. The entry of air into the soil would occur shortly after the
water table reached the bottom of the soil column; assuming that the length of
the column is such that the air-entry value of the soil is exceeded.

In same manner of the relations (K-8), various empirical equations for the
relations of pressure head to moisture content have been proposed, as indicated

in Table 4.3.

Table 4.3 Empirical equations for the relation of
pressure head to moisture content

Empirical equation Reference
6 -6
. 39
——5——:—55— = exp{ a( Y- b)] . Kroszynski,U )
r
6 = a[coshl@W/b)™ c]-d King,L.G. >
cosh[ (W/D)™+ ¢ ]+ d
42
6=a+b loge(w -c) Rogowski,A.S )
where

a,b,c,d, and m : empirical parameters
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The main loops in Fig.4.23, dryiﬂg curve and wetting curve which are obtained by
making the air-dried soil saturated and the saturated soil dried respectively,
are unique for a given soil and can be determined experimentally. However, if,
at any point on the drying (or wetting) curve the process is reversed, hysteré—
sis, as shown by the scanning curve in Fig.4.23, is exhibited. 1In the wetting
process the 6 versus Y relation moves along the scanning curve until it meets the
wetting curve and then moves up the wetting curve. The drying and the wetting
curves form the boundary of the "hysteresis loop'", within which the soil can
assume any value of saturation and y , depending on the past history of the pro-
cess. Although a number of analyses which took.into account the phenomenon of
: : 43),44),45),46)

this hysteresis have been done for the unsaturated soil, all of them have used
experimental hysteresis data directly and their procedures are very complex.

On the ether hand, several attempts to estimate any hysteresis loop from
the main drying and wetting curves have been proposed. The most of them are

same methods in applying " independent domain theory " which was formulated by

52) 51)
Everett. Among them, Mualem's method seems to be the simplest and the most ef-
ficient. In this study his method has been used whenever the hysteresis had to

be taken into account in the flow analyses in Chapter 5.

4.4.3 Evaluation and discussion on Green and Ampt model and pressure distri-

bution at equilibrium condition

A. Green and Ampt model
53)
The Green and Ampt model of infiltration has been the subject of consid-
54)55)56)57)
erable attention in recent literature with the need to model simply the infil-

tration component in hydrological studies.
58)
The model is based on the following form of Darcy-type equation for a

uniform profile in vertical infiltration as depicted in Fig.4.25,
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where q is the rate of the infiltration into the soilj; KS is the hydraulic con-

ductivity (which is a uniform soil under ponding approximates the saturated

conductivity); Ho is constant depth of ponded water at the soil surface; zg is

the distance from the surface to the weting front (i.e., the length of the wett-

ed zone); Hc is negative pressure head at the wetting front.

—¥

v .. AN Wetting front
Soil_:

Fig.4.25 Vertical infiltration

This model assumes that the flow of water occurs in a uniformly saturated
region on account of a hydraulic head gradient caused by a constant soil water
pressure head at the wetting front and gravity. The advancing wetting front is

thus a precisely defined surface boundary above which the soil is saturated and
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below which the soil is unsaturated. These assumptions simplify and linearize
the flow equation, making it amenable to analytical solution.

In order to find the model to be satisfactory for infiltration through an
unsaturated soil, the result of the advancing wetting front with respect to Test
1-1 is shown in Fig.4.26. By using Figs.4.16(b) and 4.26, the distributions of

total head (h=w+zf-z) are shown in Fig.4.27.
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Fig.4.26 Advancing of wetting front with time

It is obvious in Fig.4.27 the graduate of total head is constant in the wetting
zone for each time,and Hc is equal to the initial pressure head of air-dry soil.
Fig.4.28 shows the infiltration (Q) plotted as a function of time. According to
Fig.4.16, it is evident that behind the wetting front, the soil is uniformly

wet. Since an uniformly wetted zone can be assumed to extend all the way to the
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Fig.4.28 Infiltration Q plotted as a function of time
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cumulative infiltration Q should be equal to the product of the wetting front
depth zZg and the wetness increment B=6t—6i (where Gt is the transmission-zone
wetness during infiltration and ei is the initial profile wetness which prevails

beyond the wetting front):

Q ABZf (4.6)
where A is the area in cross section of soil column. Therefore,
- Q
B = Azf (4.7)

By using Fig.4.26 and Fig.4.28, the average value of B was obtaind as 0.31, and
this value is nearly equal to the value getted by gamma ray attenuation.
The infiltration rate is thus seen to be inversely related to the cumu-

lative infiltration. Rearranging Eq.(4.5), next equation is obtained:

dt s z (4.8)

Then the value of KS for each time can be calculated by using the both results
of Q versus t and zg versus t. The average value of KS is obtained as 1.9x10”2
cm/sec. This value also well agrees with the value obtained by Test 1-2. Thus
it can be understood that attempts to reconcile the Green and Ampt model with
the classical flow equation is successful for the infiltration through the air
dry sandy soil. ‘However, in actual field conditions, particularly where the
initial moisture content is not uniform, Hc may be undefinable. In many real
situations, the wetting front is too diffuse to indicate its exact location at

any particular time. Then this model remains a quasi-empirical method founded
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on crude theory.

B. Pressure distribution at equilibrium condition

In order to perform the nonsteady numerical analysis of flow through por-
ous media, the distribution of initial pressure head wo in the entire flow domain
must be used as the initial condition. Test 2-1 was carried out to obtain this
distribution and infiltration from the base of the column occurred for 2 days

Fig.4.29 gives the advances of capillary zone.
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Fig.4.29 Advances of capillary zone

As this phenomenon is analogous to rise in capillary tube where the water rises
to a certain height above the free surface with a full saturated tube below the
meniscus, the nearly saturated zone above the free surface is called the capil-

lary fringe. This hcc in Fig.4.29 is the capillary rise for this soil and its
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value became about 25cm.

Fig.4.30 shows the change of moisture distribution above the free surface
with respect to time, and after 2 days this change reached the near static
equilibrium condition. Fig.4.31 represents the distribution of pressure head at
this condition. 1In Fig.4.31, as z increases upward, so decreases { and the ulti-
mate straight line was gotton as the reiationship (Y-z) in the capillary fringe.

Then, in this zone the total potential (h) may be

h=y+z=20 (4.9)

60 Capillary fringe hcc
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Fig.4.30 Distribution of water content for standard sand
during infiltration from bottom (Test 2-1)

The distribution of pressure head above the capillary fringe must be wo

which is initial pressure head of air dry soil because the volumetric moisture
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content did not change during this successive time.
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Fig.4.31 Pressure head distribution in capillary fringe at
equilibrium condition

By the way, the open circles points in Fig.4.30 were plotted of the value
of mqisture content from the wetting cufve of Fig.4.23 with considering the value
of pressure head is equivalent to the height above free surface. From this
result, the equilibrium moisture profile can therefore be applicable to the re-

tention curve of wetting process.
4.5 Conclusions

In this chapter, the need for determining the hydraulic properties of soil

profiles was pointed out and available methods are reviewed. Experimental tests

- 113 -



have been performed to determine the hydraulic properties of unsaturated soil

during the flow of water in a vertical soil column and a technique for handling

the data was systematically described and illustrated. Throughout of this

chaper, the following main conclusions are obtained.

69)

(2)

3)

(4)

(5)

(6)

)

The instantaneous profile method for determining soil hydraulic properties
based on simultaneocusly monitoring the changing moisture content and pres-—
sure head profiles during internal drainage is outlined and this method is
probably easier to carry out than altanative methods.

A technique for ﬁsing a low-energy gamma radiation apparatus for measuring
water content in the column of soil has been described. Although its use
in limited to porous materials which do not shrink or swell upon wetting,
it does provide a means for accurate measurement of water content without
disturbing the system into which water is moving. Furthermore rapid meas-
urement of water content becomes possible at any position in a soil so that
water content changes with time may easily be followed.

The tensiometer-—transducer system provides a most valuable means of meas-
uring pressure head with rapid response and with provision'of a complete
record of the pressure head changes with time.

The hydraulic conductivity in relation to volumetric moisture coﬁtent of
the sand was obtained.

Different flow conditions have been imposed to map out conveniently the
hysteresis domain in Y (8).

Applications of the Green and Ampt infiltration equation were discussed
and good agreements between the model and experimental data were shownm,
then it was found that the Green and Ampt approach is satisfactory for in-
filtration through the air-dry sand column where the initial moisture con-
tent is uniform.

The distribution of pressure head and moisture content above the free sur-
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face was obtained at the equilibrium conditon in order to apply this dis-
tribution to the numerical analysis of drainage and infiltration in soil

as a initial conditon.
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CHAPTER 5
COMPARISON OF EXPERIMENTAL AND NUMERICAL RESULTS
5.1 Introduction

In order to investigate the validity and the accuracy of the numerical
analysis solution, in general two methods are used, i.e., numerical results are
compared with the analytical results of simple problems for which rigorous ana-
lytical solutions are available and numerical results are compared with the
experimental results.

The flow problem in this thesis involves so complex conditions, that is,
the saturated-unsaturated flow region and the nonlinear equation, that there is
no analytical solution to the author's knowledge. Then in this chapter to check
the validity of the two-or three-dimensional finite element analysis on the
saturated-unsaturated flow problems, and its applicability to practical problems
of flow, laboratory experimental studies on infiltration and dfainage for'two— or
three-dimensional sand box were carried out. Numerical results are compared with
the experimental results using as input data the pressure head-moisture content
relationship and the hydraulic conductivity-moisture content relationship that

were obtained in Chapter 4.

5.2 Experimental Study on Flow through Sand Model
5.2.1 Experimental apparatus and its procedure for two-domentional sand model .

A. Experimental apparatus

The experimental sand boxwas constracted of 3 cm acrylic. The sand box
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measures 80cm long, 50cm tall and 10cm deep as shown in Fig.5.1. The left
hand and the right hand side of the sand box are free to enable entry and exit of
water, while the remaining three sides are rendered impermeable.

The pressure heads were regularly measured with the help of 15 piezometers
set up at the bottom of sand box. In addition, the levels of the free surface
were-also measured with the help of 8 porous tubes set up at the face of front
side. Air-dry sand which is the same sand used in Chapter 4 was carefully packed

into this box with an approximately constant dry density (Yd=l.5g/cm3).

B. Experimental procedure
a. Infiltration

Before the start of the experiment, t<0, the water tables was brought to a
height of 7cm above the base, by letting the water levels on the left hand side
and on the right hand side of the model stand at that elevation for a long period
of time (about 24 hours). At t=0, the water level on left hand side was suddenly
raised to an elevation of 47cm , creating a raise of 40cm , and was maintained at
that elevation through the duration of the experiment.

During the course of this experiment, lasting over 3 hours, the pressure
heads were measured at the bottom, and the levels of the free surface were also

measured.

b. Drainage
At the end of infiltration experiment, the water tables were brought to a
height of 47cm above the base, by letting the water levels on the left hand side
and on the right hand side of the model stand at that elevation for 2 days. Ag
t=0, the water level on the right side was suddenly lowered to an elevation of

7Jem , creating a drawdown of 40cm , and was maintained at that elevation through
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Piezometer

dimentional flow )

Fig.5.1 Schematic figure of sand box ( for two
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the duration of the experiment.
During the course of the experiment, lasting over 3 hours, the pressure
heads, the levels of free surface and the quantity of water removed from storage

were measured as a function of time.

5.2.2 Experimental apparatis and its procedure for three-dimensional
sand model
A. Experimental apparatus

The experimental sand box measures 106cm long, 100cm tall and 82cm deep
as shown in Fig.5.2. The right hand side of the sand box is free to enable entry
and exit of water, while the remaining three sides are rendered impermeable.
Impermeable wall ( CDGH in Fig.5.2 ) was set at the center of the sand box,
then if water is supplied at the face of ABCD ( the letters locate in Fig.5.2), the
flow through sand may occour following the arrow in Fig.5.2, and the flow may
remove from the face of CDEF. This is a three-dimensional flow behgviour.

The pressure heads were measured with the help of 72 piezometers set up
at the bottom of sand box. In addition, the levels of the free surface were also
measured with the help of 26 porous tubes set up at the three impermeable
sides. The soil used in this experiment was the same sand in Chapter 4. The
air dry sand was carefully packed into the sand box 50cm height, 100cm wide,

and 106cm long with an approximately constant dry density (Yd=l.50g/cm3).
B. Experimental procedure

a. Infiltration

The outlines of this experimental procedure are same methods of the two-
dimensional experiment. Namely before the start of the experiment the water
tables were brought to a height of 7cm above the base, by letting the water

levels on the ABCD side and on the CDEF side of the model stand at that elevation
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for a long period of time (about 24 hours). At t=0, the water level on the ABCD
side was suddenly raised to an elevation of 47cm , creating a raise of 40cm , and
was maintained at that elevation through the duration of the experiment.

During the course of this experiment, lasting over 2 hours, the pressure
heads were measured at the bottom, and the levels of the free surface were also

measured.

Impermeable wall

\
=T

—®E=ET

(Unit: mm) Piezometer

Fig.5.2 Schematic figure of sand box ( for three-demensional flow )

b. Drainage

At the end of the infiltration experiment, the water tables were brought to
a height of 47cm above the base of sand box, by letting the water levels on ABCD

side and on CDEF side stand at that elevation for the long period of time. The
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sand in the sand box was initially saturated, at zero time the water level on CDEF
side was suddenly lowered to an elevation of 7cm , creating a drawdown of 40cm ,
and was maintained at that elevation through the duration of the experiment.
During the course of this experiment, lasting over 1 hour, the pressure
heads, the levels of free surface and the quantity of water removed from storage

were measured as a function of time.

5.3 Material Properties and Initial-Boundary Conditions
5.3.1 Material properties

The data required to solve the flow problem in saturated-unsaﬁurated soil
by using the finite element method with Eq.(2.28) are as follows.
(1) Specific storage SS and permeability coefficient KS in saturated condition.
(2) Effective porosity n, of constitutive material.
(3) Functional relationship between the volumetric moisture content 6 and perme-
ability coefficient Kr in unsaturated condition.
(4) Functional relationship between & and pressure head { in unsaturated condi-
tion.
These properties have been already obtained from the experiments in Chapter 4, and

then in this simulation following values were adopted.

(1) For the flow problem in unconfined aquifer, it is a valid approximation to
ignore changes in the deformation of the water and porous media. Consequently
the specific storage can be neglected (i.e., SS=0). The permeability in the
saturated zone was measured to be KS=2.OSXl0_2cm/sec.

(2) The porosity of the sand medium was also measured to be n=0.428 since the
bulk density used was 1.50g/cm®. However, it is evident from Fig.4.23 that the
value of effective porosity of this sand was measured to be ne=0.30. This dif-

 ference from n to n, is the cause of trapped air existing in sand.
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(3) The experimentally observed relations between volumetric moisture content
and pressure head, for both the drying process and the wetting process, as well

as those between relative conductivity ( K ) and pressure head are shown in
T

Fig.5.3.

-50

i
—

|

A

-30

A

— v em— —— ) S —— — — S—)
A

=20

Pressure head ¥ (cm of water)
Relative conductivity ( Kr )

0 0.1 0.2 0.3

Volumetric moisture content(9)

Fig.5.3 Unsaturated property of soil

As noted in Chapter 2, the specific moisture capacity C(0) that appears in
Eq. (2.28) can be computed from the slope of the moisture content-pressure head curve.
For saturated flow (y>0), C(8) was set equél to zero, and Kr equal to 3, Both
functions K(8) and y(8) were stored in computer memory as a series of line seg-

ment representation with linear interpolation between the co-ordinate points.
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Where as hysteresis in the relationship between the pressure head ¥ and the volu-
metric moisture content O is important to some applications and numerical proce-
1),2),3),4)
dures must be used and have been very successful. These numerical methods take
5),6),7),8),9)
into account hysteresis, which must then be measured independently. 1In principle
the relationship should be known for any possible scanning curve. Since there is
an infinite number of them, some interpolation must be used in practice between
two consecutive scanning curves. To simplify the problem even further, it would
be useful to know a priori the minimum number of scanning curves that are neces-
sary to predict accurately any other scanning curve. To answer this question, a
physical understanding of hysteresis is necessary. Some researches clarified
greatly the qualitative concepts that underlie the phenomenon of capillary hyster-
esis. The applicability of the independent domain theory was exploited to soil
5),10)
physics. Further developments in the theory are discussed also derived a ration-
al interpolation formula that predicts all scanning curves within a loop from the
11),12) 11)
knowledge of the boundaries of the loop alone. As it is pointed out by Mualem,
other models exist at present, but to use the author's own words "these models
need more measured data and this fact, as well as their complexity, makes them on
little practical use." The fundamental achievement of Mualem's analysis is to
yield a simple formula that can be used accurately in many practical case. Then
in this study his analysis has been used. A detailed analysis is given in his
12)
report, so only the essentials will be summarised in this section. The various

scanning curves are obtained as follows:

(1) The primary drying scanning curve is given by

! [Bw(®;) - Bw(y)] - (5.1)
oly o] WW tio o] [6,(¥) - 8, (1]
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The scanning curve is obtained inside the main loop as it should be, because
(ed-ew) is multipled by a factor smaller than unity.

(2) The primary wetting scanning curve is given by

Yooy ¥ [8u - ew(w)] o (5.2)
0 ew(w) + [eu _ ew(wl)][ed(uh) = w(wl)] .

As follows from Eq.(5.2), the scanning curves approach the main wetting curve

during the process.

(3) Wetting after a series of alternating process of drainage and imbibition is

given by

o vy "
........ =0,

¥y

0,y = 8 ()

+[6 -6 W)}
8y yg) - 8, W) 5= 5 W)

(N/2)-1 8y Wy ) = 8 (W, )
_ L a2 2
M RO IR S e:(wzj) (5.3)

(4) Drainage after a series of alternating processes of drainage and imbibition

is given by

| 8, - 8 W)
+18, () - 0,015

o)
(N-1)/2 8., ) -6 ,.)
- d 23w 2] 5.4
* jil [0y Wp5-1) = 8, Wpy4p) 15 —= 8,5, -4
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In all cases the dependence of 6 on Y is expressed as a simple function of GW(W)
and Bd(w). Eq.(5.1) gives the primary drying scanning curve by way of example the
curve from a point A in Fig.5.4 and similarly Eq.(5.2) gives the curve from a point

B for a wetting process.

min

2
L L _
3 ¥y Eq. (5.2)
£ Eq. (5.3)
o .
5 IR R
@ Y |
0 | :
iy I Wetting
| ! |
i | i
| | |
1 |
wmax 4 1 l 0 -~
Bnin O WE, W) 8, (W) B, W) B

Volumetric moisture content (6)

Fig.5.4 Hysteresis in the volumetric moisture content
- pressure head and showing the method of Maulem
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Parameters in Eqs.(5.1)-(5.4) are indicated in Fig.5.4. The value of eu must be

equal to the effective porosity n,-

- 5.3.2 Initial and boundary conditions

A. Boundary conditions
a. Two-dimentional sand model

The size of the entire flow domain and the finite element mesh are shown in
Fig.5.5. This model is composed of 221 nodal points, 192 elements. The boundary
conditions were imposed as follows. In Fig.5.5 AH is an impermeable boundary and
CDEF is also an effective impermeable boundary in the absence of rainfall or eva-
poration because water cannot flow out of this domain. FG is a no-flow boundary
as long as Y<0 but becomes at constant head boundary (seepage face), allowing
outflow, once Y attains the value Y=0. The boundary conditions can be specified
in the total pressure.

Along AH and CDEF

5o
Along AC

h = 47cm (constant)
Along GH

h = 7cm (constant)
Along FG

—g%—= 0 ¥<0

h=2z P=0 (seepage face)
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Fig.5.5 Finite element network
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b. Three-dimensional sand model

Fig.5.6 gives the three-dimensional finite element subdivision of the entire
flow region by using 867 nodes and 576 lower-order elements. The boundary condi-
tions by reference to this domain can be set down. At the upper and lower

boundaries of this domain, there is no vertical flow, and the quantity

oh is
9z
equal to zero. In Fig.5.6 the boundary conditions are as follows.

Along the faces of ABKJ, AFPJ, and FENP

%h dh
% =0 or —3},—-0

Along the impermeable wall CDGHLMPQ

dh dh
% =0 or —ay——o

More detailed figure of the face BENK is shown in Fig.5.7.

K

" On the face of KSTL
h = 47cm (constant)

On the face of XMNW
h = 7cm (constant)

On the face of UXWV

oh - <
T ¥<o

h =z =0 (seepage face)

On the faces of BSTC and DUVE

oh
9x
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B. Initial Conditions

The aim of the numerical simulation was to use a distribution of initial
pressure head wo in the entire flow domain. In the experiment sand was carefully
packed in the box with the bulk densities Yd=1.5g/cm3. Scatter of the bulk den-
sities may be exist, for puruose of numerical simulation, however, the sand was
assumed to be homogeneous. According to the results of the experiment in Chapter
4, hydrostatic equilibrium was initially obtained as indicated by the profiles of
pressure head for infiltration and drainage expeyiment in Fig.5.8 and Fig.5.9,
respectively. These prefiles of pressure head were applied to numerical analysis-
es of two-dimensional and three-dimensional flow model as initial conditions. 1In
Fig.5.8 the initial condition was established by setting the negative value of the
pressure head (Y) at the top of capillary fringe equal to the elevation head and
increasing the head to zero at the free surface.

linearly

Y (cm of water)

fringe

-40 =20 0 20
ATAL ' 1 i Y | - _50
Do L7
C e {40
| ' R
T - = 135 &
- ‘ L Cel I
ST ; 170 g
' . e . t 1)
Capillary .\ . b
- 2
o
i
(2]

Saturated zone

Fig.5.8 Initial distribution of pressure head () for

infiltration used in the simulation
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Fig.5.9 Initial distribution of pressure head (¥) for

drainage used in the simulation

5.4 Comparisons of Experimental data with Numerical Results and Discussions

5.4.1 Two-dimensional sand model

A. Infiltration

As a first step in comparison of -experimental and numerical results, the

computed positions of the free surface, Y=0, at various times are shown in com-

parison with the experimental results of infiltration in Fig.5.10. 1In the clas-
sical approach the free surface is treated as a moving material boundary, whereas
in the present work it is merely an internal isobar which happens to separate the

saturated and unsaturated portions of the flow domain. At t=3600sec, the zero-

pressure surface (free surface) attains a quasi-steady configuration, and-the

saturated zone reaches a state of near equilibrium. The computed pressure head
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Fig.5.10 Comparison of numerical and experimental results

of free surface (for wetting)
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Fig.5.11 Comparison of numerical and experimental results

of pressure head on the bottom (for wetting)
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Fig.5.12 Comparison of numerical and experimental results

of out-flow rate (for wetting)
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distributions on the bottom at various times are shown in Fig.5.11, which also
shows experimental results of infiltration. The numerals on the curves in both
figures represent time in minutes from the start of infiltration. The agreement
between computed and measured profiles in Figs.5.10 and 5.11 for standard sand
was considered satisfactory for both points of free surface positions and pressure
heads at bottom. These agreements show that the independent measurements of
P(8) and K(8) must have been essentially correct for this soil. Furthermore
these agreements improve the accuracy of this numerical analysis solution and
wouid suggest that if the hydrologic characteristics of the porous material are
accurately known, then the computer solution of the differential flow equation
developed for this study would enable the pressure head profiles to be easily
obtained.

Fig.5.12 presents computed and experimental out-flow rate with respect to
time for the case of infiltration. The. computed results do not exactly equate
to the experimental data. This deviation is probably due to the expected error
in region with a fairly coarse mesh on seepage face.

This simulation period was 120 minutes, the total computer time use was
352 seconds. A fully backword difference scheme was used to solve for ¥ during
a time increment. Convergence was measured in terms of the maximum absolute
change in Awn at any node during an iteration. Usually between 2 to 10 itera-
tions were required during each time step to reduce max lAwnI below 0.0lcm

before advancement to next time increment.

B. Drainage

Fig.5.13 shows the comparison between the behavior of the computed free
surface and that of the experimental results in the case of drainage. Fig.5.14
also presents the pressure head distribution at the bottom for different times

with comparison of experimental data. In this computation the time increment
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Fig.5.13 Comparison of numerical and experimental results

of free surface (for drainage)
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Fig.5.14 Comparison of numerical and experimental results
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Fig.5.15 Comparison of numerical and experimental results
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was varied, ranging from 0.1 seconds during initial time steps to as much as

10 minutes after 120 minutes of drainage have elapsed. It can be seen from Fig.
5.13 that there is some difference between the two results at early time, with
the computed position remaining slightly above the observation position. The
observed potentials are falling more rapidly than the computed potentials and
hence the experimental model is approaching steady-state much more rapidly than
the numerical model. The departure attenuated at large values of time and the
system attained steady-state after about 10 minutes. Thus the numerical and the
experimental models appear to tend toward the same steady-state conditon, but
follow different transient paths in attaining steady-state. However, a careful
comparison in Fig.5.13 reveals the fact that the magnitudes of the differences
between the computed values of potentials and those actually measured are less
than 2cm at all times and all locations. These departures are small and can be
ignored.

That the numerical model can be approaching steady-state rapidly is led
by using the drying curve of material properties in Fig.5.3 in the calculatioms,
that is, in near saturated region the drying curve may be providing relatively
high values of hydraulic conductivity K and relatively low values of specific
moisture capacity (96/3y). Fig.5.15 presents computed and experimental outflow
with respect to time. In spite of the rapid change of experimental data, a

good agreement exists between computed and measured outflow.

5.4.2 Three-dimentional sand model

A. Infiltration

The results of the three-dimentional finite element analysis are compared

with the experimental results of three-dimentional seepage for infiltration at
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sections ABKJ and FENP (the letters locate the relative position of Fig.5.6) in

Figs.5.16 and 5.17.

150
¥ (e
440
> 4
/4
6 . E
——e— Numerical
e ® Experimental 120
t=0 i ¥
57 =/ -0
[ — A A 3 A A 4 e dd. 2
106 (cm) 60 40 20 0

Fig.5.16 Comparison of numerical and experimental results (for wetting)

along the cross section of ABKJ in Fig.5.6

(cm)
50

v

——mee Fgmerical

) ® Experimsuntal

40

A ]

0 20 40 60 106 (cm)

Fig.5.17 Comparison of numerical and experimental results (for wetting)

along the cross section of FENP in Fig.5.6
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The defference in curvature of the profiles at the two sections considered is
clearly evident. In this experiment, steady-state conditions were attained
after about 120 minutes and Fig.5.18 gives computed and experimental steady-
state results of the position of free-surface. Over all, the agreement between

the computed solution and the experimental determined values is good.

Numerical

Experimental

Fig.5.18 Comparison of numerical and experimental results
(for wetting) of steady state
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B. Drainage

Figs.5.19a and 19b show both results of experiment and numerical analysis
at sections ABKJ and FENP for a few drainage times. Steady-state condition was
attained after about 60 minutes. Fig.5.20 also shows computed and experimental
outflow with respect to time for infiltration and drainage. There are also good
agreements between computed and measured positions of free surface and these
good agreements are extremely encouraging and suggest that it is valid to apply
this three-dimensional finite element model to an actual analysis of a field
problem. But its possibilities.of application for field problems are limited by
the size of the computers available. This simulation required 110k words of
core storage and 2 hours of computer time for 15 time steps. In each time step,
the iterative procedure was necessary to achieve a satisfactory degree of con-
vergence on an average to 0.0lcm usually between 2 to 10 times. To reduce the

13),14)

core storage and computer time, some techniques have been proposed. For example,
a disk or tape is used to store data reading from cards or Jacobian matrix for
each elements. But this techniques can be used only for steady-state and linear
problemes and if this techniques is too applied, the drastic increase in com-
putational time is largely, then it is very difficult problem at the point of
view of cost. It must be, however, emphasized that consideration of economy is

strongly in favour of numerical methods which yield more comprehensive results

faster and at less cost than alternative techniques.
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Fig.5.20 Comparisons of numerical results out flow rate

5.4.3 Effects of initial conditions and hysteresis of retening curve

In order to investigate the further validity and applicability of the
finite element analysis in the saturated-unsaturated flow problem mainly for
two-dimension, numerical results were compared with the experimental results

15)
obtained by Akai and Uno. A watertank used in the experiment is 400cm long,

25cm wide and 50cm high and its front panel was made by a thick glass. Sand,
whose average grain size was 1.5mm was packed in the watertank and a sand model
with porosity of 0.44 was constructed. The water pressures in the sand model
were measured by pressure transducers at many points.

Among the many experimental results, the following five cases are chose
for comparison with the finite element analysis.

Case 1. Change of transient flow pattern due to the sudden water raise
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(a) The base rock is permeable and the initial water level is 10cm above

the base.

(b) The base rock is permeable and the initial water level is on the base.

(c) The base rock is impermeable and no water exists.

Case 2. Change of transient flow pattern due to the sudden drawdown

Case 3. Change of transient flow pattern due to the sudden water raise with the
hysteresis phenomenon

The finite element mesh is shown in Fig.5.21. The permeability in the saturated

zone and the porosity of the sand medium were measured to be 0.33cm/sec and

0.44 respectively. Since the relationship between 6 and Y, and also the rela-

tionship between 6 and Kr were not available unfortunately, these relationships

had to be assumed as shown in Fig.5.22 from the experimental data in which

6=0.44 in the saturated state and 6=0.0085 when the capillary tension (pressure

head) was —8cm.

Figs.5.23,5.24, and 5.25 show the results of fhe finite element analysis
(solid lines) and the experiments (dotted lines with open circles), when the
water rise was 20cm. In these figures, it is noted that the initial condition
of water produces the significant influence of the flow pattern. When tHe water
exist initially in the sand medium (Figs.5.23 and 5.24), the water front ad-
vances in the convex form, while it advaéces in the concave form when the water
does not exist initially. Such complex flow behaviors are well analyzed by the
finite element method.

Figs.5.26 (a) .and (b) are for case 2, in which the water level was re-
duced 20cm down from the initial level of 30cm. Fig.5.26 (a) shows the
comparison between the experimental result and the saturated-unsaturated finite
element analysis. The saturated-unsaturated finite element analysis was com-
pared with the conventional saturated finite element analysis in Fig.5.26 (b).

Fig.5.26 (a) indicates the both results agree very well. Fig.5.26 (b) shows
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that the change of the free surface by the conventional method is faster than by
the new method. This is because the effective porosity n, was used in the
conventional method, in which it is assumed discharge of water with the amount
of n, occurs instantaneously when the elevation of free surface was down.
However, in reality, the water discharge occurs gradually and the saturated
medium transfered to the unsaturated state wiiy a long time. In order to take
into account the delayed effei53 very complex methods have been proposed. The
saturated-unsaturated finite element method described in this thesis can treat
this complex phenomenon easily and can solve much more complicated problems.
Fig.5.27 is for the case 3 ;nd an example of hysteresis analysis. The

water retention curve was assumed as shown in Fig.5.28 and the hysteresis loops

are estimated by Maulem's method.

30 119
20
E
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b
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Fig.5.21 Finite element network
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5.5 Conclusions

The validity and the accuracy of the two-and three~dimensional saturated-
unsaturated finite element approach which has been descrived in Chapter 3 have
been investigated to compare the numerical results with the experimental data.
The results were that the good agreements between computed and measured pressure
head profiles ‘have been obtained. It should be remarked that the saturated-
unsaturated finite element analysis for two-—and three—dimensional model is very
powerful for the problems of transient flow throught soil and offers a realistic
representation of actual nature and applications to a wide range of problems.

In addition an advantage which has not been demonstrated herein in the case with

which seepage through nonhomogeneous and anisotropic regions can be included.

The moisture content field can be determined from the pressure head field by

using the Y(0) relationship. All computer runs were carried out on a ACOS-700.

The main conclusions in this chapter are as follows:

(1) The laboratory experiments on infiltration and drainage for two~or three-—
dimensional sand box were carried out with measuring pressure head and out-
flow rate.

(2) The problems of infiltration and drainage for same models were simulated
by numerical analysis.

(3) The relationships of pressure head (Y) - volumetric moisture content (6)
and hydraulic conductivity (K) - volumetric moisture content that have
been obtained in Chapter 4 were used as input data to gets numerical
results.

(4) The pressure head distribution at the hydrostatic equilibrium condit%on
according to the results of experiments in Chapter 4 was also applied to

the numerical simulation as an initial condition.
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(5

The results of two—and three-dimensional finite element analysis were com—
pared with the laboratory model tests. The numerical results showed the
very good agreements with the experimental data. These agreements suggest
that if the hydrologic characteristics of porous material are accurately
known, then the numerical solution of the differential flow equation
developed in this study would enable the pressure head profiles to be easi-

ly obtained.

(6) The saturated-unsaturated finite element method was applied to the various
problems whose initial conditions were different and found to be very ef-
fective to detect the realistic changes of the flow pattern.

(7) The numerical analysis to take into account of the complex phenomenon of
hysteresis is shown to be possible by using Maulem's method.

References

1) Hanks,R.J., A.Klute, and E.Bresler: A numerical method for estimating

2)

3)

4)

5)

infiltration, redistribution, drainage, and evaporation of water from soil,
Water Reso. Res., 5, 1969, pp.1064-1069.

Rubin,J.: Numerical method for analyzing hysteresis-affected, post-infiltra-
tion redistribution of soil moisture, Soil Sci. Soc. Amer. Proc., 31, 1967,
pp.13-20.

Staple,W.J.: Infiltration and redistribution of water in verical columns of
loam soil, Soil Sci. Soc. Amer. Proc., 33, 1969, pp.840-847.

Whisler,F.D., and A.Klute: The numerical analysis of infiltration considering
hysteresis into a vertical column of soil at equilibrium under gravity, Soil
Sci. Soc. Amer. Proc., 29, 1965, pp.489-494.

Poulovassilis,A.: Hysteresis of pore water, an application of the concept of

- 158 -



6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

independent domains, Soil Sci., 93, 1962, pp.405-412.

Poulovassilis,A.: Hysteresis of pore water in granular porous bodies, Soil
Sci. 109, 1970, pp.5-12.

Topp,G.C.: Soil water hysteresis measured in a sandy loam compared with the
hysteretic domain model, Soil Sci. Soc. Amer. Proc., 33, 1969, pp.645-651.
Topp,G.C.: Soil water hysteresis in sil£ loam and clay loam soils, Water
Resour. Res., 7, 1971, pp.914-920.

Topp,G.C., and E.E.Miller: Hysteretic moisture characteristics and hydraulic

conductivities for glass-bead media, Soil Sci. Soc. Amer. Proc., 30,1966,

pp.156-162. -
Miller,E.E., and R.D.Miller: Theory of capillary flow: 1, practical implica-
tions, 2. experimental information, Soil Sci. Soc. Amer. Proc., 19, 1955,
ppP.267-275.

Mualem,Y.: Modified approach to capillary hysteresis based on a similarity
hypothesis, Water Resour. Res., 9, 1973, pp.1324-1331.

Mualem,Y.: A conceptual model of hysteresis, Water Resour. Res., 10, 1974,
pp.514-520.

Gupta,S.K. and K.K.Tanji: A three-dimensional Galerkin-finite element
solution of flow through multi-aquifers in Sutter Basin, California, Water
Resour. Res. 12(2), 1976, pp.155-162.

Gupta,S.K. and K.K.Tanji: A new approach to reduce core storage and computa-~
tional time in finite element solution and its applications. "Finite Element
in Water Resources', Edited by W.G.Gray, G.F.Pinder and C.A.Brebbia, Pentech
Press, 1976, pp.2.179-2.194.

Akai,K. and Uno,T.: The study on quasi-one-dimensional non-steady seepage
flow of ground water, Proc.JSCE, No.127, 1966, pp.14-22,(in Japanese):
Boulton,N.S.: Analysis of data from non-equilibrium pumping test allowing

for delayed yield from srorage, Proc. ICE, 26, 1963, pp.469-482.

- 159 -



CHAPTER 6
DRAWDOWN TEST METHODS FOR DETERMINING AQUIFER CHARACTERISTICS

6.1 Introduction

Many complicated field flow problems can now be solved by applying finite
element method. However, the reliability of the results obtained by this
method depends largely on the accuracy of the numerical values of the hydraulic
characteristics of aquifers and also on properly assumed boundary condition. It is
obvious that the result of any éround water flow computation will be erroneous
when these values and boundary conditions are insufficiently known.

No matter how carefully laboratory permeability tests are made, they re-
present only minute volumes of soil at individual points in large masses. Their
value in solving field seepage and drainage problems depends on how well they
represent masses of materials that actually exist in the field. When used with
careful consideration of field conditions, laboratory methods can be of con-
siderable value. Nevertheless, in important projects it is often advisable to
require field tests that measure the hydraulic characteristics of large masses
of soil in situ.

A drawdown test is one of the most useful means of determining hydraulic
properties of aquifers. It may yield reliable results which, in general, are
representative of a larger area than are single point observations. Based on
the work of Darcy, Theis' or Jacob's formula have been commonly applied. To
obtain the hydraulic characteristics of an aquifer to be computed by pumping
a well and observing the effect of this pumping in a number of other wells in
the vicinity. These formulas for the analysis of pumping test data are based
on certain assumptions and generalizations. Erroneous results of the computa-

tions of the hydraulic characteristics of an aquifer are sometimes ascribed to
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incorrectness of the formula applied, whereas the actual case of error is the
fact that field conditions did not satisfy the assumptions on which the formula
is based. Therefore, in this chapter special attention is paid to the condi-
tions and limitations of these methods of analysis and new methods for the
analysis of drawdown test data will be shown.

Firstly, it is not always possible to install the well screen over the
whole thickness of the aquifer. In such a case the well is partially penetra-
ting. Around a partially penetrating well, the flow lines in the aquifer are no
longer horizontal but are radial in a vertical sense. Therefore it is necessary
to understand the effect of partial penetration. In section 6.2 formulas and
methods are described to avail in evaluating the data from drawdown tests under
partially penetrated aquifers, with some illustrative examples.

Secondly, drawdown tests sometimes have to be performed near the boundary
of the aquifer. In such instances, the assumption that the aquifer is of in-
finite areal extent is no longer valid. Therefore;'formulas and methods of
evaluating drawdown test results inaquifers with circular constant head bound-
aries are presented in section 6.3.

Each formula is developed in a nonsteady-state and for confined and un-

confined aquifer.
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6.2 Analysis of Drawdown Test Data for Pratially Penetrating Wells

6.2.1 Introduction

To obtain the formation constants from drawdown test data, Theis' Method
or Jacob's Method is commonly used. However , we are often confronted with the
case in which we can not obtain the formation constant, using these metFods.
For this problem, it is necessary to consider again the assumption on which
Theis'and Jacob's Methods stand as follows;

(1) Flow within the porous medium obeys Darcy's law.

(2) The layer is homogeneous and isotropic with respect to permeability.

(3) Storage coefficient is time independent.

(4) The system is considered to be of infinite radial extent with the well

at its center.

(5) Only single phase (or saturated) flow occurs in the aquifer.

(6) The well is assumed to have no surface of seepage.

(7) Head losses through the well screen are neglected.

(8) The pumping well is totaly penetrated in the aquifer.

It seems that some assumptions of those do not satisfy the conditions
of actual field drawdown test. In this conception, we consider that it is quite
common in developing aquifer storage projects not to open up the entire aquifer
thickness. In other words, the last assumption does not satisfy the conditions
of drawdown test. Therefore, it is necessary to understand the effects of par-
tial penetration and ?o consider the deviations from simple radial flow.

In the case of partially penetrating well, water moving toward the pumping
well has to converge in some manner into the open well from all parts of the
aquifer. This diversion of flow lines from the horizontal leads to a more
complicated pressure distribution pattern around the pumping well than is the

case with complete penetration. The produces pressure changes in the aquifer
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that many by substantially above or below those that would be predicted using
the Theis' solution.

There may be situations where the total thickness of the aquifer is not
known. As will be discussed below, the effects of partial penetration may be
used to determine the thickness of the aquifer or, that part of the total
thickness that is responding to the drawdown test, and may be considered the
anisotropy of permeability. Therefore, the drawdown test with partially penetra-
ting well would be more useful than that with completely penetrating well.

In this section, methods of handling partially penetration problems are

disccussed.

6.2.2 Analytical solution for partially penetrating well in a confined aquifer

Wells, of which the water-entry section is less than the aquifer they
penetrate, are called partially penetrating wells. Unlike the flow toward com-
pletely penetrating wells where the main flow takes place essentially in planes
parallel to the bedding planes of the formation, the flow toward partially
penetrating wells is three-dimensional. Consequently, the drawdown observed in
partially penetrating wells will depend, among other variables, on the length
and space position of the screened portion (water-entry section) of the obser-
vation wells, as well as on that of the pumping or flowing well.

In-aquifer where the horizontal conductivity is several times greater
than the vertical, the yield of partially penetrating wells may be appreciably
smaller than that of equivalent wells in isotropic aquifer.

In treating the problem of flow toward partially penetrating well (Fig.
6.1), the following assumptions are made.

(1) The aquifer is homogeneous, anisotropic and extends infinitelly with

impermeable clay layers above and below.
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Fig.6.1 Partially penetrating wells in a confined aquifer

(2) The aquifer is also considered to be horizontal and water saturated
at all times.

(3) The conductivities of main aquifer in the horizontal and vertical
directions have different, but constant values, kr’ kz, respectively.

(4) The well is of a vanishingly small radius and discharging at a cons-

tant rate.

A. Basic equation and solution

The differential equation that describes the fluid movement is given by

3%h 19 ,, 98h _ . 3h
kr + kr t kz el SS 3t
or2 3z

(6.1)
where r and z are co-ordinates as shown in Fig.6.1, t is time, and Ss is the

specific storage. Then the hydraulic head, h(=y+z), is now a function of r,

z, and t. The initial and boundary conditions to be imposed on the solution

are as follows:
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h(r,z,0) = H (head initially constant) (6.2)

h(w,z,t) = H (head at infinity remains constant) (6.3)
gh (r,0,t) = 0 (no flow across upper boundary) (6.4)
z

gh (r,b,t) = 0 (no flow across lower boundary) (6.5)
z

L
1im ZWkrer 2—%%—dz = -Q (flow rate into well of zero
>0 radius remains constant) (6.6)

Hantush has studied this problem for a more complicated situation where there

1),2)
is also clay leakage into the aquifer that was being pumped. By imposing the

condition of no clay leakage, i.e,Eqs.(6.4), (6.5), the Hantush's solution can

be simplified to

T* = W(u ) +£ (u_,r*/b,%/b,z/b) (6.7)
where r r r
Ankrb (r*)z
C;‘ =—-Q——§ , t= H-h, u, =W’ r* = z/kr r (6.8)

and ¢ is the drawdown of piezometric surface at any time and at any point in

aquifer, b is the thickness of aquifer.

Noting that -0
W(u) =Jw Z dw ( so called well functiom ) (6‘?)
ur :
™ . Tl
and fr(ur’r*/b,g/b,z/b)=_%%_ F _%_COSQEBE.)SlnG—E-)
n=1
[} et 0%y 20 (610
“r 4wb?

describing another form of the Hantush's solution

0~
ax | e ® (2nb+84+z)/w  __(20b-2-2z)V (2nb+2-z) Vi
g Jur [ 2, {erf — erf 7 + erf =

-9+ -
-erfﬁgﬂh—%;zlzg H+ erfS&fE%ﬁEL - erfS&—EléE-

* Jdw  (6.11)
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where

-W
grx =r e fors 20 ers &2y a, (6.12)
u

Substituting kr=kz=k in Eq.(6.7), the solution for an isotropic aquifer

is obtained as follows:

C* = W(U) + f(u,r/b,»@/b,sz) (6'13)
where
=_A4mkb_ (6.14)
C* q 4
2
- r (6.15)
U TR kT—SS)t

Javandel shows in some detail how Eq.(6.13) canbe derived and has used a
heat transfer model as an independent means of verifying the solutigi. By
comparing Eq.(6.13) with the Theis' solution for the pumping well with complete
penetration, it is evident that f (u, r/b, /b, z/b) is simply added to the
exponetial integral to describe the effects of partial penetration. For full
penetration, £ is equal to b in Eq.(6.13) and the result 1s the same of the
Theis' solution. Therefore, Eqs.(6.7), (6.13) are defined as general solutions

for drawdown test in a confined aquifer.

For relatively large values of time, the function fr(ur,r*/b,k/b,z/b)
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can be replaced by ZKO(nwr*/b) for all practical purposes in which case Eq. (6.

10) becomes independent of time as follows:

£ (u_,x%/b,2/b,2/b) # £_(x*/b,2/b,z/b) = (b/2m) £ (1/n)
XKO(nﬂr*/b)cos(nﬂz/b)sin(nln/b) (6.16)

where KO is the zero-order modified Bessel function of the second kind.
Similarly for relatively large values of time, the function Eq.(6.9)

becomes

WCu_ ) % In(t/r*?) - In(s_ /2. 25k ) (6.17)

From Eqs.(6.16), (6.17), the approximate solution of drawdown (Z) becomes for

relatively large values of time
= (Q/4mk_b)[ 1n(t/r*?) - ln(S_/2.25k ) + £ (£#/b,2/b,2/b)]  (6.18)
r
if an aquifer is isotropic (k -k =k, i.e. r=r*), Eq.(6.18) becomes Hantush'

1)
solution as follows:

L =mkn kb ——= [ 1n(t/r? ) - ln(S /2.25k) + £ (r/b L/b,z/b)] (6.19)
r = 2ni§ [ log(t/r?) - log(s_/exp(f )x2. 25k)] (6.20)
_ _4b 1 _ ,omr Tl nmz 6.21
£ 70 nf1 o KoCp )sin(H)eos(H) 6.21)

Moreover if the pumping well completely penetrated (f=b), Eq.(6.18) becomes to
be equal to the Jacob's approximate solution. Eq.(6.18) is rewritten with

common logarithms

= (2.300/47k b) [ log(t/r?) - 1og(sskzexp(—f:)/2.25k§)] (6.22)

It is evident that the third term in Eq.(6.18) is the effect of partial penetra-

tion of the pumping well.
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B. Effects of partial penetration

The effects of partial penetration on the'drawdown around a pumping well
is shown in Figs.6.2a, 6.2b and 6.2c. The variation is for a vicinity of well
in an isotropic aquifer (kr=kz). Regardless of the location of the wells and
the space position of their screens, the time-drawdown curves, at relatively
large values of time (t>Ss/kr2), will have approximately the same slope. This
slope is the same as would obtained if the pumping well completely penetrates
the aquifer. 1In other words, the effect of partial penetration has attained its

maximum value.
If the observation well is relatively apart (r/b>0.5), the drawdown is

given by the Theis' formula. In other words, the drawdown in such a well is not
affected by partial penetration; it is the same as though the pumping well
completely penetrated in the aquifer. Hantush has also discussed the wells

1)
located at r/b>1.5, regardless of the space position of its screen.
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0 LSRR A R 1 T T TVrTig T 1 LELBLELELAA LS L LRI BLERAE
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z
8 |-
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Fig.6.2a Drawdown characteristics for partially penetrating well in a
confined aquifer.
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Fig.6.2b Drawdown characteristics for partially penetrating well in a confined
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Fig.6.2c Drawdown characteristics for partially penetrating well in confined
aquifer

Fig.6.3 compares the drawdowns observed in two equaly distance wells, one

of zero penetration and the other screened throughout its depth of penetration.
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Noticing it shows that two wells equally distant from a partially penetra-
ting pumping well may register two different drawdowns. In fact, depending on
the length and the relative positions of the screens, it is possible for a more
distant well to reflect a greater drawdown.

A partially penetrating well will discharge less than a completely penetra-

ting well if the two are operated at the same pumping level, other conditions

controlling the flow remaining constant. If they are pumped at the same rate,
however, the pumping level of the former will be lower than that of the latteri
Pumping at the same level, the yield of partially penetrating well in an
anisotropic aquifer (kr#kz) will decrease with decreasing kz/kr, other conditions
being the same.. The effect of the anisotropy decreases as the well penetration
increase, as shown in Fig.6.3. Note in Fig.6.3 that the following dimensionless

time is used for the abscissa.

1

*=
t 4u

= (k/ss>(t/r2) ' (6.23)

If kr/kz does not differ greatly from unity, the anisotropy will not be of
particular consequence except for very small penetration. On the other hand,
should kz/kr be very small, the anisotropy of the aquifer may cause an apprecia-

ble decrease in the yield of the partially penetrating well. If kz should

actually vanish, the flow toward the well will become purely radial, confined to

the part of the aquifer in which the well is screened.

C. Methods of analyzing field data

In evaluating the results of drawdown test data where partial penetration
must be considered,i.e.,where r/b<0.5, one needs to know the geological condi-
tions of the aquifer under investigation. 1In dfilling the exploration wells, a

considerable number of cores well often be taken, and an analysis of the poro-
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sity of these samples provides valuable data on the nature of the aquifer. Such
cores, of course, provide only a very small sample of the total aquifer system.
Thus, the results of a drawdown test can be very helpful in providing an addi-

tional source of reliable data.

In the field of hydrology, basic methods of analyzing field data have
been developed; Log-Log Method, Log-Log Distance Drawdown Method, which will be
discussed below. In addition, Jacob's Method Adjusted for Partial Penetration,
which is a variation of Jacob's Method, and Modified Jacob's Method Adjusted for
Partial Penetration for anisotropic aquifer will also be presented.

All of the above methods require data that are measured in observation wells
at some distance from the pumping well. If one could measure fluid levels in
the pumping well itself, similar analysis could be made but it is rarely possi-
ble to keep the pumping rate exactly constant. Thus, the fluid levels may
fluctuate rapidly, making it difficult to get reliable data. The depth to the
pumping fluid level will, of course, be much greater than in the observation
wells, and this may make it difficult to obtain accurate measurements. For
these reasons, an analysis of the drawdown data in the pumping well is not

often made.

a Log-Log Method

In the Log-Log Method, one can use graphical methods similar to Theis’
Method. Knowing the values of /b and z/b one can prepare a graph of log C*
versus log t* (t*=1/4u)for the appropriate r/b between pumping and observation
wells. As is evident in Fig.6.3, separate curves will have to be prepared for each
observation well, unless the values of the three ratios (&/b, z/b, r/b) are
identical.

When the drawdown data from each observation well has been plotted on
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log-log paper with the same dimensions per cycle as used above, one can match
the field results to the theoretical curve in the same manner as is done when
using the Theis' curve. When the curves are matched, one can read the di-
mensionless parameters that correspond to each point of field data. It will be
found that one can also choose any point of the curve of field data and still

* *
obtain the same result by using the appropriate values of £ and t for that

particular point.

An equivalent value C* can be determined for any I measured in the
observation well and as equivalent value of t*, for the corresponding value of
real time, t. The permeability can be calculated from Eq.(6.14)

=Qc* (6.24
k 41bg )

and the compressibility factor from Eq.(6.23)

ss=(k/c*)(c/r2) A (6.25)

The compressibility obtained in this manner should give a value that is
of the same order as the compressibility of water. At the reservouir conditions

that will generally prevail in water storage operation, the compressibility of

water is about 4.6x107!!em™?.

b. Log-Log Distance Drawdown Method

When the aquifer is considered anisotrpic, the permeability must be
evaluated kr and kz, respectivery. In this case, it is necessary to develop a
new method and the "Log-Log Distance Drawdown Method" is a variation of the

Log-Log method. Knowing the values of %/b and z/b, one-can prepare a graph of
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log C: versus log t: similar to that shown in Fig.6.4, and

e = (k_/5_) (t/r%?) (6.26)
r .

t*
r

As is evident from Fig.6.4, separate curves will have to be prepared for
each r*/b. Here, as r* is dependent on a horizontal conductivity kr and a ver-
tical conductivity kz, estimating the values of /E;7E;_, separate curves of
r*/b will have to be prepared for each observation well.

When the drawdown data from each observation well have been plotted on
log-log paper with the same dimensions per cycle as used above, one can match
the field results to the theoretical curve in the same manner as is done when
using the Theis' curve. One obtains a graphical solution by placing the field
results on top of the theoretical solution and shifting the plots, keeping the
axes parallel, until the field data fall on the theoretical curves, when the
curves are matched, one can read the dimensionless parameters that correspond
to each point of field data and still obtain the same result by using the ap-
propriate of C: and t; for that particular point.

At any datum point, one therefore reads the drawdown [, and its corre-
sponding value of c:. The horizontal conductivity kr’ of the aquifer being
pumping may be calculated from

oz
kr= W (6.27)

Having obtained the horizontal conductivity, one reads from the same data
point used above, the radial distance r, of an observation well and the dimen-

sionless parameter r*. The vertical conductivity kz, may be calculated from

1 (I5y2
kz kr( = ) (6.28a)
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The compressibil-

ook
ity factor may be calcu- -
lated using the elapsed [
umping time t and its

pumping 1.0

corresponding value of

TTT”"I

t:, and the above deter-

Dimensionless pressure, [

mined vertical permeabil- 0.1
ity from
Theis’ solution
0.01 sl i1 uunl 11 111_1111 A ,1 juxnl il lxml
SS=(kr/t*)(t/r*2) 0.1 1.0 10 1.0x10%°  1.0x10°

(6.28b)

Fig.6.4 ;: versus t: from Eq.(6.7) for each r*/b.

Dimensionless time, t}

c. Jacob's Method Adjusted for Partial Penetration

During the time period in which the ultimate semilogarthmic straight line

forms, the drawdown is given, depending on the well observed, by Eq.(6.19) or

Eq.(6.20). Because the second term of these equations are constant with time,

it is clear that Jacob's method can be applied if the numerical value of this

constant can be obtained. The procedure is as follows:

(1) On the observed semilogarithmic plot, construct the ultimate straight

line and extend it to the zero-drawdown axis.

(2) Obtain the slope, (m=Af/cycle) of this line and its time intercept,

(t/r?) on the zero-drawdown axis.

(3) The permeability can be calculated from Eq. (6.20)
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100

E /b
2.3 E 0,02
k 4Tbm (6.29) : :': z/b=0.0
SRR
0,23
| R
(4) Compute exp(f_) from Eq.(6.21) E o:
°:
interpolating r/b,%/b,z/b as shown [ z'
o.
in Fig.6.5. . L
o.
(5) Then calculate the compressibility 1 o,

factor from

LR BB AALLI

v

0.1
2.25kt =
s~z ]-exp(£)  (6.30) 3
C
=
0.0%0 vy b adaal b d 2 A4 22 "\
.01 0.1 1 1.5
r/b

Fig.6.5

The relation of fs versus r/b.

d. Modified Jacob's Method Adjusted for Partial Penetration

This method is an improved ome of "Jacob's Method Adjusted for Partial
Penetration” to determine anisotropic coefficients of permeability.

The procedure to determine the formation constants is as follows.

(1) Horizontal permeability coefficient ( kr )
Plotting drawdown data obtained in each observation well on the common
semilogarithmic paper, the ultimate straight lines are gotten for relatively

large values of time. If the confined aquifer is homogeneous these lines become
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parallel as shown in Fig.6.6. To obtain the slope ( m = AZ/cycle ) of these

lines the horizontal permeability can be calculated from Eq.(6.22).

k = 2.30Q/4mbm

T (6.31)

é
i f ‘3 log (t/r?)

Y o

Fig.6.6 Semi-log plot of drawdown data

(2) Vertical permeability coefficient ( kz )

Extending these lines to the zero-drawdown axis, one can obtain their time
intercepts ( 51 = t/ri ) for each observation well on the zero-drawdown axis as
shown in Fig.6.6.

From Eq.(6.22) these values of Si are described

81 = aexp(—le)
(52 = (Xexp(—f:z) (6.328)
§3 = aexp(-fza)

where o =S k /2.25k2.
S 2z r

The ratio of above values can be written
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Bi2 =62/68;=exp( le-frz)

s
r
s

(6.32b)

Bis =63/61=exp(f:1 -f 3)

Interpolating known factors ( /b,
z/b,r/b ) in Eq.(6.16), one can prepare
a graph of f: versus kz/kr for each ob-
servation well as shown in Fig.6.7.
Since in most anisotropic aquifers, the

horizontal coefficient of permeability

is larger than the vertical one, then

can be treated as kz/kr<l'

Calculating the values of exp(

r r
fSi —fsj ) versus kz/kr the graph of

B.. versus k /k_ can be gotten as shown
ij z T
in Fig.6.8.

From the gotten values of time
intercepts ( Gi ) and in Eq. (6.32b)

U4
the point of Bi can be easily decid- %

3

ed on the ordinate of the graph, as

a result, the ratio ( a ) of kz/kr @

can be determined. Having obtained
the horizontal conductivity and the
ratio kz to kr’ the vertical conduc- Fig.6.8 Relation of B versus kz/kr

tivity kz may be calculated from

k= ak, (6.33a)
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(3) Specific storage ( Ss )
By using the ratios ( a ) of kz to kr in Fig.6.7, one can get a value of

f_; for each observation well and determine the specific storage ( Sy ) from

following equation

= 2 r
SSi = 2.25 ( kr /kz )5iexp( fsi ) (6.33b)

e. Trial and Error Method for Unknown Aquifer Thickness

In general, the thickness of aquifer is assumed from the boring logs that
have been obtained from boring a pumping well and observation wells. But some-
times one problem that has arisen in connection with the aquifer being pumped
is that the total thickness may not be known precisely from the boring logs.
The question has therefore been raised how drawdown test results can be used to
determine the total thickness of the aquifer that is responding to the pressure
disturbances caused by the water removal.

Since there are normally several wells available for observation purposes
at the time of the drawdown test, it is quite likely that one or more of these
wells will be located for enough from the pumping well so that the distance r will
exceed 0.5 times the aquifer thickness b. In this event, one should first ana-
lyze the drawdown behavior of the distant.observation wells where it is reason-
ably certain that r>0.5b. In this case, the Theis' solution can be employed
directly because the effects of partial penetration should be nil. Once one has
obtained a match between field data and the Theis' curve, the total effective
permeability-thickness can be calculated from

T=ib= ;2 ‘2: (6.34)

On the basis of the core analysis results from wells that have been com-

pleted in the aquifer, one should have an approximate idea of the average per-
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meability, and thus the first estimate of b can be determined from the value of
kb obtained in Eq.(6.34). Appropriate curves of {* versus t* can then be pre-
pared for each well where r<0.5b since the necessary ratios (&/b,z/b,r/b) can
all be calculated. If the observed field data make a satisfactory fit to these
curves of dimensionless values, one can again calculate kb and compare with the
results previously obtained for wells with r>0.5b. However, if the field data
do not give a good match because they lie above ( or below ) the theoretical
curve, the assumed value of b must be reduced ( or increased ). This process
can be repeated on a trial and error basis until a satisfactory match is ob-

tained. In this manner, both b and k can be determined.

D. Analysis of drawdown test data

The following discussion is on example calculations for the methods given
above, except " Log-Log Distance Drawdown Method ". The drawdown test data are
taken from a real aquifer project that is located in Okayama City. The geologic
conditions obtained from well logs is shown in Fig.6.9. The water level of the
sand-gravel layer under G.L.-13m is different from that of the upper gravel
layer; therefore, the sand-gravel layer is revealed a confined aquifer. A test
well to check the thickness of the sand-gravel layer was penetrated into the
depth of G.L.-30m, thickness could not be ascertained though. The pumping test
data are taken from a hypothetical case where both pumping and observation
wells partially penetrate the aquifer of unknown thickness. The depth of pene-
tration in each observation well is 20m and that of penetration in the pumping
well is 25m, as shown in Fig.6.9.

The drawdown test was performed on this project using an average rate of

30 hours. Water levels were measured in observation wells.
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a. Log-Log Method and Trial and Error Method

As a first trial in analyzing the drawdown data of this drawdown test,

b=100m was assumed, trial curves were compared with the drawdown data. Trial

curves did not give a satisfactory fit to the field data, indicating the as-

sumed aquifer thickness of 100m is too high.

A second trial curve of C* versus t* was constructed on the assumption

that b=30m. Trial curves again did not fit the field data.

A third trial of b=50m was assumed. The parameter /b is obtained for the

pumping well

2/b=25/50=0.5

wells also have penetrations of 20m, then z/b is obtained

z/b=20/50=

0.4
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and radial distances of each well to obtain

No.l rl/b=5.0/50=0.1
No.2 r2/b=8.7/50=0.17
No.3 r3/b=15/50 =0.3

No.4 r4/b=26/50 =0.52

One can interpolate the results to construct the curve of C* versus t* for
£/b=0.5, z/b=0.4 and each r/b curves are compared with the drawdown data as shown
in Fig.6.10, they can be matched satisfactorily to the field data.

At the match point where t*=3.1, t*=1.3x10°%, one reads f=1x10%cm and t/r2=

1x10 %sec/cm?. From Eq.(6.24), the permeability can be calculated

k= B*_ 7.0x10%x3.1
2mbg  (2x3.14)° (5.0%10%) - (1.0x102)

= 6.91x10 ’cm/sec

From Eq.(6.25), the compressibility factor can be calculated

S;%N =5-)=(6.91x107 %) x (110 %)/ (1.3x10%)=5.32x10 *cn”?
, 10-3 ) 10~2 10"!  t/r?(sec/cm?)
10 T r——r— Y o ) T
|
1
I
[}
! . 05 tt
10? ! 10° 10 — e
1.0 1 ' o, o r=5.0n
! ' Q=7.0x10°cm*/sec e r=8.7m
i : /b =0.5 4 r=15.0m
! i Match Point o r=26.0m
- n2} . Z/b =0.4
—==10"n-e-
'P\ Theis solution
: z(cm)w
10F
*y Fig.6.10 Analysis of drawdown test data for partially penetrating

wells in the confined aquifer.
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b. Jacob's Method Adjusted for Partial Penetration

The same data are analysised by the Jacob's Method Adjusted for Partial
Penetration, the values of the slope for each observation well are nearly same
as shown in Fig.6.11, therefore the permeability can be obtained from the slope

of straight lines and Eq.(6.29)

3
K s "I 106 OxIoRe” © 6-41X10 fen/sec
0 10" _ 1078 1072 t/rz(sec/cnz)>
— - T —r——r
o r=5.0m
L Q= 7.0x10%cm?/sec o r=8.Ta

g(cm)

v

Fig.6.11 Semi-log plot of drawdown data for partially penetrating wells in
the confined aquifer ( for Q=7.0x103cm3¥/sec ).
The compressibility factor can be calculated from the time (t/r?) inter-
cept on the zero-drawdown axis, but for the effect of partial penetration,
different values of t/r? are obtained from respective data of the observation

well, as indicated in Table 6.1.
Table 6.1 ( for Q=7.0x10%cm®/sec)

r (m) 5.0 8.7 15.0 26.0
r/b 0.10 0.17 0.30 0.52
2/b 0.5 0.5 0.5 0.5
z/b 0.4 0.4 0.4 0.4
£ 1.486 0.833 0.392 0.147
(s2é72m5 2.3x10"7 | 6.3x1077 1.5x107° 1.5x10°°
s 1.47x107°% | 2.03x10 "% [ 3.20x107° | 2.51x107°
Lem™l)
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Interpolating the parameter /b, z/b; r/b.in Eq.(6.21), the values fs(r/b,
/b, z/b) are obtained for each observation well by numerical calculation. Us-
ing Eq.(6.30), the compressibility factor can be calculated as indicated in
Table 6.1 and its average value is 2.32x10 %cm '.

In the same field the drawdown test was performed using an average rate of

Q=4.33X103cm3/sec for a period of 30 hours. In this case, the permeability can

be obtained from the slope of straight lines in Fig.6.12.
_ 2.30Q 2.30%4.33x10°

-3
k =im = 53,156 0x107x33 - 4-81X10 “em/sec
107 1073 ' , 1072 t/r%(sec/cm?) 107!
0 ' - T
o r=5.0m
Q=b.33x10%cm3/sec
5 e r=8.Tm
o r=15.m
100
0 r=26.0m
200
z(cm)
300

Fig.6.12 Semi-log plot of drawdown data for partially penetrating wells
in the confined aquifer ( for Q=4.3x103cm3/sec ).

The compressibility factor can be calculated as indicated in Table 6.2,

!, Thisvalue is very small compared with the

. its average value is 1.97x10 %m”
value of the pumping test using an average rate of 7.0x103cm®/sec. This dis-

crepancy is discussed in paragraph E.
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Table 6.2 ( for Q=4.333x10%cm®/sec )

Y (m) 5.0 8.7 15.0 26.0

r/b 0.10 0.17 0.30 0.52

2/b 0.5 0.5 0.5 0.5

z/b 0.4 0.4 0.4 0.4
4_557 1.486 0.833 0.392 0.147
t/r? 2.0x107° 5.0x107° | 1.2x107°® 3.0x107°®

(sec/cm?)

SS 9 56X10'11 1.24x —-10 —-10 -10

(ot ) |9 .24x1071°%(1.92x10 3.76x10

c. Modified Jacob's Method Adjusted for Partial Penetration

The parameters %/b, z/b are obtained for the pumping well and the obser-

vation wells

&/b = 25/50 = 0.5

z/b = 20/50 = 0.4

and (r/b) can be calculated with radial distances from the pumping center to

each well
No.1l r1/b = 5.0/50 = 0.1
No.2 r2/b = 8.7/50 = 0.17
No.3 r3/b = 15/50 = 0.3

Fig.6.13 shows the result of pumping data plotted on the semilogarithmic paper.

Horizontal permeability can be determined from Eq.(6.31)

k _=2.30Q/4Tbm = (2.30%7.0x10%)/ (4%3.14%5.0x10°%40) = 6.41x10 3
r (cm/sec)
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Fig.6.13 Semi-log plot of drawdown data

The values of time intercepts ( 61 ) for each observation well are obtain-

ed as follows:

§,=2.3%x10 "sec/cm?
8§,=6.3x10 'sec/cm?

§3=1.5x10 °sec/cm?

From these values the ratios ( Bij ) are

812 = 52/61 = 2.74

Bis = 83/8, = 6.52

Interpolating known factors (&/b, z/b, ri/b) in Eq.(6.16), Fig.6.14 can be
prepared for each observation well, and the graph of Bij versus kz/kr can be
easily gotten as shown in Fig.6.15. By using values of B;2, Bi13, the ratio ( a )
of k, to k_can be determined on Fig.6.15, i.e. a=kz/kr = 0.105, then the ver-

tical permeability coefficient is calculated with Eq.(6.33a)as following,
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k= 0.105%6.41x10 ’cm/sec = 6.73%x10 “cm/sec

Deciding the ratio ( a ) on the abscissa in Fig.6.14, the value of f:i for each

observation well and the specific storage ( Ssi ) are determined from Eq.(6.33b).

The average value of SS is

Sg = 9.73x10 "cm *

10~2 10™! kz/kr

Fig.6.14 Relation of f: versus kz/kr
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Fig.6.15 Relation of B versus kz/kr
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E. Discussion of analysis of drawdown test data

In section C, some methods of analyzing field data are given and in sec-
tion D the example calculations for the methods are shown. Comparing these
methods with Theis' and Jacob's methods, which can evaluate an anisotropy of
permeability and the aquifer thickness, proved that they would be more effec-
tive than Theis' and Jacob's methods.

Using Jacob's Method, various values of compressibility factor for
each observation well are obtained. Therefore the constant compressibility
factor can not be calculated. Sometimes, Jacob's method results a big variatiom
for a compressibility factor of second to third power in difference.

In section D, different compressibility factors are obtained for each ave-
rage pumping rate, that is, Ss=2.32x10_°cm-1, SS=1.97><10_1°cm-1 are obtained

from Q=7.OX103cm3/sec, Q=4.33X1030m3/sec,respectively. This discrepancy is con-

-

sidered as follow.

General behavior between of the
effective stress (0')-volumetric strain
(ev) is shown in Fig.6.16. From Fig.6.16

it is evident that the compression factor

Effective stress(c')

is small as the average pumping rate is

" Volumetric strain (g )
small. olum v

A drawdown test aimes at finding Fig.6.16 Behavior of 0'—€v.
coefficients of an aquifer before a ground excavation. In the actual excavation
the drainage rate of water is larger than the drawdown test. Thus, the compres-
sion factor must be assumed a larger value than that obtained from drawdown
test.

For example consider the confined aquifer as shown in Fig.6.17. In this

4)
case the drawdown for unsteady state is obtained as follows;
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—& = erfc(f) (6.35)
where C0

£ =x/2VE/SSt (6.36)

is drawdown

and § is drawdown,

%0

at the face of excavation, and

X Fig.6.17
erfc is the compl t g
© mplementary error Excavation trench in a confined aqui-
function, i.e, fer.
erfc(§)=1-erf (%) (6.37)
T/Ce
The numerical result of Eq. 1.0
(6.35) is shown in Fig.6.18. If OJ:
0.6}
a small SS is given in Eq. (6.36) S
o.M
the value of & becomes a small 02[
-
value, then from Fig.6.18 the O s — . bbby
. . . £
drawdown { at the distance x :
from the excavation face becomes Fig.6.18

Numerical solution of erfc(&)
large .

For this reason if the wvalue SS obtained from small pumping rate is used
in the analysis of the ground excavation, the larger result of the analysis
must be obtained comparing with the actual drawdown.

In the actual excavation analysis, sometimes this discrepancy has happen-
ed. For this cause in traditional notion, it has been considered that the per-
meability coefficient obtained from drawdown test is larger than that of the
aquifer. Therefore the compressibility factor has not been watched. However,
from the above evaluation, it becomes clear that the drawdown in the actual
excavation is smaller than that of the analysis.

On the other hand, it can be considered that the permeability coefficient

is independent of the pumping rate from the analysis in section D.
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6.2.3. Analytical solution for partially penetrating well in an unconfined

aquifer

The subject of this investigation is the flow toward a single well, part-
ially penetrating an unconfined aquifer that is infinite in lateral extent.
The saturated region is unconfined, possesing a free surface that is ini-
tially horizontal. The velocity distribution in time and space within the
porous aquifer is obtained for various piezometric head functions in the well.
Then it is possible to relate quantities, such as free surface drawdown, well
discharge flow rate, and piezometric head with aquifer parameters and answer
some pertinent questions regarding the behavior and characteristics of this
physical system.

First, certain physical assumptions about the problem need to be made.
Each one restricts in some way the applicability of the final solution to
the real physical problem and determines the nature of the mathematical model
of the situation.
(1) Flow within the porous medium obeys Darcy's Law.
(2) The water is assumed to be incompressible and the porous matrix
rigid. This assumption is suitable for unconfined aquifers where stor-
age yield corresponds to a loﬁefing of the free surface with essental-
ly no compression of the porous matrix or volumetric expansion of
water.
(3) Only single phase ( or saturated ) flow occurs in the aquifer.
(4) Capillarity is neglected at the free surface.
(5) The porous medium has homogeneous, constant, anisotropic permeabili-
ty.
(6) The effective porosity or specific yield of the aquifer is assumed

to be uniform and constant.
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(7) The well is assumed to have no surface of seepage.

(8) Head losses through the well screen are neglected.

A. .Basic equation and solution

The physical situation is one of three-dimensional flow with axial symmetry
as shown in Fig.6.19. Thus cylindrical co-ordinates are the natural selection.
The origin is taken to be on the well axis at the level of the horizontal free
surface at time zero.

Darcy's law gives

oh oh
o VT R (6.38)

V=-k
r

Applying the equation of continuity for incompressible flow yields Laplace's

equation for the potential,

2 2
kr3h+klgh rr 20 o (6.39)
3:‘2 rr r

at all points of the saturat-

ed aquifer.

The boundary conditions

for this problem are as follows:

(1) The free surface is a

§

boundary whose location in

space and time is unknown be- Unconfined aquifer

fore the problem is solved. m
Impervious bottom
Therefor, let z={(r,t) desig-

Fig.6.19
nate the free surface. Since

Partially penetrating wells in unconfined
atomospheric pressure over the aquifer.

free surface is taken to be
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zero, the defining equation for h becomes
h(r’z,t)z=c =L (at z=¢ ) (6.40)

The kinematic boundary condition comes from the fact that particle initia-
11y on the free surface remains on the free surface as the surface moves.
Mathematically, this means that the derivative following the motion of the
equation defining the free surface must equal zero. Thus, the nonlinear, kine-

matic, free-surface boundary condition,

3h oh oh oh
Sy‘SE‘ k—— + k_( o )24+ kz(—gz-)2=0 (at z=) (6.41)

where Sy is the effective porosity or specific yield.

(2) On the no flow across lower boundary,

9h/3z =0 (6.42)

(3) Along the well (-2,<z<-2;),

...2,1
1lim 27k rJ gh dz = -Q (6.43) .
>0 T J.g,°%t ,

Initially the free surface is horizontal. Thus,

h(r,t) = H (t=0) (6.44)

This is a mixed boundary-value problem with a non-linear boundary condition
at the free surface. Note that time appears only in the boundary conditions
and not in the partial differential equation.

It is now appropriate to introduce dimensionless variables

h*=h/H, z*=z/H, C*=C/H, t*=t/t0, Q*=Q/(er2),2*=£/H (6.45)
and r* = _Lm‘— (6.46)
H z r
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to is the time scale factor.
Writing the system equations in dimensionless from gives the following set:
Differential equation

2 2
'ht | 1 ont . atwx 6.47)
grsz  T* 0T az?

Boundary conditions

b e (A2 ey =0 (at %= %) (6.48)
g* =h* ( r*,z*,t*)z*=C* (6.49)
g:: =0 | (6.50)
in 0 2 (6.51)
h* = 1 r* > (6.52)
Initial condition
h* = 1 ( at t*=0) (6.53)
The parameter € is defined as
e = ( tokz)/(syH) (6.54)

When € is small, perturbation expansion techniques may be used to linearize the
5),6)
problem. The dimensionless drawdown [** is solved.

11 RE+L*/24z%+{ (RF+L*/24z%) 2 4r*2}1/2

C** =—'_*[_ 109 * * 0% x) 2 *2 1/2
TL*! T4 LE-LX/242%+{ (LF-L*/242%) % +r*?}

LE+L* 2z %+ { (LE+L*/2-2%) 2 4r*x2}1/2

LE-L*/2-z*+{ (R§-L*/2-2*%) % +r*2}1/?

.

_; _coshA(1+z*) -sinh) (£*/2) - cosh) (1-£Y) exp (~At* tanhd) -3, (\r*)dr

0 Asinh)-cosh)
® sinh) (2*/2) -coshif¥-coshiz* . 3. *)dx
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where

C**’:C*/Q* =Cer/Q (6.56)

**-— =
thk=ct* kzt/SyH (6.57)

Substituting kr=kz=k in Eq.(6.55), the solution for an isotropic aquifer

is obtained as the same form of Eq.(6.55).

B. Effects of partial penetration

Considering the shallower the penetration of a pumping well is the more
superior the effect of partial penetration becomes, the efféct of partial
penetration on the drawdown around a pumping well for %/H=0.2 is shown in Fig.6.20.
The variations are around a well in an isotropic aquifer (k=kf=kz). If the
observation well is at relatively large distance (r/H>1.2), the time-drawdown is
given by the Theis' formula. In other words, the drawdown in such well is not
affected by partial penetration; it is the same as though the pumping well com-
pletely penetrated the aquifer. The same result is obtained from Fig.6.21 in
the case of %2/H=0.4.

In Figs.6.22a,6.22b, the effect of well penetration is shown. It is clear
that for the observation well set in relatively small distance (r/H=0.3), the
effects of partial penetration is striking. On the other hand, for the obser-

vation well set at r/H=0.6 its effect is not so striking.
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Fig. 6.20

Drawdown characteristics for partially penetrating well in an unconfined aquifer
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Drawdown characteristics for partially penetrating well in an unconfined aquifer
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Drawdown characterstics for partially penetrating well in an unconfined aquifer

- 197 -



C. Method of analyzing field data

In evaluating the results of a drawdown test where partial penetration
must be considered, i.e.,where r/H<l.2, one needs to know the geological con-
ditioﬁs of the aquifer under investigation.

In the field of hydorology, basic methods of analyzing field data have
been developed; " Log-Log Method " for an isotropic aquifer and " Log~Log Dis-
tance Drawdown Method " for an anisotropic aquifer.

Both of the above methods require data that are measured in observation

wells at some distances from the pumping well.
a. Log-Log Method

In the Log-Log Method, onme can use graphical method similar to Theis'
method. Knowing the values of £/H,%3/H and z/H, one can prepare a graph of
logl** versus log t** for the appropriate r/H between pumping and observation
wells from Eq.(6.55). As is evident from Fig.6.23 separate curves will have to
be prepared for each observation well, unless the values of the three rations
(/H,z/H,r/H) are identical.

When the drawdown data from each observation well have been plotted on
log-log paper with the same dimensions per cycle as used above, one can match
the field results to the theoretical curve in the same manner as is done when
using the Theis curve.

When the curves are matched, one can read the dimensionless parameters
that correspond to each point of field data. It will be found that one can also
choose any point of the curve of field data and still obtain the same result by
using the appropriate values of {** and t** for that particular poinf.

An equivalent value of [** can be determined for any Z, measured in the
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Fig.6.23 Relation of log I** versus log t** from Eq.(6.55)

observation well and an equivalent value of t**, for the corresponding value of

real time,t. The permeability can be calculated from Eq.(6.56)

k = L**Q/CH . - (6.58)

and the effective porosity from Eq.(6.57)

Sy= kt/t**H (6.59)
b. Log-Log Distance Drawdown Method

" Log-Log Distance Drawdown Method " is a variation of " Log-Log Method ",
The characteristics of the aquifer kr,kz and Sy may be obtained by match-
ing the measured drawdowns and the theoretical curve from Eq.(6.55).

For this purpose the values of 2*,2% (pumping well) and z* (observation
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well) have to be inserted in Eq.(6.55); C** becomes a function of t** and r¥*.
A set of couves C**-t** for different constant r* are to be drawn on a log-log
paper. Since most anisotropic aquifers have kz/kr<l’ r* has to be smaller than
r/H.

The measured drawdowns have to be represented on a similar logarithmic
paper. By matching them with one of the curves of the set, five values are ob-
tained from the best fitting curve, an equivalent value of Z** can be deter-
mined for any g, measured in the observation well and an equivalent value of
t**  for the corresponding value of real time t. Since r,H and Q are known, the

values of kr’kz and Sy may be easily found from next equations.

kt =r**Q/CH (6.60)
k, =(r*H/r)2kr (6.61)
S =tk /t**H (6.62)
y ¥4

D. Analysis of drawdown test data

The following discussion gives example calculations for the methods dis-
cussed above. The pumping test data are taken from real aquifers project that

is located in Kyoto City.

a. Log-Log Method

The geological condition obtained from well logs is shown in Fig.6.24.
The water level in the sandy layer is G.L.-1lm and the aquifer of sandy layer

is revealed as an unconfined aquifer. Atest well to check the thickness of the

sandy layer was penetrated into the depth of G.L. -30m, however, the thickness
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could not be ascertained. The drawdown
test data are taken from a hypothetical
case where both pumping and observa-
tion wells partially penetrate the
aquifer of unknown thickness. The

depth of penetration in each observa-

tion well is 5m and that of penetration
in the pumping well is 13m, as shown in
Fig.6.24.

The drawdown test was performed on
this project using an average rate of

7.0x10%cm¥/sec for a period of 5 hours.

Observation

10.05m
) 5.40m wells
Pumping well [72,25m
T l. v .o ¥ -
|
1
1
[
R IR
S R
s RS | . e
PR N T e |
e e, 2l
B I o
! |
1
! &
! Sand and gravel —
'
1
[
Fig.6.24

The geological condition of the field

As a first trial in analyzing the drawdown data of this drawdown test, H=

50m was assumed, trial curves were compared with the drawdown data. Trial curves

did not give a good match.

A second trial curves of I** versus t** was constructed on the assumption

that H=10m. Trial curves again did not fit the field data.

A third trial of H=20m was assumed, the parameter £*,1¥ are obtained for

the pumping well

L*= 2/H= 13/20 =0.65

2%

%3/H= 6.5/20= 0.325

Observation wells also have penetration of 5m,

z*= z/H= 5/20= 0.25
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and radial distances of each well to obtain
No.l r¥= 2,25/20 = 0.113
No.2 r;= 5.40/20 = 0.270
No.3 r¥= 10.05/20 = 0.50
One can interpolate the results to obtain the curve of I** versus t** for
2*,2:,2* and each r;. Curves are compared with the drawdown data as shown in Fig.

6.25; they can be matched satisfactorily to the field data.

*®

*

()
No. 1 (r = 2.55 m)
No. 2 (r = 5.40 m)
No. 3 (r = 10.05 m)

) Match point
(9]
~ [
o i : Q = 7000 cm3¥/sec
| | H=20m
: : £=13m
{ I f3=6.5m
: : z=5m
1 Lt gl 1414 Ldaasd [ ¢
100 T 103 : { 10" t(sec)
| |
0.01 L4 1 aaal ' TN & YTy | 1 P
0.2 1 10 tre
Fig.6.25

Analysis of drawdown test data for partially penetrating wells
in the unconfined aquifer(isotropic)

Using the match point and Eqs.(6.58),(6.59), the permeability and the
effective porosity can be calculated as indicated in Table 6.3.

By the way, the same drawdown test data was analyzed by Jacob's method as
shown in Fig.6.26. The permeability obtained from the slope of straight lines

is as follows:

3 -
e 2:30x7.0x10 = 4.75x10 2

4x3,14%2.0%x10%x13.5 (cm/sec)

- 202 -



Table 6.3

Analysis of drawdown test data for partially penetrating
wells in the unconfined aquifer(isotropic)

¥ (m) 2.55 5.40 10.05
Z {(cm) 27.5 15.5 10.0
t (sec) 6.2x10% | 2.75x10° | 2.75x10°
gx* 0.60 0.34 0.22
t** 6.00 2.65 2.65
k (cmy/sec) | 7.64x1072 | 7.68x1072 | 7.63x10~2
Sy 3.95x1072 ) 3.99x107% | 3.96x1072
t/r? (sec/cm?)
- - -
But the various effective 10 1072 ,,v%9'1 ——
= 2.55m
porosities for each observation °r
ar=5.40m
well are obtained as indicated
10}t o r=10.05m
in Table 6.4. The major cause
Q=T7.0x10%cm?/sec
for this discrepancy must be
the effect of partial penetra- 20F
tion.
301
b. Log-Log Distance Drawdown C(cm)'

Method

The geological condition
obtained from well logs is
shown in Fig.6.27. The water
level in the sandy layer is
G.L.-11.47 m and the aquifer
of sandy layer is revealed an
unconfined aquifer. A test well

to check the thickness of the

Fig.6.26 Semi-log plot of drawdown data
for partially penetrating wells
in the unconfined aquifer.

Table 6.4
Effective porosity from Jacob's Method

x (m) 2.55 5.40 10.05
t/r¥sec/cm?)| 3.9x107"] 5.4x107" |7.2x10""
Sy 8.3x10"2|1.2x10" ! |1.5%x107!
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observation

sandy layer was penetrated into Pumping well well
— W
the depth of G.L.~40.4m. From l [7 l
the result of well logs, the ; H :
" | [ 1
thickness of sandy layer is re-. ; : : :
= ! ! 1
i
vealed H=23.2m . This assump- ! : :
-
e be )
tion is based on that the clay ;'“‘ ;z-‘-'ii'*~'-‘|
: O : b e
layer that is regarded as an Sl iiié S R ,?713-
impermeable layer lies at | Sandy-gravel
£
G.L.-34.67 m. a 21m
Y L
The depth of penetration
in each observation well is
E_4
4.23m and that of penetration Impervious bottom
in the pumping well is 6.93m, Fig.6.27
The geological condition of the
as shown in Fig.6.27. -field

The drawdown test was

performed on this project using an average rate of Q=3.23X103cm3/sec for a
period of 24 hours.

The parameters 2£*,%% are obtained

2% =2/H= 6.93/23.2 =0.299

2% =23/H= 3.46/23.2=0.149

Observation wells also have penetration of 4.23m
z* =z/H=4.23/23.2 =0.182

One can interpolate these paremeters in Eq.(6.55), curves relating Z**
(= cer/Q) versus t** (tkz/SyH) at different value of r* (=(r/H)»/kz7kr ) have
been computed numerically on a logarithmic paper as shown in Fig.6.28. The

drawdown { as function of t have drawn on similar logarithmic paper and the
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measured points and theoretical curves have been match in Fig.6.28. The values
of r*,g**, t** r r and t at the matching points are presented in Table 6.5. The

results show an average anisotropy of kz/kr=0.32 and k =1.92X10_lcm/sec, k =
T z

6.04%10 2cm/sec.

;** J
Z(cm)
102§
-1 r= 3m-®
S TR S e~ 9n-e
S =0.1 o7 o e X
° r*/B
5 - 0.15 N\ r=21m—®
® > ‘\&
0.39 ‘!-EEEL
(R \1
N L 0.4 ' \ Match point
( 0.2 |
P Q.59 | 0=3.23x10%cm?®/sec
! H =23.2m
10 2 |
- : L =6.93m
.10"1.—- | 23=3046 m
i - ! z=4.23m
i , |
- B |
1 Lol A L0l -
o 1.0 10 | 102 . e
|
2 1 Lo 1t 1yl 1 T T S e | 1 g
102 102 10 tisec)

Fig.6.28
Analysis of drawdown test data for partially penetrating
wells in the unconfined aquifer(anisotropic)

Same data is analysised by the Jacob's method, the values of the slopes
for the each obsevation well are nearly same as shown in Fig.6.29, therefore

the permeability can be obtained from the slope of the straight lines;

2.30Q 2.30x3,23x10°

- -1
4 Hm 7x3.14%2.32x10°%x12 2.12x10 'cm/sec

ki
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Table 6.5

Analysis of drawdown test data for partially penetrating

wells in the unconfined aquifer (anisotropic)

r (cm) 300 900 2100
r* 0.10 0.15 0.40
L ** 0.91 0.75 0.42
L 20 20 20
z (cm) 66 54 30.5
t {sec) 2.90%x10% j2.90x10° |2.90x10?
kr(cm/sec) 1.92x1071|1.93x107!1.92x10"!}
k, (cm/sec) 1.15x107% |2.89x107%|3,74x1072
sy 7.18x10"%}1.81x10"%}2,34x10~?
—u -3 1072 107! t/r?(cm/sec)
GO e e 0 rlem/gec
e r= 3m

Fig. 6.29
Semi-log plot of drawdown data for partially penetrating
wells in the unconfined aquifer.

Q=3.23x10%cm?/sec
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Table 6.6

The effective porosity can Effective porosety from Jacob's Method

be calculated from the time(t/r?)

intercept on the zero-drawdown r(mz 3 2 21
t/r -8 -8 -6
axis, but for the effect of par- (sec/cm?) I 4.3010 1.00x10
: -5 -5 -3
tial penetration, different val- Sy 4.76x10 4.76x10 1.11x10

uea of t/r? are obtained from re-

spective data of the observation well, as indicated in Table6.6. This discrep-

ancy is very large.

E. Discussion of analysis of drawdown test data

In section C two methods of analyzing field data are given and in section

D the example calculations for the methods are shown.

Comparing these methods with Theis' and Jacob's methods, as these methods

can also evaluate an anisotropy of the permeability and the aquifer thickness

as same as the methods for a confined aquifer, therefore, they would be more

effective than Theis' and Jacob's method.
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6.3 Transient flow in Groundwater to Wells in Island Model Aquifer

6.3.1 Introduction

In Theis' or Jacob's method, the assumption has been made that the hori-
zontal extent of the aquifer was so great that for mathematical purposes it
could be considered as an infinite radial system. However, adjusting drawdown
test data gotten within relatively large time, the drawdowns in an observation

well are often no longer dependent of time and their behaviors become nearly
in steady state. It is difficult to explain this behavior by using Theis'
assumption that water is supplied from an infinite radial region.

To give an explanation of this reason, it is considered that the drawdowm
within relatively large time becomes to keep the equilibrium with surrounding
water supply, that is, the existence of an influence region of which radial dis-
tance keeps the balance against the pumping rate must be considered. Namely,
the head around this region is equal to the initial head of groundwater.

This conception in which that model is named "Island Model" has been ap-
plied for the model of analysis in steady state drawdown test for a long time,
but not the analysis of Island Model in unsteady state has been yet.

The Island Model is as same as the practical situation bounded in some
manner, e.g.,by a river or a reservior. In this situation, the analysis of draw-
down test has been solved by the method of images for boundary. This method,
however, is confined to the assumption that the groundwater supply from many
sourses, that is, from river-bed water or neighboring ground water is regarded
as only one point well.

In this section, first, the solutions of unsteady phreatic flow due to
drawdown test are derived in the conception of "Island Model" that the shape of
groundwater level is fixed by the circular water supply which is equilibrium

with the pumping rate.
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By using these solutions, the methods of analyzing drawdown test data in a
confined aquifer and in an unconfined aquifer are given and the effect of influ-
ence region is evaluated. Furthermore, the analyses which have been separated
in each cases of steady state and unsteady state pumping test are consolidated.

In this section, the analyses stand on following assumptions.

(1) Flow within the porous medium obeys Darcy's law.

(2) The aquifer is homogeneous and isotropic with respect to permeability.

(3) Storage coefficient is time independent.

(4) Only single phase (or saturated) flow occurs in an aquifer.

(5) The well is assumed to have no surface of seepage.

(6) The pumping well used in the testing operations will also be assumed to be

fully penetrating and to operate at a constant rate of withdrawal.

6.3.2 Analytical solution for Island Model drawdown test in a confined aquifer

Indicating in section 6.3.1, the Theis' analytical solution heretofore in
use was derived on the assumption that water is supplied from the region of
infinite distance in drawdown test. Yielding this assumption, the radial
distance (r) from drawdown test well to the observation well and the time (t)
since pumping starts are always treated in the form of (t/r?) or the inverse form
of that, and drawdown test data performed in ideal conditions can be plotted on
a curve independently‘of the position of wells.

But when drawdown data, which were obtained within large pumping time, are
adjusted according to Theis' or Jacob's method, the results for each observa-
tion well are on the curve of Theis-Jacob's analytical solution untill some
time, and then they depart from that curve, that is, each curve of them becomes
parallel to the abscissa independently of time.

To explain this reason, it is able to consider that there is a constant
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head boundary in finite radius (R) as shown in Fig.6.30. In this section, the
solution of unsteady radial flow in a confined aquifer will first Be derived,

after which the method of analyzing drawdown test data will be given.

Q
’/,Ground surface l JOriginal piezometric surface
-:1 - ii - = —x--—'—---‘ -—_ s -
Impermeable ¥ ~ __ | | -~ S~ Dravd
curve
AV N N
e - - _ .. -y 1 - . .. .,
T - RS N B B H
—_— . . | ' . hd
. - Confined |n * | .o b - L
— . N | ... ’ v g—
e - aquifer N | Lo
. - . A ' B [ ———
< - ~* » . - -
— T S BN B T ——
e \ Ldoe - , ) R
A7 v .
Impermeable

Fig.6.30 Nonsteady radial flow to a well penetrating
a confined aquifer on an island

A. Basic equation and solution

The partial differential equation that describes the fluid movement in

this system is again

2
°%c 1 9%¢ _ 1 3¢ (6.63)
arz r or as ot

where o is hydraulic diffusivity of aquifer (=K/Ss) and 7 is drawdown in aqui-

fer (=H-h).

Eq. (6.63) must be solved subject to following conditionms,
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z(r,0) =0 (head initially constant) (6.64)
t( Rt ) =0 (constant head at water boundary) (6.65)
1lim r gC = - ZgKb (flow rate into well of zero
r
0 radius remains constant) (6.66)

To solve the initial boundary value problem given by Eqs.(6.64),(6.65), and
(6.66), Laplace transformation is applied to Eq.(6.63) using initial condition
Eq. (6.64)

3%, L% _gT-0  umm (6.67)
or?

where q2=p/as, p is the parameter of Laplace transform and { is Laplace trans-
form of C.

The boundary conditions Eq. (6.65) and Eq.(6.66), treated in the same way, give

Z(Rp) =0 (6.68)
14 Q 1

lim r = - = 6.69)

0 or 2tkb  p (

The solution of Eq.(6.67) will be of the form
T = AL (qr) + BK,(ar) (6.70)

where Io(qr) is the zeroth order modified Bassel function of the first kind and
Ko(qr) is the zeroth order modified Bessel function of the second kind.
Substituting Eq.(6.70) in Eqs.(6.68), (6.69) and solving for A and B, z is got-

ten finally.

¢ = { &1 - 8285} (6.71)

—Q
21Kb -
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where

g1 = Ko(qr)/p (6.72)
g = K, (aR) (6.73)
g: = Io(qr)/pIO(qR) (6.74)

Eqs.(6.72),(6.73), and (6.74) are now respectively, determined by the Inversion

Theorem.

g1 1 ' e-ud (
= —— u 6.75a
2 r?/4o t U )
s
R | 2
82 = —exp(-R2/4a_t) (6.75b)
g3 =1- —— § exp(-0_a_2t)xJ_(ra )/a’J. (Ra )
R n=1 s n 0\FO /0T 1Ry (6.75¢)

where o are the roots of the characteristic equation

Jo(ran) =0 (6.76)

By using the Duhamel Formulas and combining these results the solution of 7 is
derived,

- 0 -
e

S d) - I 5
Rz/Aast

r = ——Q—Lr ]
4TmKb r2/4ast

Q

t
1 ®
* ZTKoR Jo ~expl ‘R2/4GST] ngleXp[—asa;(t-r)]

Jo(ran)

x - dt (6.77)
anJl(ran)

- 212 -



If R becomes an infinite radial distance in Eq.(6.77), the result is the same
of Theis' solution.

In general the value of permeability (K) is K=1x10 2 ~~ 10 3(cm/sec) and
the value of specific storage (Ss) is Ss=1X10-5—-w 10 %(cm '), then the value
of the ratio (as=K/SS) becomes about as=102f“~ 10*(cm?/sec). Therefore, on the
right hand side of Eq.(6.77), the third term is as small as negligible compar-
ing with the first and second terms, and so the approximate solution of draw-

down (Z) is given by

0 -u

-u
_Q_ £ _4u - -
4TKb [jjz/bast w du JRZ/Aast o dul

Y
dle

2 2
- ol B (-r¥/ka t) - B (-R?/4a_t)]

TiE [ W(r2/4ast) - W(R2/4ast)] (6.78)

where Ei(x) is the exponential integral and W(x) is the well function. It can

be expanded as a convergent series so that W(x) becomes

xa

2
W(x)=—0.5772—ln(x)+x--§}.i2—!+—ﬁ""""’ (6.79)

For large values of time (t), x is small, so that the series terms in Eq.(6.79)
become negligible after the first two terms. As a result, the drawdown can be

expressed by the asymptote

. 2.30Q
& ¥ Ko

~(logyo(t/R?) - logio(S_/2.25K))]

_ 2.30Q
~ T 2TKb

[(logio(t/r?) - log1o(S_/2.25K)

logio(R/T) (6.80)
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Eq.(6.80) is the solution of the model shown in Fig.6.30 for steady state flow.

B. Effects of constant head at outer boundary

Eq.(6.78) is used to evaluate T* as a function of t* for values of R¥ rang-

ing from 1.5 to 100, in which

L* = 4TKbL/Q (6.81)

tx = (K/SS)(t/rz) (6.82)

R* = R/r (6.83)

Dimensionless time (t¥*)
0.1 1 10 10? 10° 10"
0.01 T T T 1 "
<
&
o
5
» 0.1
I
o
1%
o
@
*x
2 e% R*=1.,5
& s
o IS 2
n (7S
g 1} be
2 ~—_ %
\ 6
— 10
— 20
40
100
1.0

Fig.6.31 L* versus t* for limited aquifer with constant

head boundary
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Fig.6.31 shows the resulting family of curves for several values of R*.
The type curves depart from the Theis curve in pairs with the point of depar-
ture depending on the value of R*, and it is distinct that the drawdown in the
aquifer bounded by constant head becomes steady state earlier than that in the
infinite extent aquifer. From Fig.6.31 it is also obvious that if the value of
R* is larger than 100, the effects of the influence region is negligible. In
other words, the drawdown in such a condition is not affected by constant head
boundary. An interesting way of looking at this result has been suggested by
Mononobe for steady state well problem. To use his own words7) " In actual
problem, the influence region extends since pumping starts, whereas, by reason
of the extent of aquifer, the effects of other wells, and the infiltration of
rain, the head at circular boundary does not have to pe constant. Therefore the
influence region is not always expanding into the infinite region.

If a large pumping rate is continued the groundwater around well may be
dried up. In general, it would be safe to calculate the drainage rate assuming
the influence region must be within the range from 500 meters to 1000 meters ',
We perform the pumping test at the condition that the observation wells are set
within about 20 meters of the radial distance from pumping well. And so the
value of R*>100 means that the influence region must be within 2000 meters. This

is a theoritical explanation of the assumption based on experiences.

C. Method of analyzing field data

The engineer wishes to determine the values of the aquifer constants (K,Ss)
and the radial distances of the influence region, (R). The properties of the
aquifer will presumably to known from earlier drawdown tests, and the approximate
radial distances of the influence region will have been predicted by geological

reconnaissance.
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The basic Log-Log Method of interpreting time versus drawdown data have
been discussed in section 6.2 in relation to infinite aquifers. In this section,
the differences that appear in the data, and the adaptations that must be made

to the methods of interpretation, due to the presence of boundary will be given.

Log-Log Method

The presence of a suspected circular boundary within the region of influ-
ence of the drawdown test may be indicated by the inability to match the log-log
field data plot on time versus drawdown with the Theis’method. Eq.(6.78) is re-

written by using dimensionless drawdown (Z*) and time (t*)
- —rl 2
g* E (-r%/t*) + Ei(-R /t%) (6.84)
where

g* = 4TKbL/Q
t* = l‘ast (6.85)

It is necessary to assume the value of R for calculating Eq.(6.84) in numerical
method. As indicating in section (6.3.1), the value of R is defined by the con-
ditions of the pumping rate and that of hydrology.

1f a drawdown test is run for a relatively long time, the drawdown will be-
come in steady state. In this state the drawdown is given by Eq.(6.80), the

value of R can be calculated as follows:

R = r.exp(27Kbz/Q) (6.86)

In Eq.(6.86), the values of r, L, b, and Q are known from the relatively long
time pumping test. The permeability (K) is obtained from the application of
Jacob's method. With this method, an observation well near the pumping well is

needed. Such a well will have a high value of R*(=R/r), and as reference to
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Fig.6.31 shows, deviation from the Theis curve due to the effect of the bound-
ary will not occur until considerable pumping time has elapsed. A rough estimate
of permeability (K) can be calculated on the basis of the early drawdown data
from such a well. A rough calculation of the value of R is gotten. Knowing the
values of R, one can prepare a graph of logl* versus logt*/r2 depending on the
value of r from Eq.(6.84). When the drawdown data from each observation well

has been plotted log-log paper with the same dimensions per cycle as used above,
one matches the field results to the theoretical curve in the same manner as

in section 6.2.

When the curves are matched, one can read the dimensionless parameters that
correspond to each point of field data. An equivalent value {* can be determined
for any C measured in the observation well and an equivalent value of t*/rz, for
the corresponding value of real time, t/r?. The permeability can be calculated
from Eq. (6.85)

- _Qc*
K = Zmc (6.87)

and the compressibility factor can be calculated from Eq.(6.85)

S, = 4K(t/r?)/ (t*/x?) (6.88)

Moreover by the data of drawdown for a rlatively large time, the permeability

can be obtained from Eq.(6.80) in the another method.

K = 22328 10g10 ®/1) (6.89)
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D. Analysis of drawdown test data

The following discussion gives example calculations of the method given

above. The drawdown test data are taken from a real aquifer project that is

located near Lake Shinji, Shimane Pref. in Japan.

f"":”-:,:l [ el ¥ il ¥ i

=

D (

Fig.6.32 Plane view of the drawdown test site
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The plane view of this region is shown in Fig.6.32, This region is bounded
by the river on the west and by sea on the north. The geological condition ob-

trained from well logs is shown in Fig.6.33.

26(m)
‘12(1)
'] »y
N i #78ilt and sand N
! [
|': I Wy
| I Il
1 b ;
hy i Clay W
I l,l lll-—
1 ! o —
:‘; :', Coarse sand :ll
I'i lll l'_
I Iy 1~
N I ]
|'| Il Clay !Il
i N -ll:
il I W=
N l,' Coarse sand ll‘
W (M W
24(w) e

Pumping well savation well

Fig.6.33 Hydrogeclogical cross~section through the experimental group of wells
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Two sand-gravel layers revealed as confined aquifers exist in this region.
Firstly the drawdown test performed in the lower part confined aquifer is
going to be analyzed for example using an average rate of Q=A.17X103cm3/sec.
The thickness of this aquifer is revealed b=5.2m. The drawdown test data is ana-
lyzed by Jacob's method as shown in Fig.6.34, a rough estimate of permeability
is obtained K=5.78x10 %cm/sec . For the relatively large time (4 hours) drawdown
test data of the observation well (r=12m), the drawdown which is regarded as
steady state is {=52cm. Interpolating these parameters in Eq.(6.86). The rough

calculation of the value of R is, gotten

R = r.exp(2mkbz/Q) ¥ 126m

The radial distance from pumping well to the river and sea is about 175m.

From these results the value of R is estimated the four cases, that is, 100m,
125m, 150m, and 175m. Matching the field results to the theoretical curves for
each value of R, the field data make a satisfactory fit to the theoretical

curves for R=150m as shown in Fig.6.35. At the match point where 7#*=5.0,

2 2

and t*/r2=2.3x10%, one reads r=5.2x10cm and t/r?=10 2sec/cm? for r=12m.

From Eq.(6.87), the permeability can be calculated

_ 5.0x4.17x10°
4XMx520X5. 210

= 6.14x10 2 (cm/sec)

From Eq.(6.88), the compressibility factor can be calculated

_ 4%6.14x10 2x10 *
2.30x10°

= 1.07x10 ®cm !

S
s

Interpolating these calculated values in Eq.(6.78), the result of comarison of

theoretical curves with drawdown test data is shown in Fig.6.36. It is
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definite that theoretical curves give a good match with the drawdown test data.

From the steady state data, the permeability can be calculated from Eq. (6.89)
interpolating R=150m, r=12m, r=52cm, Q=4.17x103cm3/sec, b=5.2m
2.30x4.17x10°

_ -2
K m-logm(lSO/lZ) =6.20x10 “(cm/sec)

Secondly the drawdown test performed in the upper part confined aquifer is
going to be analyzed for the second example using an average rate of Q=3.69x102
cm®/sec. The thickness of this aquifer is revealed b=2.10m. With the same way
of the first example, R is estimated R=13.5m. At the match point where [*=2.2X
10! and t*/r2=13, one reads C=4.0cm, t/r2=10 2sec/cm? as shown in Fig.6.37,

From Eqs.(6.87), (6.88) the permeability and the compressibility factor

369x2,2x10 !

B e e m— —3
K 4xmx210%4.0 7.69x10 °(cm/sec)
4%7.69x10 °x10" 2 e, -
SS 13 2.37x10 (cm )

Interpolating these values into Eq.(6.78), the result of comparison of theoretical
curves with the drawdown test data is shown is Fig.6.38. 1In this case theoretical

curves also give a good match with the drawdown test data.
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6.3.3 Analytical solution for Island Model drawdown test in an unconfined aquifer

In section 6.3.2, the analytical solution on a confined aquifer has been de-
rived and example calculations are given.

In this section, consider an unconfined aquifer of finite lateral extent
that rests on an impermeable horizontal layer such as that shown schematically
in Fig.6.39. A well completely penetrating the aquifer discharges at a constant
rate Q, and water is released from storage by gravity drainage at the free sur-

face, neglecting the storage by compaction of the aquifer material expansion of

the water.
Q
Original free surface ‘/,Ground surface
\!- 1l
— — ——— —— + P e s o e o o o XZ.
= —3: i —— =
}Il Drawdown curve
Unconfined ¥ |i=
aquifer :: H
i
ql
| [}
|
iz
T 7
Impermeable
R
Fig.6.39 Nonsteady radial flow to a well penetrating a

unconfined aquifer on an island

A. Basic equation and solution

With the assumptions which are described in section 6.3.1, the governing

partial differential equation are given

- 227 -



22z 1 3z
arZ r or

9%z

9z2

+ =0  ( 0<z<g, 0<r<R) (6.90)

Eq. (6.90) must be solved subject to following conditions

g(r,z,O) =0 .
£(r,0) =H (head initially constant) (6.91)
Z(R,z,t) =0 (constant head at out boundary) (6.92)
3z
—5;(r,0,t) =0 (on the no flow across lower boundary) (6.93)

Y Q

113 or e dz = TR (at the well-bore) (6.94)
r-

e 4 5y 3

8 + T = A C
3r “r 3z "n K 3t 'z

( on the free-surface
boundary) (6.95)

g(r$t) =H - C(r’s’t)

where nr, nz is the component of unit outer nomal vector in r direction and

in z direction respectively. Sy is the effective porosity or specific yield.
Eqs.(6.90)-(6.95) can be linearized by using a perturbation technique sim-

ilar to that described by Daggﬁ?)provided the aquifer is thick enough and [ re-

mains much smaller than £. Here this technique leads to a first order lineariz-

ed approximation, obtained simply by shifting the boundary condition from the

free surface to the horizontal plane z=H.

This eliminates £ from Egs.(6.90)-(6.95), one obtains
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8% 1 3t 9%g

3r2 r or + TozZ 0 (6.96)
t(r,z,0) =0 (6.97)
C(R,Z,t) =0 (6.98)
o
3o (r,0,t) = 0 (6.99)
L _ _ Q
iig r =2 FTKA (6.100)
9T _ 1 14
az (r)H,t) = _g- at (r,H,t) (6.101)
where ay = K/Sy (6.102)

In solving the initial boundary value problem posed by (6.97)-(6.101), it is

convenient to divide { into two components

¢ = Ci(r,t) + C2(x,2z,t) (6.103)

Although both %) and G, satisfy Eqs.(6.96)-(6.99), there is a change in bound-

ary conditions Eqs.(6.100) and (6.101), which now take the form

32 '

- Cz_x + % —25‘ =0 (6.104)
: g

z1(R,0) = 0 (6.105)
Zi(R,t) =0 (6.106)
lim r —281 = =9 | (6.107)
0 or 2TKH :
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3%, + L 9Z> + 3%,

> o . =0 (6.108)
z2(R,z,0) = 0 (6.109)
z2(R,z,t) = 0 (6.110)
%2(r 0,¢) = 0
az sV = (6.111)
. 3z,
lim r =0 6.112
s o ( )
9T, 1 'a(g+
=2 (r,H,t) = "o —Cg—t"ﬂ)— (r,H,t) (6.113)

When Laplace transform is applied to Eqs.(6.104)-(6.113) with respect to Z; and

2, Eqs.(6.104)-(6.113) are given as follows;

— -
CIS WU S 3 W (6.114)
32 r or
r
Z1(R,p) = 0 (6.115)
: 3T, 1 -Q .
lim r - > F7KH (6.116)
>0
25 > 25
2L L %2y Bhy (6.117)
or? r r 9z2
Z2(R,H,p) = 0 (6.118)
3z, -
e (r,0,p) 0 (6.119)
lim r—-%%l =0 (6.120)
>0
_ Lo
=2 (r,H,p) = - @t (6.121)
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The solution of Eq.(6.114) with respect to El can be obtained with the condi-

tions, Egs.(6.115),(6.116).

Ty = - ——zﬁib— %ln(r/R) (6.122)

The solution of Eq.(6.117) with respect to Z; will be of the form
T, = A 5 (ar) + B & 3 (ar) (6.123)

where Jo(x) is the Bessel function of order zero of the first kind. From the

condition (6.119), Eq.(6.123) becomes

T, = Acosh(az)J (ar) (6.124)

To satisfy the boundary condition Eq.(6.118) o must be an infinite number of

real positive roots

J (aR) =0 (6.125)
o'n )
anR is defined as An’ then Eq.(6.124) can be rewritten as

—— x

T2 =n§lAncosh(an/R)Jo(Anr/R) (6.126)

The constant value Ah can be obtained from the condition Eq.(6.121),

L8, O\ /R)siah (A H/R)I (A x/R)

= =(/a ) [(Qy/p)1n(x/R) + £ cosh(L H/R)I (A T/R)]  (6.127)
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and the expression above can be rewritten as

WE1A C I O x/R) = In(r/R) (6.128)

where now

Cn = —(ay/Qo)[ (An/R)sinh(AnH/R) + (p/ay)cosh(an/R)] (6.129)

and

Q, = - Q/(2mkH) (6.130)
On a given interval O<r<R the right-hand side of Eq.(6.128) is expanded in the

form of Fourier-Bessel series,

In(r/R) = Fa g O r/R) (6.131)
the Fourier constants a of ln—ﬁ— in Eq.(6.131) are

R
a =-———JE——————J r[1n(r/R)] JO(an/R)dR (6.132)
o R2J3(A) ‘0

Integrating over r from 0 to R, one finds

a_ = -2/ (A J;(Xn)) (6.133)

From Egqs.(6.128), (6.131) and (6.133), the constants An are
A = a /C (6.134)
n n' n

Interpolating Eq.(6.134) into (6.127) and using (6.122), adding the transforms

of both components gives
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T=T1+T: = (Q/PInG/R) + ¥ (a/C)

Xcosh(knz/R)Jo(Anr/R) (6.135)

The inversion of the Laplace transform of { is accomplished, one obtains the
first order approximation to the original initial boundary value problem.

The final solution is expressed as follows;

= - zm%}x[ 1n(x/R)

2J. (A /R h(\_z/R) [-t(X_K/RS_)tanh(A _H/R)]
L ¥ O( of Ycosh( o2/ R)exp n y 0 | (6.136)

n=1 2.2
knJl(kn)cosh(AnH/R)

In Eq.(6.136), let t become infinite the result becomes

== (6.137)
L == i 1n(x/R)

this is just the steady state solution of the model shown in Fig.6.39.

B. Effects of constant head at outer boundary

To illustrate the analytical results, a computer program that permits
to determine the dimensionless ratio C*(=2mKHZ/Q) as a function of the dimen-
sionless time t*(=Kt/RSy) for given dimensionless values of r*(=r/R), z*(=z/R)

and H*(=H/R), according to follow expression of Eq.(6.136) has been prepared.

-\ tk. *
ZJO(Anr*)cosh(Anz*)exp[ Xnt tanh(XnH )1

©
g* = -In(r%) - L
n=l A233 (A )cosh(h _H¥) (6.138)

The program has been run for various combinations of the paramaters.
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In Fig.6.40, drawdown curves at (z*=1) observation wells (r/R=100,20,10,5,4, and
2) are presented for R/H=10. The abscissa t*/(r*)? (=—§§§7) is the independent
variable in the Theis formula, whose drawdown curve hasyalso been represented

in Fig.6.40.

The type curves depart from the Theis curve in pairs with the point of departure
depending on the value of R*(=—%—). It is noted on Fig.6.40, as same as the con-

fined condition, that the drawdown in the aquifer bounded by constant head

becomes steady state earlier than the drawdown in the infinite extent aquifer.

C. Method of analyzing field data

In an unconfined aquifer, the engineer wishes to determine the value of the
aquifer constants (K,Sy) and the radial distances of the influence region (R)
in the same way of the case in the confined aquifer. The geological condition
of the aquifer is known from the well logs. Here, an analysis of the drawdown

data in the observation wells is shown.
Log-Log Method

To prepare a graph of drawdown logl#* versus logt* for the appropriate r¥
(=r/R) between pumping well and observation wells from Eq.(6.138), it is nec-
essary to obtain the values of R, H. The thickness (H) of the aquifer can be
obtained from the well logs and the measuring the existent ground water level.
The value of R is assumed from the same way of confined aquifer, namely, if a
drawdown test is run for relatively long time, the drawdown will become in
steady state, and in this state the drawdown is given by Eq.(6.137). From that

equation, the value of R can be calculated

R = r-exp(2TKHL/Q) (6.139)
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In Eq.(6.139), though the known values are H, f, and Q, the permeability (K) is
unknown value. The permeability (K) is obtained from the application of Jacob's
method. With this method, an observation well near the pumping well is needed.
Such a well will have a high value of R*(=R/r), and as reference to Fig.6.40 s
devistion from the Theis curve due to the effect of the boundary will not

occur until considerable pumping time has elapsed. A rough estimate of permea-
bility (K) can be calculated on this basis of the early drawdown data from such

a well. Interpolating these parameters in to Eq.(6.139), a rough calculation of the
value of R can be gotten. Getting the values of R, one can prepare a graph of
logZ* versus logt*/r? depending on the value of r from Eq.(6.138), in that

equation

r* = 2mKHZ/Q (6.140)

t* =(K/Sy)-t (6.141)

By using the match point method, one can read the dimensionless parameters that
correspond to each point of field data.

An equivalent value C* can be determined for any { measured in the observa-
tion well and an equivalent value of t*/r?, for the corresponding value of real

time, t/r?. The permeability can be calculated from Eq. (6.140)

K = (Q/2wH) (C*/T) (6.142)
and the effective porosity can be calculated from Eq. (6.141)

sy = K(t/t*) (6.143)
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D. Analysis of drawdown test data

The drawdown test data are taken from a real aquifer project that is located
near Goshyo, Kyoto City in Japan. The geological condition obtained from well
logs is shown in Fig.6.41. The drawdown test performed in the unconfined aquifer
is going to be analyzed for example using an average rate of Q=2.67X10cm3/sec.
The thickness of this aquifer is revealed H=2.17m. The result of the drawdown
test data analyzed by Jacob's method is shown in Fig.6.42. From this result a
rough estimate of the permeability is obtained as K=1.12x10 ®cm/sec. For the re-
latively large time (t=20 hours) drawdown test data of the observation well (r=
15.7m), the drawdown which is regarded as steady state is 7=17.5cm. Interpolat-
ing these values into Eq.(6.139), the rough calculation of the value of R is

gotten
R = r.exp(2TKHZ/Q)

= 1.57x10%exp (2x3.14x1,12x10 3x2.17x102x17.5/2.67x10°%)

=42.4m

Though the Kamo river that is regarded as the constant head boundary ex-
ists at the distance R=1000m from the pumped well, for the reason that tﬁe
pumping rate is small and the ground water supply is large because the region
is the center of the Kyoto Basin, the value of the influence is estimated for
cases, that is, R=25m, 30m, 40m, and 50m. All observation wells have penetra-
tions of z=2m and radial distance of each well is shown in Fig.6.40. Then, in-
terpolating these values (z, R, T, H) into Eq.(6.138), the theoretical curves
are gotten.

Matching the field results to the theoretical curves for each value éf R,
the field data make a satisfactory fit to the theoretical curves for R=30m, as

shown in Fig.6.43.
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Fig.6.41 Hydrogeological cross-section of the drawdown test site
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Fig.6.43 Method of superposition for finite region solution
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At the match point where §*=5.9x10_1, and t*=2x10", one reads Z=l6cm and t=2.55

x10*sec for r=15.7m. From Eq. (6.142) the permeability can be calculated

_ 26.66x5.9x10 !

= -4
2xTx217%16 7.21x10 “(cm/sec)

K

From Eq.(6.143), the effective porosity can be calculated

_ 7.2x10 *x2.55x10"
y 2x10*

S =9,19x10 *

Interpolating these calculated values in Eq.(6.136), the result of comparison
of theoretical curves with drawdown test data is shown in Fig.6.44. It is defi-

nite that theoretical curves give good match with the drawdown test data.
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Fig.6.44 Comparison of the analytical results and drawdown test data
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6.4 Conclusions

In this chapter formulas and methods available to evaluate the data from
pumping tests under two special conditions have been developed. Namely, firstly,
analyses of pumping test data for partially penetrating well in a confined and
an unconfined aquifers have been shown to determine anisotropic hydraulic con-
ductivities and a storage coefficient. Secondly, to analyze drawdown test data
obtained in the much groundwater supplied region, a conception of "Island Model"
has been applied in unsteady state. The results of this study can be used to
analyze drawdown tests in order to measure the two aquifer parameters K and
S. These analytical solutions are very complex, but they can be recognized that
they have greater generality than previous solution.

The conclusions obtained in this chapter are as follows;

(1) The unsteady analytical sclution of phreatic flow to partially penetrating
well in a confined aquifer is shown. By using this solution, four methods
are provided to evaluated the anisotropy of permeability and the compressi-
bility factor (or specific storage) of confined aquifer.

(2) For an unconfined aquifer the unsteady analytical solution of phreatic flow
to partially penetrating well was obtained and to determine anisotropic per-
meabilities and an effective porosity (or storage yield) two methods were
developed.

(3) The limitations of adapting Theis'and Jacob's methods for partially penetra-
ting well test were described.

(4) For each method the practical application was shown.

(5) The unsteady analytical solutions of phreatic flow due to drawdown test are
derived in the conception of "Island Model" that the shape of groundwater
level is fixed by the circular water supply both for confined and unconfined
aquifer.

(6) By using these solutions, the methods of analyzing drawdown test data
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performed in confined and unconfined aquifer are given.

(7) The effect of influence region is evaluated, and a theoretical explanation
of the assumption based on experiences was given.

(8) The example analysis to determine permeability and storage coefficient are
shown.

(9) The propriety of the solutions is verified comparing the analytical results
with the drawdown test data taken from a real aquifer project.
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CHAPTER 7

APPLICATION TO FIELD PROBLEMS

7.1 Introduction

The validity and the accuracy of the saturated-unsaturated finite element
method has been investigated in Chapter 5 by comparing with laboratory experi-
mental results. It can be concluded, with a sense of confidence, that the
numerical methods can provide reliable basis for design analysis. In this
chapter, some application of models to field situation will be demonstrated.
To simulate a practical flow problem in the field following data and conditions
must be required.

(1) Hydraulic properties of soils that constitute a flow domain.

(2) Initial conditions in a flow domain.

(3) Boundary conditions of a flow domain.
In simulating the model of laboratory experiment, these data and conditions are
relatively easily obtained. In many practical situations, however, one may
encounter these data and conditions that are impossible to be defined.

The purpose of this chapter is twofold: before progressing into the vari-
ous levels of applications, (1) to disquss and evaluate the above data and condi-
tions; and (2) to describe two example applications for both two- and three-di-

mensional field problems.

7.2  Hydraulic Characteristics of Soil in Field

The decision as to whether it is necessary to include consideration of
the unsaturated zone in the analysis of seepage through porous media involves a
tradeoff between the possible additional accuracy and the definite additional

complexity. As mentioned in Chapter 5, the method requires an increased amount
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of input data in the form of the characteristic y-6-K curves which are strongly
dependent on soil texture. The concept of soil characteristics that vary with
moisture content is not common in soils engineering but is well established in
the solution of irrigation and drainage problems in agricultural engineering.
These data are not commonly collected, nor are they familiar to most civil
engineers. The curves can be determined in the laboratory by the techniques
that are well established in Chapter 4. Data for compacted soils, on the other
hand, are almost nonexistent and undoubtedly the relationships are more complex.
It is clear from compaction theor;)that saturated permeability is heavily in-
fluenced by soil density, compactive effort, and moisture content at compaction.
This conclusion undoubtedly holds for the unsaturated curves as well and results
suffer from the usual suspicions as to their applicability to actual field
sites. It is encouraging to note that research is proceeding in the soil physics
field in developing direct field measurement techniques. Because of the pau-
city of data on the unsaturated properties of compacted soils, it is difficult to
vouch for the suitability of the soil properties, especially in cases of simi-
litude extrapolation. Rather, the emphasis has been on examining the possible
implications of the complete analysis.

A number of methods are now available for measuring the unsaturated hy-
draulic conductivity function of soil profiles in situ. The purpose of this
section is to survey the various methods available for the measurement of hy-
draulic conductivity and water retention characteristics and to identify the
principles advantages and disadvantages of each. There are mainly two kinds of
method to estimate the hydraulic characteristics of unsaturated soil in situ:
(1) Direct measurement of the hydraulic conductivity function.

(2) Calculation of conductivity from water retention data.
In the former, many laboratory methoii have been applied in the field.

It is generally much more difficult to set steady flow regimes in the field than in
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the laboratory. Infiltration techniques have been proposed based on a steady
applicatioz r;te by sprinklinz)or based on ponding infiltration through an imped-
ing crust. ;; Lnsteady-state methods, the "instantaneous profile" techniques which
have élready been described in Chapter 4 seem to offer the best possibility for
hydraulic characterization of field soils. The theory does not assume uniformi-
ty of the hydraulic properties of the flow system, and the boundary conditions
do not need to be constant, or known in detail. Because in this method a dif-
fusivity in an internally draining profile is measured. Several variations in
the method of experimental procedure have been employed. The water content
6),7),8) 9),10)
distributions were measured by using neutron or gamma ray or gravimetric sam-
piiiéTZ)The pressure head distributions were measured by using tensiometers of
11),12) 6),7),8),9),10),13)
mercury-water or pressure transducers. In these techniques reported in the
literature, Hillel's methog)was made to give the most detailed description of a
simplified procedure for determining the intrinsic hydraulic properties of a
complete soil profile in situ. These methods have proven the feasibility of
determining the unsaturated hydraulic conductivity function of soils in the
field. However, these methods have complexity in treating the experimental
apparatus.

In the latter, there has been considerable interest in the possibility of
calculating the conductivity from other properties of the medium that may be
easier to measure. There are many publications that deal with the relationship
of conductivity to various aspects of pore space geometry or water reten;ion
data. These methods were also summarized and evaluated in the literature and

14),15),16),17)
further works were recently proposed. Though these methods give the merit to
calculate hydraulic conductivity from water retention data, water retention
data must be obtained on soil cores taken to the laboratory. It should be un-

derstood that no field sampling technique yet available provides truely undis-

turbed samples. Therefore this method suffers from above limitation.
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By the way, all of the methods that are reviewed above have been applied
for only the hydraulic characteristics of surface layered soils above the depth
of three or four meters. This reason is that these methods have been establish-
ed on the sense of agricultural engineering to solve the problems involving
irrigation, drainage, water conservation, nut?ient transport and runoff pollu-
tion, as well as infiltration. These methods can be also applied to determine
the hydraulic properties of center core of rock-fill dam or to check the quality
of a constitutive soil of a bank. To solve problems of groundwater recharge
and discharge due to pumping or excavation, it is necessary to determine the‘un—
saturated hydraulic properties of the soil texture which is layered above and
below the water table as shown in Fig.7.1 with hatching. Unfortunately, there
is no technique to obtain the properties so far as author knows. It may be

believed that the case of accomplishing determination of hydraulic properties

o W W w W

<. ' Surface soil T T

—_

!

Fig.7.1 Schematic figure of underground
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of soils in situ will improve with additional field experience and improvements
in equipment and instrumentation in the near future.

The values of hydraulic conductivity (KS) and storage coefficient (S) in
the saturated region can be determined by using the techniques described in
Chapter 6. The value of specific yield (Sy) can be considered the equivalent

value of effective porosity (ne).

7.3 Flow through Sand Bank at Flood Water Level

7.3.1 Introduction

In July 1972 and September 1976 the basin of the River Ohota in Hiroshima
Prefecture suffered damage from leakage or piping water when the water level of
the river was raised due to localized torrential dgwnpour. Acting on inform-

ation received the damaged district in landside was mainly shown in Fig.7.2

with the shaded region and the leakage and piping were happened after two or
three hours from the peak of river water level. These phenomena can be consid-
ered symptoms of a disaster of embankment failure due to flood, then it ié
necessary to work out a countermeasure for leak prevention. The purposes of
this section are to simulate the flow pattern in the embankpent when the river
water level is raised to the height of July 1972, September 1976 and high water
level (HWL), and to evaluate the effectiveness of bank protection. To ascertain
geologic and ground water conditions six test drillings were driven until 20m
depth. Four test holes of this six holes also were used as observation wells
for measuring water levels and for conducting drawdown tests. The pOSitioﬂ of
test holes are shown in Fig.7.2. Fig.7.3 shows the geologic condition estimat-

ed from well logs constructed from drilling samples.
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Satufated hydraulic conductivities of the various soil layers were meas-
ured in the field by the auger hole method (USBR Method E-lS%?) The mean hyd-
raulic conductivities of each layer are also shown in Fig.7.3. As mensioned
earlier the complex multilayer systems that one can encounter in the field can
not be certainly handled analytically. On the other hand, the numerical pro-
cedures embodied in the finite element method provide a practical meaﬂs of
analyzing complex systems. Therefore the change of flow pattern in the embank-

ment due to flood water level and the other environmental effects were investi-

gated by the saturated-unsaturated finite element method.

7.3.2 Selection of boundary condition

In many practical situations, one may encounter geometries and boundary
conditions that cannot be defined. For instance, in the case of flow in or out
of riverbanks, tidal beaches, and extensive aquifers, one has to deal with
infinite extents of the media. It is then necessary to include only significant
finite zones in an analysis, and one has to make proper assumptions concerning
potential and flow conditions on the discretized boundaries. Proper choice of
these conditions will depend upon the geological properties and conditions of
groundwatér flow and will require engineering judgement. Some criteria were
proposed to determine extents of discretized zones for free surface flow
through earth banig? It was found that if the end boundary is placed beyond a
distance of about 8H to 12H, measured from the final point of drawdown (Fig.7.4
), the behavior of the free surface near the sloping face of the bank will not
be influenced significantly. The assumption of an "impervious" base in an in-
finite medium will be approximately valid if the bottom boundary is placed
beyond a distance of about 3H to 6H (Fig.7.4).

Three possible boundary conditions were assumed to occur at the discre-

tized end boundary, namely impervious, constant level, and equipotential as
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Fig.7.5 Different boundary conditions(after Desai)
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in Fig.7.5i8 Both the impervious and constant-level conditions yielded about the
same resultsz which compared well with observations, whereas the equipotential
condition gave results that differed from the other two and from the observa-
tions. Hence, it was concluded that for long homogeneous banks, the boundary
condition at large distances can be assumed to be impervious or constant level.
In this work, the boundary as shown in Fig.7.6 was applied to simulate this
boundary problem. Fig.7.6 also shows the finite element mesh. The aquifer has

been divided into 211 elements with a total of 240 nodes, the grid being denser

in embankment than at the outskirt.

7.3.3 Determination of hydraulic properties in unsaturated region.

The water level in the coarse sand and gravel layer is about G.L. -3.5m.
and the aquifer of coarse sand and gravel layer is revealed an unconfined aqui-
fer. There is a need to determine unsaturated hydraulic properties of these
region to simulate the flow through these region. Untfortunately these properies
were not reported, so some other method must be taken to obtain these properti-
es. A numerical method was used to investigate in detail certain physical
aspect;?) Using this numerical method, it can be shown that if the saturated
conductivity were accurately determined, slight changes in the shape of the rest
of the conductivity-water content relationship will cause small changes in the
calculated discharge-time curves. Thus a computer method of using an accurate-
ly determined value of several shapes for the rest of conductivity-water content
relationships to calculate several discharge-time is proposed. These calculated
curves could then be compared with the experimentally observed discharge-time
curve to select the appropriate conductivity-water content relationship. In
this problem, discharge-time curve could not be obtained, so the groundwater
table -.time curve which was the results of measuring the groundwater fluctu-

ations at the observation well No.l, No.2, No.3 and No.5 (as shown in Fig.7.6)
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were used to compare with the calculated curves. Fig.7.7 shows the observation
results of water level charges of river and water table changes for each obser-
vation well with time for the period from December 9 to December 13, 1977. 1In
Fig.7.7 the change of the river level in a day might be due to the variation

of flood from the dam for water power plant.

The hydraulic property of unsaturated flow domain which was determined
with trial and error method by the numerical approach is shown in Fig.7.8 and
Fig.7.9 compares the computes water table variation with the measured data for
each observation well. A period, 12 O,clock to 21 O,clock on December 10, was
selected as the comparison period. In computation the river level change during
this period was used as boundary condition at the river. There is a reason-
ably good agreement between the computed and the measured data during the first
6 hours. During the last 3 hours the agreement is somewhat less satisfactory.
Here the measured data are lower thanm those indicated by the computed results.
At least past of this discrepancy may be due to the adoption of a single soil
moisture retention curve and a single hydraulic conductivity curve for the
entire soil profile and the effect of hysteresis. This general agreement is
certainly good enough to simulate the river level raises suddenly to the>flood
water level and water begins to flow through the embankment by using the rela-

tionships as shown in Fig.7.8.

7.3.4 Simulation of earth embankment subject to sudden raise in a river level

As simulated, the following four cases were calculated with the saturated-
unsaturated finite element analysis. The solution advances in time by means
of a fully implicit finite difference scheme, Hysteresis was not taken into ac-
count.

Case 1. At time t equal to zero the water level of the river is suddenly
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raised to the height of 29.630m from the bottom of flow domain as
shown in Fig.7.6. This value of the river level is adopted the high-
est value of the flood it occurred in July 1972 as shown in Fig.7.10.

Case 2. The river level is 29.067m from the bottom of flow domain (Simula-
tion of September 1976 flood).

Case 3. Simulation of the flow through the embankment when the river level
reaches the higt water level of 33.451m.

Case 4. To evaluate the efficiency of bank protection the hydraulic conduct-
ivity of this protection is choosen K=1.0x10 °cm/sec. The river level

is in H.W.L.

In Figs.7.11 through 7.14, a series of numerical solutions for unsteady
state seepage are presented for various river water levels, accounting the
effect of bank protection. It is worth noting in the simulation of 1972 flood
that after three hours, seepage face appears at the toe of embankment. This
result well agrees with the information received. In the simulation of 1976
flood level seepage face also appears after about 4 hours. These simulation
can be considered the most dangerous situations for the practical flow problems.
The comparison of Fig.7.13 and Fig.7.14 is the most interesting result of the
numerical analysis. Due to the effect of bank protection the water table pro-
file in Fig.7.14 is extremely different from that in Fig.7.13. The computed
results is shown for the water flow out of the embankment (Fig.7.15). It is
evident with comparing case 4 and case 3 that if bank protection is worked out
as a countermeasure for leak prevention outflow rate from seepage face is re-
duced to about one-third of that of case 3, and the time lag of seepage face
appearing is three times longer than that in the case without bank protection.

To summarize the results of this section, it would appear that this finite
element analysis can be adapted to solve complicated practical problems involv-

ing soil stratification and variations in soil hydraulic conductivity and this
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Fig.7.15 Out flow rate from seepage face with time

method is very effective to detect the realistic change of the flow pattern.

7.4 Open Cut Excavation Model

7.4.1 Introduction

In section 5.4.2 the comparisons between the three-dimensional numerical

analysis and laboratory experimental results have been shown on the problem of

flow through three-dimensional sand model. In this section the problem of

groundwater controlling for foundation excavations will be considered as more

practical problem which is some interest to the foundation engineer. Many types

of engineering construction require the excavation of soil and rock below the

natural groundwater table. If the formations are well cemented, water control
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may be simply a matter of allowing the water to seep down the excavation slopes
into shallow ditches or sumps from which it is removed by pumping. On the other
hand, if the water bearing materials have low strengths, extensive dewatering
systems may be required.

Either of the two fundamental methods of controlling seepage can be used
for the control of groundwater during construction: (1) Those that keep the
water out or (2) those that depend on its control by drainage processes.
Chemical grout, cement grout, sheet pile walls, and caissons are means that
serve to keep out most of the water. Usually when these methods are used, pumps
are required to maintain dry conditions in excavations. Most excavations in
water bearing formations such as gravels, sands, silts, and stratified clays are
stabilized by wellpoints, deep pumped wells, or other groundwater control sys-
tems.

Groundwater control for fundation excavations may be accomplished in a
number of differnt ways. The most appropriate methbd for a given job should be
determined by adequate soil surveys and test borings to delineate important soil
strata and locate sources of water. On important projects the permeability of
the formations should be determined by field drawdown tests or other adeduate
methods. For any dewatering project in which failures could lead to extensive
structural damage or serious flooding the design and installation of water-
control systems should be carried out with deep considerations.

Most dewatering systems are flexible with respect to discharge capacity
and can be enlarged in capacity to take care of unexpectedly large rates of
flow. Nevertheless, the approximate rate of discharge shoud be known in advance
so that approximate power requirements will be known. The design of dewatering
systems involves two‘important steps

1. Evaluation of the magnitude of the dewatering project, including an

estimate of the probable rate.of inflow and power consumption.
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2. Design of a system capable of providing the required ground'watér
lowering for the length of time needed for the construction that is to be
carried out below the natural groundwater level.

To estimate the probable inflow rates to dewatered excavations and to provide
the ground water lowering seepage systems must be analyzed. All fluid systems
must necessarily extend in three dimensions, but in former methods seepage
systems analyzed are predominately two-dimensional flow with assumption of the

infinite lenghth of excavation as shown in Fig.7.16.

Initial water level
$—— -l v ¥

Aquifer

‘ho

¢

Fig.7.16 Two-dimensional ditch drainage

In practical excavations the length of excavation is finite as shown in Fig.
7.17. This system has the effect of sheet pile walls so that there is no known
nonsteady analytical solution. In this section the nonsteady state flow analy-

sis will be performed in this hypothetical case of an open cut excavation.
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Fig.7.17 Excavation stabilized with deep well system
(Artist's view of a deep well system including
cutaway sketch of an deep well.)

7.4.2 Simulation of seepage through three-dimensional aquifer

The problem is as follows: A 20 m sandy aquifer is under hydrostatic
equilibrium with fluid potential h everywhere equal to 15m. In this aquifer an
excavation (10 m wide, 10 ﬁ deep and 60 m long) is made. The problem is to
study the drainage pattern imposed within the sandy aquifer due to the excava-
tion, that is, due to a rapid 5 m drawdown of groundwater table in the excava-
tion. A quarter of the flow domain was indentified by a system of finite ele-
ments as shown in Fig.7.18. The model is composed of 288 nodal points, and 168
eight node elements.

The boundary conditions are illustrated in Fig.7.19. The floor of the

excavation is assumed to be constantly covered with a thin film of water so as
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Fig.7.19 Transient flow toward an excavation face following
rapid drawdown

to form a fixed potential boundary, while the wall of the excavation is an im-
permeable boundary (due to sheet pile walls). The bed rock is also an imper-
meable boundary. All the other boundaries of the flow region are assumed
constant head.

For this hypothetical problem Fig.7.20 was used as a set of curves for
unsaturated properties of the soil in the sandy aquifer. When { is equal to
zero,Ks=l.0x10—2cm/sec and 90=O.46. The solution advances in time by means of
a fully implicit finite difference scheme. Hysteresis was not taken into ac-
count.

The drainage comﬁutations were carried out for a pgriod of 4 days from
the start of the drainage process and the results of the computations are sum-

marized in Figs.7.21 through 7.24. The time-dependent changes inthe evolution
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Fig.7.20 Unsaturated property of soil

of the surface Y=0 (water table) are presented in Figs.7.21, 7.22 and 7.23 along
three cross sections, A-A', B-B' and C-C'. The topographic contours for appro-
ximately steady state (after 4 days) are also shown in Fig.7.24. The compar-
isons of three dimensional and two dimensional analytical results are shown for
steady state water table in Figs.7.25 a. through 7.25 c.. Along sections A-A'
and B-B' there are good agreements with two-dimensional results. Along section
C-C', however, three-dimensinal result differs significantly from the two-dimen-

sional result, This discrepancy may be due to the effect of the three-dimensional

flow.

The rates of seepage into dewatered excavations was Q3_D=l.72m3/min by
using three-dimensional analysis, while the rates of seepage was QZ_D=1.56m3/

min which was estimated by using the two—dimensional analysis and the next equa-

tion.
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Fig.7.22 Numerical results (cross section B-B')
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Fig.7.23 Numerical results (cross section C-C')
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Fig.7.25 Comparisons of three-dimensional and two-dimensional
numerical analysis results
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QZ—D =4x(a- Qp_pt +b - ) (7.1

dg_p'
where a and b are the length shown in Fig.7.24,and qppt and dg_p' are the rate
of inflow along cross section A-A' and B-B', respectively. From this result the
estimated value of QZ-D is smaller than that of Q3—D’ This discrepancy may be
due to the difference in the profile of water table along cross section C-C'.

As it was said earlier, three-dimensinal analyses are used only in those
cases for which two-dimensional models are grossly inappropriate. It is there-
fore of interest to know the corresponding additional cost. The two-dimensional
equivalent of this model along cross section A-A' has 28 nodes. The simulation
in 34 time steps of 4 days of drainage required 10.2 sec of computer time on the
ACOS-700 and 10K of core storage. As a comparison; the similar three-dimension-
al analyses performed with this model required 60.5min of computer time and
45K of core storage. To summarize the results of this section, it would appear
that the use of three-dimensional finite element analysis is a step forwa;d from
the two-dimensional analysis used so frequently for analyzing excavation seepage
problem because it allows the variation of flow in the third dimension. It is
evident that the three-dimensional analysis is accurate enough to evaluate the
behavior of the groundwater in the complex soil media qualitatively and quanti-
tatively. However, the computer program, limited to the core storage of the
available computer facility, is intended only to solve the simple illustrative
problems. With increased capacity, it would be possible to handle problems of
complex geometry and arbitrary boundary conditions. It is concluded that ;hree-

dimensional analysis is -an expensive but valid alternative.
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7.5 Conclusions

In this chapter some attempts have been made to apply the two-and three—
dimensional finite element analysis of seepage to the field problem. These
examples clearly demonstrate the flexiblility of this finite element approach
and its capability in treating complex situations which are often encountered in
the field. Consideration of anisotropy is clearly warranted in seepage analy-
sis. Singi the effects of saturated anisotropy have been widely studied in the
seepage fieid, any anisotropic examples have not been included in this chapter.

Throughout of this chapter, the following conclusiona are obtained.

(1) The results of simulating\the flow pattern in an inhomogeneous embankment
when a river water level is raised to the flood heights and high water
level have been shown.

(2) There are good qualitative agreements between the numerical results and
the informations received.

(3) For three-dimensional flow example model, the seepage into dewatered ex-
cavations has been shown.

(4) The three-dimensional analysis is accurate enough to evaluate the behavior
of.groundwater and it is a step forward from the two-dimensional analysis.
However, by using the three-dimensional analysis it accentuates computer
limitations by reducing the maximum size of problem that can be simulated
on any given computer installation and increasing the computer time re-
quired to solve it.

(5) The two—and three-dimensional saturated-unsaturated finite element method
was found to be very effective to detect the realistic change of the flow
pattern.

(6) Finally main problems to use the saturated-unsaturated finite element
procedure are to obtain the material properties of soils, especially the
water retention curve in the unsaturated zone. And so there is a need to
determine on a systematic basis the spectrum of problems for which con-

sideration of the unsaturated flow domain retains engineering importance.
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CHAPTER 8

CONCLUSIONS

The purposes of this thesis were primarily to research on behavior of
groundwater flow in the saturated-unsaturated zone,to present the fundamentals
of the theory of groundwater flow, and to develop the most effective methods for
solving groundwater flow problems occuring in civil engineering practice.
Namely, the main objectives of this thesis were as follows.

(1) To evaluate and discuss the governing equation of flow in the saturated-

unsaturated porous media.

(2) To develop the mathematical model which provides a finite element solution

to two- or three-dimensional problems involving transient flow in the saturated

and unsaturated domains of nonhomogepeous, anisotropic porous media.
(3) To propose better methods for determining or estimating hydraulic properties
of porous media in the laboratory and in the field.
(4) To show the applications of the developed model and methods to practical
groundwater flow problems.
In this chapter, the main conclusions which are based on the information
presented in the previous chapters are summarized and the need for future re-

search in ‘various areas is pointed out.

8.1 Conclusions

In Chapter 1, the objective and general scope of this investigation were

noted, and the histories of previous studies on drawdown test and on numerical

analyses were reviewed.
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In Chapter 2, the physics of the saturated-unsaturated groundwater motion
was discussed. The governing equation of saturated-unsaturated flow in porous
media was derived from the law of mass conservation and the Darcy's law. The
governing equation was compared with the Klute's diffusion equation which has
been widely used in the analysis of flow in unsaturated region. As a result,
it is concluded that the governing equation has the advantage that can be ap-
plied for the whole flow region, including saturated and unsaturated flow.
Typical boundary and initial conditions were enumerated.

In Chapter 3, the governing equation derived in Chapter 2 was formulated
into the finite element discretizations which are evolved into the study of
either two-dimensional or three-dimensional or radially symmetric models.

These models can take into account the effects of hysteresis in the volumetric
moisture content-pressure head in unsaturated region. In conjunction with the
finite element discretization weighted residual procedures, particularly the
Galerkin method was used. Based on this theory, two finite element groundwater
flow programs have been developed. The first program is capable of solving
nonlinear groundwater flow problems in both two-dimensioned and axisymmetric re-
‘gion by using triangle element. The second program is capable of solving non-
linear groundwater flow problems in three-~dimensional region with isoparametric
element. For time integration, the time-centered scheme and the fully implicit
backward difference scheme have been incorporated into programs. Both schemes
can be used with equilibrium interation within each time step. Without loss of
solution accuracy, depending on the nonlinearities, the equilibrium iteration
may allow to dispense with the calculation of a new effective conductivity matrix
in each time step and in this way improve solution efficiency.

In Chapter 4, the need for determining the hydraulic properties of soil
profiles was pointed out and available methods are reviewed. An apparatus was

constructed and test procedures were developed to measure the pressure head and
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volumetric moisture content by using pressure transducer and law-energy .gamma
ray attenuation respectively. Experimental tests have been performed to deter-
mine the relationships between volumetric moisture content (8) and hydraulic
conductivity(K), and between pressure head (J) and volumetric moisture content
(6). The distribution of pressure head and moisture content above the free
surface was obtained at the equilibrium condition in order to applied this
distribution to the numerical analysis of drainage and infiltration in soil as
an initial condition.

In Chapter 5, the validity and the accuracy of the two-or three-dimen-
sional finite element approach which has been described in Chapter 3 have been
investigated with comparing the numerical results with the experimental data.
The relationships K-0 and y-6 which were obtained in Chapter 4 were used as in-
put data. The results were that the good agreements between computed and
measured pressure head profiles have been obrained. It should be remarked the
saturated-unsaturated finite element analysis to two-or three-dimensional model
is very powerful for the analysis of transient flow through porous media.

In order to apply the numerical method to practical groundwater flow
problem in the field, the hydraulic properties must be estimated. In Chapter 6,
new methods of analyzing drawdown tests were developed and illustrated with some
examples to determine hydraulic properties of aquifer. Firstly, analysis of
drawdown test data for partially penetrating well in a confined or an unconfined
aquifer have been shown to determine anisotropic hydraulic conductibities and
storage coefficient. Secondly, to analyze drawdown test data obtained in the
much groundwater supplied aquifer, a conception of "Island Model" has been ap-
plied in unsteady state flow and theoretical solutions in a confined or an-un-
confined aquifer were developed. By using these solutions, new.methods of ana-
lyzing drawdown test were given.

In Chapter 7, having looked into the reasonableness and validity of this
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finite element model in Chapter 5, the possible applications of this model was
finally described. The applications of models to field situation were the flows
through sand bank at flood water levels and the flow through aquifer due to an
excavation. These example analysis clearly demonstrated the flexibility of this
finite element approach and its capability in treating complex situations which

are often encountered in the field.

8.2 Recommendations for Future Research

The considerable effort, test procedures and numerical analysis developed
during this investigation have been quite successful in evaluating the behavior
of groundwater flow quantitatively. A considerable amount of additional research
will be necessary as follows:
(1) The theoretical concepts of fluid flow in porous media have been established
and basic theory for generating approximate solutions to nonlinear problems
developed. However, the computer program, limited to the core storage of the
available computer facility, was intended only to solve the simple illustrative
problems especially in three-dimensional flow. With increased capacity, it
would be possible to handle problems of complex geometry and arbitary boundary
conditions. However it is necessary to research how to reduce the core.
(2) A great deal more research is required for determining or estimating hydroL
geologic properties of the aquifers and aquitards from geologic, geophysical,
and hydraulic evidence, namely, in determining storage capacity, including
improvement of direct field methods for measuring moisture content, porosity,
and negative pressure head, and also relating laboratory results to field data
and applying them to field conditions.
(3) With regard to future research, important development is needed in analyzing
multiphase flow. The mathematical development in this investigation is based

on the usual assumption that the air phase is continuous and always in connection
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with constant external atmospheric pressure. This assumption is not restric-
tivé, but there are some critical ones that limit the sphere of application.

In particular, on rewetting a drained or draining profile, the pore air entrap-
ped between the descending wetting frint and the lower saturated zone will
increase in pressure, there by causing further drainage. The next step in the
program is therefore the study of vertical drainage under the combined effect
of both gravity and increased pore-air pressure. And also it is necessary to
extend this numerical method to principles of multiphase flow and diffusion,
including contiguous salt water and fresh water or oil and fresh water under
natural conditions.

(4) Finally, it must be emphasized for future research to consider an interaction

between the disciplines of soil mechanics, soil physics and hydrogeology.
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