<table>
<thead>
<tr>
<th>Title</th>
<th>iPS cells: A source of cardiac regeneration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yoshida, Yoshinori; Yamanaka, Shinya</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of Molecular and Cellular Cardiology (2011), 50(2): 327-332</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/139198</td>
</tr>
<tr>
<td>© 2010 Elsevier Ltd; This is not the published version. Please cite only the published version. この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>

Kyoto University
iPS cells: A source of cardiac regeneration

Yoshinori Yoshida¹,², MD, PhD, and Shinya Yamanaka¹,²,³,⁴, MD, PhD

From:
¹ Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
² Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507, Japan
³ Yamanaka iPS Cell Special Project, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
⁴ Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA

Address for correspondence:
Yoshinori Yoshida
Center for iPS Cell Research and Application, Institute for Integrated Cell-Material Sciences, Kyoto University,
53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
Tel: +81-75-366-7000
Fax: +81-75-366-7023
E-mail: yoshinor@cira.kyoto-u.ac.jp

1. Introduction

A variety of medical and surgical strategies have been developed for the treatment of heart failure. However, heart failure still remains a major cause of morbidity and mortality in developed countries. Medical interventions for heart failure, which include adjustment of the preload, afterload and sometimes contractility, have limited efficacy in patients. Various types of surgery, including ventricular restoration, ventricular assist device implantation and transplantation, can be applied for only a limited number of patients. Therefore, a new
strategy to improve the cardiac function and inhibit cardiac remodeling needs to be established. A number of strategies to regenerate heart tissue have been devised to resolve the shortage of available transplantation organs, including the transplantation of cardiomyocytes or cardiomyogenic stem cells.

Several tissue-specific stem and progenitor cells, such as mesenchymal stem cells [1] and endothelial progenitor cells [2], have been reported to possesses the potential to differentiate into cardiomyocytes. In addition, resident cardiac stem cells in the heart have also been reported to be able to differentiate into cardiomyocytes. In 2003, Beltrami et al. reported a population of resident cardiac progenitors with the expression of c-Kit is multipotent, differentiating into cardiomyocytes, smooth cells, and endothelial cells.[3]

Cardiac side population cells with the potential for Hoechst dye exclusion and Sca-1+ cells have also been reported to have the potential to express cardiomyocyte-specific genes [4, 5]. Islet-1, a LIM homeodomain transcription factor, is expressed in the progenitor cells of the secondary heart field, and they maintain the ability to differentiate into functional cardiomyocytes both in vivo and in vitro [6]. However, whether these cells are present in the adult human heart remains to be elucidated. While these tissue stem or progenitor cells are an attractive source for stem cell-based cardiac regeneration, their self-renewal potential is limited, and in vitro cardiac differentiation is inefficient.
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are pluripotent cells that can be propagated indefinitely, and can differentiate into cell types from all three germ layers both in vitro and in vivo. The therapeutic effects of human ESC- and iPSC-derived progeny have been reported in animal models for several diseases [7-11].

2. Establishment of iPS cells

2.1 Discovery of iPS cells

ESCs are derived from the inner cell mass of mammalian blastocysts, and mouse ESCs were first isolated in 1981 [12, 13]. The human ES cells derived from human blastocysts were first established by James Thomson et al. in 1998 [14].

The iPS cells were first established in 2006 by Takahashi and Yamanaka [15] by the retrovirus-mediated transduction of four transcription factors (c-Myc, Oct3/4, SOX2, and Klf4) into mouse fibroblasts. These reprogrammed cells, which were selected by the expression of a beta-geo cassette (a fusion of the beta-galactosidase and neomycin resistance genes) driven by the mouse Fbx15 promoter, failed to contribute to adult chimeras. To obtain high-quality iPS cells, reprogrammed cells was selected for their expression of either Nanog or Oct3/4 expression, both of which are closely involved in pluripotency. These cells successfully contributed to adult chimeras, while also showing
germline transmission [16-18].

Human iPS cells were established in 2007, by the transduction of either the same set of transcription factors (c-Myc, Oct3/4, SOX2, Klf4) or another set of transcription factors (Oct3/4, SOX2, Nanog, Lin28) into human fibroblasts [19, 20]. These human iPS cells are similar to human ES cells in their morphology, gene expression, and the epigenetic status of pluripotent cell-specific genes, and they can differentiate into the cell types of the three germ layers in vitro and in vivo. Human iPS cells have been reported to be established from skin fibroblasts [19-21], keratinocytes[22], and mobilized CD34+ hematopoietic stem/progenitor cells [23], and differentiated T cells from peripheral blood [24-26]. The human iPS cells provided us with a chance to develop new treatment modalities in the field of regenerative medicine, as well as being useful for in vitro disease modeling for drug screening [27, 28].

2. Advancement of the methods in iPSC generation

iPS cells were initially derived from somatic cells by the retroviral or lentiviral transduction of transcription factors, and transgenes were randomly inserted into the genome of the hosts. There are thus risks associated with the integrated transgenes, such as tumorigenicity. In fact, the chimeras and progenies derived from mouse iPSC have an increased incidence of
tumor formation primarily due to the reactivation of the c-Myc retrovirus [17]. To avoid these risks, iPS cells without transgenic insertion of c-Myc have been established, even with a low reprogramming efficiency [29]. These Myc – iPS cells achieve germline transmission and, Martinez-Fernandez et al. reported Myc – iPS cells to demonstrate robust cardiac differentiation properties [30, 31]. Recently Nakagawa et al reported that L-Myc, which has little transformation activity, instead of c-Myc, increased the reprogramming efficiency in human cells, and promoted germline transmission, but not tumor formation, in iPSC-derived chimeric mice [32].

Several methods for delivering these transcription factors other than through retroviral or lentiviral transduction have also been devised. iPSCs can now be established by the transduction of the reprogramming factors with adenoviruses, sendaiviruses, plasmid vectors, and removable transposon systems [33-38]. Moreover, mouse and human iPSCs could be established by the direct delivery of recombinant reprogramming proteins [39, 40]. The repeated administration of synthetic modified messenger RNA has recently been reported to be able to reprogram the human somatic cells into iPS cells with a high efficiency [41]. (Figure 1)

Efforts have been made to improve the reprogramming efficiency and establish iPS cells with either substantially fewer or no genetic alterations. Various growth factors and
chemical compounds, such as DNA methyltransferase inhibitor (5’-azacytidine and RG108), histone deacetylase inhibitors (e.g. valproic acid), histone methyltransferase inhibitor (BIX-01294), Wnt3A, and ALK5 inhibitor, have recently been found to improve the induction efficiency of iPS cells [42-45]. Hypoxic cultivation or supplementation of vitamin C has also found to increase the efficiency of reprogramming [46, 47]. The tumor suppressor protein p53 and cell-cycle regulator INK4A have been reported to act as a barrier to reprogramming of somatic cells to iPS cells, and the blockade of these genes also increases the reprogramming efficiency.[48-52] Some transcription factors, such as ESRRB and UTF1, have been found to enhance the reprogramming efficiency [53, 54]. In addition, some microRNAs, including miR-291-3p, miR-294 and miR-295, have also been reported to increase the efficiency of iPSC generation [55].

3. Characterization of pluripotent stem cell clones

As iPS cells have been derived from various tissues, it is unclear whether these cells derived from various tissues have the same characteristics as pluripotent stem cells.

To characterize ES/iPS cell lines, an expression analysis using RT-PCR for mRNA and immunocytochemistry for proteins can be used. Embryoid body formation can be
applied to assess the *in vitro* differentiation of iPS cells. Directed differentiation into specific cell types, such as neurons, can be performed to assess the differentiation capacity of iPS cell lines. Miura et al. reported that mouse iPS cells established from fetal and adult fibroblasts vary in the frequency of refractory cells, which remain undifferentiated after undergoing neuronal differentiation [56].

The most stringent criterion for mouse ES/iPS cells is their ability to generate germline-competent adult mouse chimeras, and thus undergo germline transmission. Mouse iPS cells generated with OSK and Tbx3, a transcription factor related to the maintenance of pluripotency, have recently been reported to improve the germ-cell contribution to the gonads and germline transmission frequency [57].

These *in vitro* and *in vivo* data clearly show that there are intrinsic qualitative differences between iPS cell lines and that the strict characterization of iPS cell lines is necessary.

Mouse ES cells are derived from the inner cell mass of blastocysts, and another type of pluripotent stem cells (epiblast stem cells) have recently been reported to have been generated [58, 59]. The mouse ES cells and epiblast stem cells differ in their morphology, responses to signaling pathways that support self-renewal, and epigenetic status. Mouse ES cells require LIF/STAT signaling for self-renewal and WNT/β-catenin signaling supports
the maintenance of pluripotency in ES cells. The FGF/ERK pathway promotes the differentiation of mouse ES cells. Mouse ES cells have been reported to be maintained by adding a GSK3β inhibitor which promotes WNT/β-catenin signaling and a MEK inhibitor to block the FGF/ERK pathway [60].

Human ES cells share several features with mouse epiblast stem cells and thus are different from mouse ES cells. Human ES cells do not respond to LIF, and FGF/ERK signal promotes self-renewal. In lines of human ES cells derived from females, inactivation of the X chromosome is observed (XaXi) [61]. Hanna et al. reported the ectopic induction of Oct4, Klf4, and Klf2, combined with LIF, GSK3β inhibitor, and MEK inhibitor, to make it possible to convert the ES cells into a more immature state with an active X-chromosome (XaXa) [62]. These converted human ES cells have growth properties, gene expression profiles, and a signaling pathway-dependence similar to mouse ES cells. It was also reported that human ES cells with two active X chromosomes (XaXa) could be generated under hypoxic conditions (5% oxygen) [63].

As noted above, there are variations in the characteristics of ES/iPS cell lines, and the optimal method to best establish and maintain appropriate ES/iPS cell lines for ES/iPS cell technology applications still remains to be elucidated. Further studies are therefore required.
Although the demonstration of germline-competent chimera formation and teratoma formation is very important to evaluate the pluripotency of stem cells, whether or not it should be applied for evaluating all iPS cells is controversial [64, 65]. For the purposes of either regenerative medicine or disease modeling, the optimal source cells do not have to be germline-competent or teratoma-competent, as long as they have the ability of self-renewal and differentiation into the necessary target cells [66].

4. Generation of cardiomyocytes from pluripotent stem cells

Mouse and human ES/iPS cells can differentiate into various cell types, including cardiomyocytes, neuronal cells, and embryonic erythrocytes [67-70]. However, the efficiency of cardiomyocyte differentiation is poor and the differentiated cells are a heterogeneous mixture of various types of cells. To improve the efficiency of cardiomyocyte differentiation, the directed differentiation of ES/iPS cells into cardiomyocytes was induced by the supplementation of signaling molecules, such as Activin A and BMP4 [8, 10]. It has so far been reported that human cardiomyocytes could be induced from pluripotent stem cells by several methods (Figure 2). Using an embryoid body formation assay, human ES/iPS cells can differentiate into beating cardiomyocytes in the presence of fetal bovine
serum [71-73]. Under the serum-free conditions, with the supplementation of several
cytokines, including Activin A and BMP4, the embryoid body can efficiently differentiate into
cardiomyocytes [10]. Coculture with END-2 cells, visceral endoderm-like cells, also induce
the cardiomyocytes from undifferentiated human ES cells [74, 75]. In a monolayer culture
system of human ES/iPS cells, the directed differentiation of hES cells into cardiomyocytes
can be achieved by sequential treatment with activin A and BMP4 [8].

The identification and isolation of a cardiac precursor cell population is expected to provide
a source of cells for tissue regeneration, while also providing valuable insight into cardiac
development. Several recent studies focused on identifying these progenitor cells. These
studies have reported that cardiac cells including cardiomyocytes, endothelial cells, and
smooth muscle cells, may arise from cardiovascular progenitor populations with the
expression of specific markers, such as Flk-1, c-kit, and Isl-1.[10, 76-80] Recently, Yang et al.
reported a population of cardiovascular progenitor cells with low KDR and no c-Kit
eexpression to be able to efficiently differentiate into cardiomyocytes in an in vitro
differentiation system using human ES cells [10].

A high-throughput screening system has also been utilized to identify small
molecules that simulate the generation of cardiomyocytes from pluripotent stem cells. Using
the high-throughput screening system, ascorbic acid was found to enhance the
differentiation of ES cells into cardiomyocytes [81].

Insight into the development of the heart can be further acquired through the observation of differentiation of ES cells into cardiomyocytes. Several studies have therefore focused on the development of cardiac tissue during mouse ES cell differentiation in vitro.[67, 82]. Developmental studies of human cardiomyocytes are now possible as a result of the recent availability of human ES/iPS cells. Moreover, ES/iPS cell-derived cardiomyocytes can also be used for the study of disease-specific cells, screening for new drugs, as well as for clinical application as a novel cell therapy.

5. Transplantation of cardiomyocytes derived from ES/iPS cells

Human myocardium has recently been reported to form in infarcted rodent hearts using human ES cell-derived cardiomyocytes [8, 83, 84]. Nelson et al. reported that the intramyocardial delivery of mouse iPS cells also achieved the in situ regeneration of cardiac tissue, while also improving the post-ischemic cardiac function [85]. The poor survival of transplanted cells hinders the effective grafting of the working myocardium. The formation of an aggregation of derived cardiomyocytes or layered cell sheets of the cultured cardiomyocytes has been reported to improve the survival of grafted cardiac cells [86, 87].
As other types of transplanted cells, such as myoblasts or mononuclear bone marrow cells can be delivered by surgical procedures (epicardial approach) or cardiac catheter procedures (endocardial or intracoronary approach) [88, 89], these delivery methods will be able to be applied to the transplantation of iPS cell-derived cardiac cells. However, several safety issues including teratoma formation still need to be addressed, before these technologies can be successfully used in clinical applications.

Acknowledgements

We are grateful to Rie Kato, Eri Nishikawa, Sayaka Takeshima, Yuko Otsu, and Haruka Hasaba for their valuable administrative support.

Sources of Funding

This study was supported in part by Grants-in-Aid for Scientific Research of JSPS and MEXT (to S.Y. and Y. Y.), a grant from the Leading Project of MEXT, and a grant from the Program for Promotion of Fundamental Studies in Health Sciences of NIBIO.

Disclosures

None.
References

[38] Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of

Figure legends

Figure 1

Comparison of iPS cells generated by viral and non-viral methods. The iPS cells without genomic integration of exogenous sequences are generated by plasmid vectors, adenovirus, sendaivirus, and recombinant proteins. In iPS cells generated by piggyBac transposons, the piggyBac insertions can be removed by transposase.

Figure 2

A schematic representation of in vitro cardiomyocyte differentiation from ES/iPS cells.
Figure 1

Somatic cells vs iPS cells

- Retrovirus
 - Lentivirus
 - Integration (+)

- Plasmid vectors
 - Adenovirus
 - Integration (-) and (+)

- piggyBac transposons
 - (+ transposase)
 - Integration (+)

- Recombinant proteins
 - Sendai virus
 - Synthetic mRNAs
 - Integration (-)
Figure 2

Undifferentiated ES/iPS cells
feeder cells (MEF, SNL)

EB formation
FCS
Cytokines (Activin A, BMP4, etc)

Coculture with stromal cells
(END-2)

2D-culture (Matrigel)
Cytokines (Activin A, BMP4, etc)

ES/iPS cell-derived cardiomyocytes

purification

Cardiac regeneration
Pathogenetic study and drug screening