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ABSTRACT 

To examine the fatigue process of granite, cylindrical Westerly granite specimens, 

10mm in diameter and 20mm in length, were subjected to a cyclic loading test under 

uniaxial compression with a maximum of 140MPa at room temperature, and crack 

growth patterns within them were analyzed by microscopic observation and image 

analysis techniques. The fatigue process is divided into three characteristic stages; a 

primary stage in which the upper peak strain increases at a decelerating rate (stage I), a 

second stage with linearly slight increasing rate of strain following stage I (stage II), and 

the third and final stage in which the upper peak strain increases at an accelerating rate 

and culminates in specimen failure (stage III). A series of prefailure specimens, of 

which the stage in the fatigue process was decided by monitoring the strain behavior 

during the test, were retrieved. In addition, these specimens were compared with 

specimens stressed to close to the breaking strength by monotonic compression to 

examine the characteristic features of fatigue. The fluorescent method was applied to 
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identify microcracks within the specimens. The advantage of this method is to provide 

quick and accurate identification of microcracks with an optical microscope. 

Microcracks are detected based on a marked difference in brightness under ultraviolet 

light irradiation because they are fully filled with acrylic resin mixed with a fluorescent 

substance in advance. Thin sections, including the axis of the specimen, 10 ╳ 20mm, 

were prepared for detailed observation after the pretreatment of the method. 

The results were as follows. At the initial degradation stage, distinguishing crack 

growth was identified in quartz grains. It is estimated that the slowdown of the strain 

growth rate at this stage was caused by the decrease in crack growth, that is, the portions 

with cracking potentiality were damaged at the first or early loading, and no further 

damage occurred immediately following the first damage. At the second stage, no 

significant crack growth in quartz grains was identified. On the other hand, in feldspar 

grains, development of cracks in a preferential direction, parallel to the loading direction, 

was observed. However, they did not grow into intergranular cracks by cutting across 

the grain boundaries during this stage. Consequently, it was found that a gradual 

progress of microcracks within feldspar grains was dominant during the second stage, 

and this is because the strain growth rate was in a steady and long state. At the final 

accelerated stage, many intergranular cracks running parallel to the loading direction 

were identified. It is obvious that these long cracks were formed mainly by the linking 

and growth of the intragranular cracks in feldspars, which were generated during the 

former stages. Their formation takes the fatigue process from the second stage to the 

final stage with a sharp increase in strain, and their further development seemed to lead 

the whole specimen to ultimate fatigue failure. 

 

Keywords: Microcrack; Granite; Fatigue process; Uniaxial cyclic loading; Image 

analysis 
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1. Introduction 

In many cases, the structures constructed in underground spaces, e.g., traffic 

tunnels, mining galleries, and spaces for hydroelectric power plant pumps, are used over 

a prolonged period. Therefore, for the stability evaluation of many rock structures, it is 

important to reveal the deterioration characteristics of rocks under repeated stress 

alternation over the long term. In recent years, several new proposals for the usage of 

underground spaces have drawn increasing interest: compressed air energy storage 

systems, superconducting magnetic energy storage systems, underground nuclear-waste 

repositories, and so on. For example, the base rock surrounding the compressed air 

energy storage system has to bear cyclic stress changes in the first planning stage. 

It is well-known that many materials deteriorate due to repeated stress changes 

over a prolonged period and then finally reach failure even if the change is below their 

static breaking strength. This phenomenon is generally known as ‘fatigue’. Fatigue 

occurs in many kinds of materials (Suresh, 1998), and rock is no exception (Martin and 

Chandler, 1994; Eberhardt et al., 1999; Lau and Chandler, 2004; Heap et al., 2009). 

Many studies on the fatigue characteristics of rocks have been carried out since the 

1960's. Most of them stressed rock specimens cyclically using a loading machine. These 

primary studies reported that the fatigue life, i.e., the time or cycles taken to fail due to 

fatigue, was significantly influenced by the magnitude of the applied maximum stress 

(e.g., Burdine, 1963; Hardy and Chugh, 1970). Attempts to estimate the fatigue life 

were also conducted by many researchers (e.g., Suzuki et al., 1970; Costin and 

Holcomb, 1981). In many geological engineering problems, granite is one of the most 

important materials to investigate. The fatigue characteristics of granite have also been 

studied (e.g., Scholz and Koczynski, 1979; Kodama et al., 1992; Heap and Faulkner, 

2008). To examine crack development during granite fatigue tests, samples were 

monitored by the acoustic emission method, and it was revealed that crack development 
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increased with increasing stress cycles (Haimson, 1978). In recent years, Åkesson et al. 

(2004) reported a characteristic microcrack growth pattern in every constituent mineral 

by microscopic observation of failure granite specimens after cyclic loading, and 

Faulkner et al. (2006) discussed the increase of microfracture density with increasing 

damage by stepwise cyclic loading. However, the detail damaging process in granite 

fatigue, i.e., what kind of damage or cracking occurring in the phases from the onset of 

degradation until the final collapse and the relationship between the damage and the 

subsequent ones, has not been clarified. It is clear that in granite the initiation and 

elongation of microcracks play an essential role in the failure process. It is therefore 

necessary to examine the growth of cracks during the fatigue process. 

Therefore, in this study, to examine the fatigue process in granite, cylindrical 

Westerly granite specimens were subjected to the cyclic loading test under uniaxial 

conditions at room temperature with a maximum applied stress of 140MPa, and the 

patterns of microcracks at three characteristic stages during the test were observed 

microscopically, applying the fluorescent approach proposed by Nishiyama and Kusuda 

(1994). As a further examination, microcrack growth patterns were investigated by the 

digital image analysis technique. In addition, a comparison of crack development 

between cyclic loading and monotonic compression was made. 

 

2. Experimental 

2.1. Sample 

Westerly granite, a fine-grained two mica granite from Rhode Island, USA, was 

chosen for the examination. Many investigations have been performed using this rock, 

and its fundamental characteristics have been detailed by many researchers (e.g., Scholz, 

1968; Friedman et al., 1970; Tapponnier and Brace, 1976; Chen and Wang, 1980). It is 

reported that Westerly granite contains three splitting planes mostly perpendicular to 
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each other. The test pieces in this study were prepared from one about 50cm cube rock 

block with oriented marking and cored in the laboratory.  

The modal composition of the tested samples was about 70% feldspars (potassium 

and plagioclase feldspar), 25% quartz, and 5% micas (biotite and muscovite) and 

accessories. The mean grain size was about 0.7 mm. The connected porosity (measured 

by a water-evaporation method) of the specimens was around 1%. 

2.2. Test conditions 

Cylindrical specimens 10 mm in diameter and 20 mm in length, cored 

perpendicularly to the hardway plane (Fig. 1), were subjected to the loading tests under 

dry uniaxial conditions at room temperature. The cyclic loading test was with a 

specified maximum stress of 140MPa (i.e., approximately 70% of the estimated uniaxial 

compressive strength in the preliminary test) and the minimum one of 0.5MPa. The 

applied load was controlled to change linearly (lumped loading), and the 

loading-unloading cycle time was decided as 10 s (0.1Hz). In this loading rate, the 

strains were basically recovered in the vicinity of the minimum stress point. The 

completion of the loading cycle was determined by the comprehensive estimation on the 

behavior of specimens monitored during the test; the number of test cycles therefore 

was not decided in advance. The detail is mentioned in the next section. 

An adjunctive comparison test with monotonic compression was performed in 

order to examine the difference between the cyclic and monotonic loading. The loading 

rate of the monotonic compression was set at 30MPa/s referring to the cyclic test.  

To monitor the behavior of the specimens during the test, axial and lateral strains, 

and the applied load were simultaneously measured at 0.1 s intervals, that is, 100 

measurements were taken for one loading cycle. Two strains were detected by strain 

gauges with an effective length of 2.0mm directly attached to the side surfaces of each 
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specimen (Fig. 1). The applied load was measured by a load-cell attached within a 

testing machine. 

2.3. Determining the stage in the fatigue process 

In general, during the cyclic loading test, the upper peak of lateral strain roughly 

behaved as shown in Fig. 2 (e.g., Haimson and Kim, 1972), and the fatigue process was 

divided into three stages following the strain behavior. The three stages are a primary 

stage in which the upper peak strain increases at a decelerating rate (stage I), a second 

stage with linearly slight increasing rate of strain following stage I (stage II), and the 

third and final stage in which the upper peak strain increases at an accelerating rate and 

culminates in specimen failure (stage III). A similar tendency for the strain behavior of 

granite during cyclic loading was reported, and the behavior observed in this study was 

similar to that in these studies (e.g., Haimson, 1978; Kodama et al., 1992). Consequently, 

the stage in the fatigue process was decided by the strain behavior, and microcrack 

development patterns at each stage were observed to examine the granite fatigue 

process. 

In order to prepare specimens corresponding to each stage of the fatigue process, 

the behavior of the strain was constantly monitored during the cyclic loading test, and 

the test was stopped based on the comprehensive estimation on the strain behavior of 

specimens. The judgment of the fatigue process stage did not depend on the number of 

loading cycles. The specimens classified as stage II were subdivided into early and latter 

stages according to the strain behavior for further examination. The behavior of the 

upper lateral strain during the cyclic loading tests and the stages judged by the strain 

behavior are summarized in Fig. 3. Meanwhile, to examine monotonic compression, 

two prefailure specimens stressed to 195 and 200MPa were prepared. As a result, a total 

of ten specimens including the intact (no-loaded) specimen were examined in this study 

(Table 1).  
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2.4. Microcrack detection method 

The fluorescent method proposed by Nishiyama and Kusuda (1994) was applied to 

identify microcracks within the specimens. The advantage of this method is to provide 

quick and accurate identification of microcracks with an optical microscope, and 

applications for examining the rock weathering process (Nishiyama and Kusuda, 1996) 

and rock fracturing (Nishiyama et al., 2002) were reported. Microcracks are detected 

based on a marked difference in brightness under ultraviolet light irradiation because 

they are fully filled with acrylic resin mixed with a fluorescent substance in advance. 

The detection limit of this approach is reportedly less than a few micrometers 

(Nishiyama and Kusuda, 1994). This method is efficient for detecting microcracks 

within granite (Chen et al., 2001). When observing thin sections of granite using the 

fluorescent method, the brightest parts corresponded to cracks or pores, quartz and 

feldspar grains were shown in blue, and other colored minerals including biotite and 

muscovite grains in black, under UV light (Fig. 4). 

Thin sections including the axis of the specimen were prepared for detailed 

observation (Fig. 1). To cancel the influence of the bias due to rock anisotropy on 

observation, whole sections were prepared for the same orientation, parallel to the grain 

plane. 

 

3. Observation 

To examine the fatigue process of granite, crack patterns in specimens for each 

stage were observed. A series of crack development patterns within the specimens is 

shown in Fig. 5. The progress of degradation with proceeding fatigue stage was clearly 

observed. Significantly, many cracks developed in later stage II specimens (Fig. 5d), 

compared with the less stressed specimens (Figs. 5a, 5b and 5c). Most of these 

developed cracks were observed in feldspar grains (Fig. 5d). Cracks further increased 
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and elongated in the stage III specimens (Fig. 5e). In this stage, cracks running parallel 

to the loading direction were dominant. Some of these long cracks cut through more 

than two grains. As a further examination, the characteristics of microcracks in each 

stage were observed in more detail. 

 

3.1. Crack growth during the initial degradation stage 

To examine the fatigue process at the initial degradation stage, microcracks in the 

intact, stage I, and early stage II specimens were compared (Fig. 6). In the stage I 

specimens, it was confirmed that the number of grain boundary cracks and intragranular 

cracks increased compared with the intact specimen (Fig. 6 a-d). Intragranular cracks 

were observed mainly in quartz and most of those cracks extended from the interfaces 

between different minerals. In some feldspar grains, many fine cleavage cracks were 

observed even in the intact specimen, and the growth of these cleavage cracks was 

identified in the stage I specimens. No marked change between specimens in stage I and 

early stage II was observed (Fig. 6 c-f). 

3.2. Crack growth during the second stage 

Microcrack patterns between the early and later stage II specimens were compared 

(Fig. 7). The most characteristic feature was that many microcracks were observed in 

feldspar grains in the latter stage II specimens (Fig. 7 c and d). Especially, crack arrays 

were concentrated in the feldspar grains located in the central part of the cluster of 

feldspar grains. Many of these cracks tended to arrange themselves densely and parallel 

to the loading direction. However, in quartz grains, no marked difference in microcrack 

patterns was observed between the two specimens.  

3.3. Crack growth during the final accelerated stage 

To examine the shift in the fatigue process from stage II to stage III and the 

breaking mechanism in stage III, microcrack development patterns in the latter stage II 
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specimens and the stage III specimens were compared. As a result, long cracks which 

could not be identified in the stage II specimens were observed in the stage III 

specimens (Fig. 8). Most of these cracks had three characteristic features; that is, they 

ran parallel to the loading direction, their paths were beyond one grain, and cut across 

several grain boundaries. Some of them elongated to more than 2mm and cut through 

several grains. Their main paths were transgranular of feldspar, and they sometimes 

followed the grain boundary around quartz grains instead of cutting through them (Fig. 

8). Hereinafter, these long cracks with the characteristics that their paths are beyond one 

grain are called as intergranular cracks, but their paths sometimes followed by 

transgranular (or intragranular)-grain boundary system, instead of 

transgranular-transgranular system. 

 

4. Analysis 

To clarify the fatigue process in more detail, the features of crack development 

were analyzed by applying image analysis techniques.  

4.1. Image analysis method 

A quarter area of each thin section was selected as the reference area taking 

account of the symmetry. Digitalized image files of the reference area, approximately 5 

╳ 10mm, were captured with a CCD camera attached to an optical microscope, 

applying the fluorescent approach. Cracks in each section were manually extracted and 

the crack images were saved at a resolution of 300 pixels/mm. Cleavage cracks in 

feldspar were excluded from the analysis in this study. Extracted cracks were classified 

into two types, grain boundary cracks and cracks in grains. Further, cracks in grains 

were subdivided into cracks in quartz and in feldspar (Fig. 9). To analyze crack growth 

patterns, the length and direction of each extracted crack were measured and a 
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parameter ‘crack population’ which was determined by the sum of the crack length 

divided by the full dimensions of the reference area was calculated. 

4.2. Analytical results 

First, the change in the crack numbers as the fatigue process progressed was 

examined (Fig. 10). It was found that the crack number gradually increased as cyclic 

loading proceeded. For a more detailed examination, the change was analyzed by 

dividing cracks into cracks in feldspar and quartz (Fig. 10). The analysis indicated that 

there was a clear difference in growth patterns between the two cracks. That is, cracks in 

quartz increased suddenly in stage I and then stayed constant during stage II, and finally 

increased markedly before failure. Meanwhile, cracks in feldspar increased almost 

proportionally until stage III. 

Next, the crack orientation was examined. Then, the orientation of extracted cracks 

was summarized at every 20° (Fig.11). A clear difference between cracks in feldspar and 

quartz was identified. The most significant feature was that the preferential orientation 

parallel to the loading direction was observed in feldspar at the final stage (Fig. 11e). An 

increase in cracks oriented parallel or subparallel to the loading direction was also 

identified in the latter half of stage II specimens (Fig. 11d). Compared to the intact or 

first-stage specimens, it was clear that most of the newly generated and elongated cracks 

in feldspar oriented parallel to the loading direction. On the other hand, no clear 

preferred orientation of cracks was observed in quartz grains throughout the test.  

To examine crack generation, the behavior of relatively short cracks observed in 

the grains was analyzed. This was because the short cracks were thought to be closely 

related to the newly generated cracks. Fig. 12 shows a frequency distribution chart of 

crack length, and, to compare two cracks in feldspar and quartz, the unit (i.e., number) 

of their vertical axes was adjusted by the area of each mineral. In both minerals, a slight 

increase in short cracks in the range of 0.1mm was identified from the un-loaded stage 
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to stage I. A characteristic difference between the two cracks was observed in the latter 

half of stage II. That is, in feldspar short cracks sharply increased at this stage, but no 

clear increase was identified in quartz grains. Significant growth of cracks of less than 

0.1mm length, however, was observed in stage III. 

 

5. Discussion 

Considering the observational and analytical results, the granite degradation 

mechanism due to fatigue process is discussed. 

One feature of the early fatigue process is that the strain growth rate gradually 

decreases and finally transits to the temporary linearly increasing stage. To clarify this 

phase, the intact, stage I, and first half of stage II specimens were compared. The 

analytical results showed that the crack population in quartz grains increased during 

stage I, but there was little further development until stage II (Fig. 10). On the other 

hand, only a slight increase in the crack population was observed in feldspar grains 

throughout these stages (Fig. 10). In the stage I and II specimens, many microcracks in 

quartz grains stayed within one grain and did not elongate to the neighboring grains (Fig. 

6), although the average crack length increased with the fatigue process. A comparative 

observation of grain boundary cracks in appropriate specimens showed that the opening 

width of the cracks widened slightly in some parts in stage I and the first phase of stage 

II. Therefore, at the initial degradation stage, crack growth in quartz grains is thought to 

be the predominant mechanism. It is estimated that many portions with potential crack 

development in quartz grains were damaged during the early cycles of loading, while 

further loading did not induce further cracking immediately following the first-stage 

damage. However, it is quite unlikely to think that the one cycle of loading develops 

cracks in all portions of cracking potentiality, and practically the prior loading makes a 

change on the situation within the specimens. Therefore, the new cracking is awhile 
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induced at the subsequent loading. Needless to add, the portions fit to the cracking 

condition gradually decrease with further loading. It is assumed that this decrease in 

crack growth is one of the causes of the slowdown in the strain growth rate in the initial 

degradation stage and that the fatigue process moves on to the next stage, in which the 

damage increases slowly and steadily.  

Next, the reason why the strain behavior was in the steady increase for a long time 

during stage II is discussed. The observation and analysis of the stage II specimens 

showed little development of cracks in quartz grains, whereas in feldspar grains the 

number of microcracks increased during this stage (Figs. 10 and 11). Many of these new 

cracks in feldspar were short (less than 0.1mm in length) (Fig. 12), and their orientation 

showed a certain degree of bias to the orientation parallel to the loading direction (Fig. 

11). It is therefore thought that the applied load-unload was mainly expended in two 

mechanisms; the growth or initiation of microcracks in feldspar grains and the 

open-close of cracks developed until this stage. The growth rate of microcracks in 

feldspar grains was estimated to be very slow, and they barely grew into intergranular 

cracks in this phase. Inevitably, it is inferred that the influence of the damage within 

feldspar grains on the outside of grains was small at this stage. Consequently, during the 

second stage, the macroscopic behavior of strain growth was stable without rapid 

increase. 

Finally, the transition from stage II to stage III and the accelerating increase of 

lateral strain during the final stage were examined. In the stage III specimens, many 

long cracks which ran parallel to the loading direction were observed, and most of them 

cut through several grains and grew into intergranular cracks (Fig. 8). Most parts of 

these cracks ran through feldspar grains. Statistical analysis indicated the preferential 

orientation of cracks parallel to the loading direction in feldspar (Fig. 11). Therefore, 

these long intergranular cracks were probably formed by linking of the intragranular 
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cracks generated during stage II in feldspars. It is thought that the formation of long 

intergranular cracks leads the fatigue process from the second stage into the final stage 

where the strain increases at an accelerating rate. This suggests that in the final stage, 

the further development of long cracks which cut through several grains causes the 

strain to increase at an accelerating rate and leads to ultimate fatigue failure. The 

dominant mechanism on crack development on this phase is estimated to be the crack 

coalescence. 

In addition, the results for cyclic loading specimens were compared with those for 

monotonic compressive specimens stressed to near failure. Long intergranular cracks 

such as those found in the stage III specimens were not identified within monotonic 

compressive specimens. Crack patterns in quartz and feldspar grains were analyzed in 

the same way. As a result, the preferred orientation of cracks in feldspar grains was 

more conspicuous in the cyclic loading specimens (Figs. 11 and 13). In contrast, grain 

boundary cracks were more abundant in the monotonic compressed specimens (Fig. 14). 

 

6. Conclusions 

In order to examine the fatigue process of granite, intact Westerly granite 

specimens were subjected to a cyclic loading test under uniaxial compression at a 

maximum of 140MPa at room temperature, and crack growth patterns within them were 

analyzed by microscopic observation and statistical techniques. A series of specimens 

for analysis, of which the stage in the fatigue process was determined by the strain 

behavior monitored during the test, were examined. The fatigue process was divided 

into three characteristic stages; a primary stage in which the upper peak strain increased 

at a decelerating rate (stage I), a second stage with linearly slight increasing rate of 

strain following stage I (stage II), and the third stage in which the upper peak strain 

increased at an accelerating rate and culminated in specimen failure (stage III). The 
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stage II was subdivided into first and second half to examine the fatigue process in more 

detail. Additionally, these specimens were compared with specimens stressed to near 

breaking strength by monotonic compression in order to validate the differences 

between the two. 

As a result, at the initial degradation stage, distinguishing crack growth was 

identified in quartz grains. It is estimated that the slowdown in the strain growth rate at 

this stage was caused by the stepwise decrease in crack growth, that is, the portions with 

cracking potentiality were damaged in the early loading cycles, and no further damage 

occurred immediately following the first-stage damage. 

In the second stage, no significant crack growth in quartz grains was identified. On 

the other hand, in feldspar grains, development of cracks with a preferential orientation 

parallel to the loading direction was observed, but they did not grow into intergranular 

cracks by cutting across the grain boundaries during this stage. Consequently, it was 

found that a gradual progress of microcracks within feldspar grains was dominant 

during the second stage, and this is because the strain growth rate was in a linearly 

slight increasing. 

In the final accelerated stage, many intergranular cracks running parallel to the 

loading direction were identified. It is obvious that these long intergranular cracks were 

formed mainly by the linking and growth of the intragranular cracks in feldspars, which 

were generated during the former stages. Their formation leads the fatigue process from 

the second stage to the final stage with a sharp increase in lateral strain, and their further 

development seems to lead the whole specimen to ultimate fatigue failure. 

A comparison with the specimens subjected to the monotonic compression 

indicated that the characteristic crack growth patterns after stage II were specific to the 

cyclic loading operation. 
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List of table and figures 

Table 1. Summary of the tested specimens. 

Fig. 1. Schematic figure showing the size and orientation of each specimen. To prevent 

the effects of rock anisotropy, whole thin sections were prepared for the same 

direction. 

Fig. 2. Common S-N curve of the fatigue process in universal materials. The process 

was classified into three stages following the strain behavior. 

Fig. 3. Behavior of maximum lateral strain in the tested specimens. To prepare 

specimens corresponding to each stage, the test was stopped depending on the 

strain behavior of the specimen. 

Fig. 4. Typical microscopic appearance of tested specimens (intact specimen). (a) 

observation by a fluorescent method (under UV light); light (white) parts 

correspond to cracks and/or pores, (b) plane polarized light, (c) crossed nicols. 

Fig. 5. Microcrack growth patterns with proceeding fatigue stage. The loading direction 

was vertical. (a) Intact specimen, (b) Specimen in the initial degradation stage: 

specimen I-1, (c) Specimen in early stage II: specimen II-1, (d) Specimen in later 
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stage II: specimen II-2, and (e) Specimen during the final accelerated stage: 

specimen III-3. 

Fig. 6. Microcrack development pattern during the initial degradation stage. (a, b) Intact 

specimen, (c, d) Specimen in the stage I, and (e, f) Specimen in early stage II. (a, c, 

e) Fluorescent images, (b, d, f) polarized images with extracted crack/pore parts 

from the fluorescent images (orange/red). Yellow arrows indicate the growth of 

cleavage cracks in feldspar. The loading direction was vertical. Fd: feldspar, Qz: 

quartz, Bi: biotite.  

Fig. 7. Crack growth during the steady and long state stage (stage II). (a, b) Specimen in 

early stage II, (c, d) Specimen in later stage II: Microcrack arrays were observed in 

the center of the feldspar cluster in the later stage II specimen. (a, c) Fluorescent 

images, (b, d) polarized images with extracted crack/pore parts from the 

fluorescent images (orange/red). The loading direction was vertical. Fd: feldspar.  

Fig. 8. Intergranular cracks running parallel to the loading direction observed in the 

final accelerated stage (stage III). Arrows represent the crack path following the 

intragranular in feldspar (thick arrow) and grain boundary around quartz grain (thin 

arrow). (a) Fluorescent image, (b) polarized image with extracted crack/pore parts 

from the fluorescent images (orange/red). The loading direction was vertical. Fd: 

feldspar, Qz: quartz, Bi: biotite.  

Fig. 9. Manual classification of extracted cracks. (a) Fluorescent image, (b) polarized 

image, (c) extracted crack image: grain boundaries (yellow lines), cracks in quartz 

grains (green lines), and in feldspar grains (red lines). A part of the reference area.  

Fig. 10. Crack population at each stage of the fatigue process.  

Fig. 11. Orientation of cracks in quartz and feldspar grains. The loading direction was 

vertical. (a) Intact specimen, (b) Specimen in the initial degradation stage: 

specimen I-1, (c) Specimen in early stage II: specimen II-1, (d) Specimen in later 
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stage II: specimen II-2, and (e) Specimen during the final accelerated stage: 

specimen III-3. 

Fig. 12. Frequency distribution charts of the length of each extracted crack in feldspar 

(a) and in quartz (b) of tested specimens.  

Fig. 13. Orientation of cracks in quartz and feldspar grains (specimens stressed by 

monotonic compression). The loading direction was vertical. (a) 195MPa specimen, 

(b) 200MPa specimen. 

Fig. 14. Comparison in grain boundary crack development between cyclic loading and 

monotonic loading.  

 

 



Table 1
Summary of the tested specimens.

Sample number Maximum stress (MPa) Loading cycle
lateral axial

intact - 0 - -
I-1 140 100 899 -2,589
I-2 140 1,488 740 -3,037
II-1 140 7,000 1,634 -2,540
II-2 140 35,728 2,085 -2,970
III-1 140 15,000 4,573 -3,556
III-2 140 26,470 2,268 -2,650
III-3 140 42,640 2,956 -3,215

M-195 195 - 2,108 -4,076
M-200 200 - 1,835 -3,170

Maximum strains at the final cycle (microstrains)
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