
A bisection algorithm for grammar-based compression of

ordered trees

Tatsuya Akutsu

Bioinformatics Center, Institute for Chemical Research, Kyoto University,
Uji, Kyoto 611-0011, Japan.

e-mail: takutsu@kuicr.kyoto-u.ac.jp

keywords: approximation algorithms, graph algorithms, tree grammars, data compression

1 Introduction

Among various approaches to data compression for text data, extensive studies have been

done on grammar-based compression. Grammar-based compression is to find a small gram-

mar generating a given string, and is useful not only for data compression but also for pattern

extraction. From a theoretical viewpoint, it is known that finding the smallest context-free

grammar (CFG) is NP-hard but it is approximated in polynomial time within a factor of

O(log(n/m∗)), where n is the size of an input data and m∗ is the size of the smallest gram-

mar [3, 6, 8].

It is reasonable to try to extend grammar-based compression for tree structured data.

Indeed, various grammars and algorithms have been developed for that purpose [2, 7, 9].

However, to my knowledge, no algorithm has been known with a guaranteed approximation

ratio. In this paper, we mainly consider rooted ordered trees. We define an elementary ordered

tree grammar (EOTG) by extending CFG, and then present a polynomial time algorithm

which approximates the smallest EOTG within a factor of O(n5/6). We also show that the

grammar and algorithm can be modified for rooted unordered trees of bounded degree.

2 Preliminaries

In this paper, we consider rooted ordered trees unless otherwise stated. For a tree T , V (T),

E(T) and r(T) denote a set of nodes, a set of edges and the root of T , respectively. The size of

T is the number of nodes in T and is denoted by |T |. For a node v in a tree T , T (v) denotes

the subtree of T induced by v and its descendants. T − T (v) and T − T (v) ∪ {v} denote

1

the subtrees of T induced by V (T) − V (T (v)) and by V (T) − V (T (v)) ∪ {v}, respectively.

The depth of a node v is the number of edges in the path from the root to v and is denoted

by d(v). Vd(T) denotes the set of nodes of depth d in a tree T . For a node u and its

children v1, . . . , vg, sub(u, vi1 , . . . , vih) denotes the subtree induced by u, vi1 , . . . , vih and the

descendants of vi1 , . . . , vih , where (vi1 , . . . , vih) is a subsequence of (v1, . . . , vg). For a string

s, s[i] and s[i, j] denote the ith letter of s and a substring between the ith and jth positions

of s, respectively.

For simplicity, we treat each tree T as an edge labeled tree and let Σ be the set of edge

labels. Node labeled trees can be transformed into edge labeled trees by assigning a label

of a node (except the root) to the edge between the node and its parent. The depth-first

search traversal of T (i.e., visiting children of each node according to their left-to-right order)

gives an Euler tour beginning from the root and ending at the root where each edge {w, v}

is traversed twice in the opposite directions. Let Σ′ = {a, a|a ∈ Σ}, where a /∈ Σ. Let

(e1, e2, . . . , e2n−2) be the sequence of directed edges in the Euler tour of T of size n. From

this, we create the Euler string es(T) of length 2n − 2 over Σ′. Let e = {u, v} be an edge in

T , where u is the parent of v. Suppose that ei = (u, v) and ej = (v, u). It is to be noted that

i < j holds since eis are ordered according to the Euler tour of T . Then, we define i1(e) and

i2(e) by i1(e) = i and i2(e) = j, respectively. We define es(T) by letting es(T)[i1(e)] = �(e)

and es(T)[i2(e)] = �(e), where �(e) is the label of e. It is known that T1 is isomorphic to T2

(including label information) if and only if es(T1) = es(T2) [1].

Of course, we can apply existing grammar-based string compression algorithms to Euler

strings in order to compress trees. Since our tree grammars can be transformed into CFGs as

shown in the proof of Lemma 2, such an approach may yield better compression performances.

However, in such a case, derived grammars do not necessarily correspond to tree grammars.

As discussed in [7, 9], the purpose of grammar-based tree compression is not only to compress

input trees but also to extract features (e.g., patterns) from input trees. Therefore, we need

to obtain tree grammars from input trees.

3 Elementary Ordered Tree Grammar

We consider two types of trees: tagged trees and non-tagged trees. A non-tagged tree is a

usual tree, where either a terminal symbol or a nonterminal symbol is attached as a label to

each edge. A tagged tree is the same as a non-tagged tree except that exactly one leaf node is

2

tagged. An edge whose lower endpoint is a tagged node is called a tagged edge. The restriction

of the number of tagged nodes is important. If multiple tagged nodes were allowed per tree,

the resulting grammars would become more complicated and the time complexity of parsing

would become much higher because we might examine much more numbers of combinations

in parsing. Furthermore, it is unclear whether we can design a compression algorithm with

a guaranteed approximation ratio because our proposed algorithm heavily depends on the

fact that there exists at most one tagged node in a tree. We use a capital letter to denote

a nonterminal symbol and a lower-case letter to denote a terminal symbol. We may identify

an edge with its label, and a tree with its Euler string.

We consider the following two types of production rules for trees (see also Fig. 1)

(R1) Replace a non-tagged edge by a non-tagged tree T ,

(R2) Replace a tagged edge by a tagged tree Tx,

where we start with a tree consisting of a non-tagged edge with the start symbol S.

For a tagged tree Tx, es(Tx) also denotes the Euler string of Tx except that the tagged

edge with label A in Tx is transformed into AxA, where x is the special symbol denoting the

tag. We have an Euler string version of production rules as: (R1’) AA → es(T), (R2’)

AxA → es(Tx). The size of a grammar is defined as the total number of letters (in Euler

strings) appearing in the right hand sides (RHSs) of rules excluding the tag symbol. That

is, the size is the double of the number of edges in trees appearing in RHSs. An EOTG is

defined by a 4-tuple (Σ, Γ, S,Δ) where Σ, Γ, S ∈ Γ and Δ are a set of terminal symbols,

a set of nonterminal symbols, the start symbol and a set of production rules, respectively.

When we discuss compression algorithms, as in [3], we only consider EOTGs satisfying (i)

each nonterminal appears in LHS of exactly one rule, and (ii) there exists an ordering of the

nonterminals Γ such that each nonterminal precedes all nonterminals in its definition (i.e.,

the grammar is acyclic). Due to these properties, it is guaranteed that a grammar generates

exactly one finite-size tree.

In this paper, we consider a special class of EOTG in which only the following types of

production rules are allowed

(I) AA → aa, (I’) AxA → axa, (II) AA → BCCB, (II’) AxA → BCxCB,

(III) AA → BBCC, (IIIA) AxA → BBCxC, (IIIB) AxA → BxBCC.

3

S
A

B

A
C

C

B
C

D

C
E

F

D
E

G

a
b
a
b
a
b
a
b

A B B

B C D

C a

D b

a b a b a b a b

A
B

C
C D F

B D E

E a

F b

G b

b ba a

a b a bE b

D a

F bS A A

S A A

(A)

(B)

(C)

Figure 1: Examples of SEOTGs (left) and generated trees (right). Black nodes denote tagged
nodes.

This restricted version of EOTG is referred as SEOTG (Simple EOTG). From examples

(A) and (B) of Fig. 1, it is seen that EOTG is an extension of CFG for both vertical and

horizontal directions. Though the number of rules of grammar (A) is greater than that for

CFG (because of handling of tags), it is at most double.

Lemma 1 Any EOTG of size m can be transformed into an SEOTG of size at most 3m that

generates the same set of trees as EOTG does.

Proof. We only show a recursive procedure to transform A → Tx, where Tx is a tagged tree

of size at least 3. Then, it is straight-forward to extend the procedure for all cases.

If there is only one child v of r = r(Tx), we add AxA → BCxCB, where B and C

are nonterminal edges for generating an edge (r, v) and a subtree rooted at v, respectively.

Otherwise, suppose that there are g children v1, . . . , vg of r. If Tx(v1) is a tagged tree, we

add AxA → BxBCC, otherwise we add AxA → BBCxC, where B and C correspond to

sub(r, v1) and sub(r, v2, . . . , vg), respectively.

Suppose that Tx consists of m′ edges. Then, the corresponding EOTG rule has size 2m′.

The number of production rules of the former type (including rules without tags) generated

from Tx is bounded by m′ because there exist at most m′ edges in Tx labeled with nonterminal

symbols. The number of production rules of the latter type is bounded by m′ − 1 because

4

there exist at most m′ edges in Tx, and each production rule partitions a relevant set of edges

into two disjoint sets of edges1. Therefore, the total size of the resulting production rules for

Tx is bounded by 2m′ + 4(m′ − 1) = 6m′ − 4, which is smaller than 3 × 2m′. By summing

the sizes of all resulting rules, we have the lemma. �

4 Parsing Algorithm

Before discussing the compression algorithm, we show that parsing of a string for any EOTG

(including ambiguous and cyclic cases) can be done in polynomial time using a dynamic

programming (DP) algorithm. Based on Lemma 1, we only present an algorithm for SEOTG.

For each nonterminal symbol A for rules of type (I’), (II’), (IIIA) and (IIIB) (resp. type

(I), (II) and (III)), we construct a table A[i, h, k, j] (resp. A[i, j]) where i ≤ h ≤ k ≤ j.

A[i, h, k, j] = 1 if es(T)[i, h] and es(T)[k, j] are derived from AxA, where the concatenation

of es(T)[i, h] and es(T)[k, j] corresponds to a subtree, and es(T)[h + 1, k − 1] corresponds to

a subtree rooted at the lower endpoint of an edge corresponding to es(T)[h] and es(T)[k].

Suppose that RHS of AxA is of type (II’). Then, A[i, h, k, j] can be computed by the following

DP procedure

A[i, h, k, j] =

{
1 if (∃g, f)(B[i, g, f, j] = 1 and C[g + 1, h, k, f − 1] = 1),
0 otherwise.

For other type rules, A[i, h, k, j] (or A[i, j]) can also be computed in a similar way. Since the

size of A[i, h, k, j]s is O(mn4) and the time required per entry is O(n2) where m is the size

of EOTG and n = |T |, the following theorem holds.

Theorem 1 Whether or not a given tree T is generated from a given EOTG can be decided

in O(mn6) time.

5 Compression Algorithm

The compression algorithm is based on BISECTION [3, 5] and is denoted by TREE-BISECTION

here. TREE-BISECTION recursively decomposes a given tree T0 into smaller subtrees (see

Fig. 2) until each subtree consists of an edge.

As a base case, suppose that the current tree T consists of an edge with label a. Then,

we add the rule of AxA → axa if T is a tagged tree, and AA → aa otherwise.
1This property can be seen from the fact that every binary tree with m′ leaves has m′ − 1 internal nodes,

where leaves correspond to edges in Tx and internal nodes correspond to production rules.

5

Next, suppose that T is a non-tagged tree of size greater than 2. Let r be the root

of T . Let u1, . . . , uh be the children of a node u. Then, uj is called the heaviest child

(among u1, . . . , uh) if |T (uj)| is largest. Let (v0, v1, v2, . . . , vg) be a heavy chain of T , which is

constructed by following the heaviest children from the root v0 = r. Let vi be the first node

such that |T (vi)| ≤ 1
2 |T |. Here we let v = vi−1. We partition T into T1 = T −T (v)∪{v} and

T2 = T (v), where T1 becomes a tree with tagged v, and |T1| ≤ 1
2 |T | + 1. Let w1, . . . , wh be

the children of v. Then, |T (wl)| ≤ 1
2 |T | holds for all wl. Next, we find wj that minimizes

| |sub(v, w1, . . . , wj)| − |sub(v, wj+1, . . . , wh)| |,

where the tie is broken arbitrarily. Then, we partition T2 into T3 = sub(v, w1, . . . , wj) and

T4 = sub(v, wj+1, . . . , wh). From |T (wl)| ≤ 1
2 |T | for all wl, we can see that |T3| ≤ 3

4 |T | + 1

and |T4| ≤ 3
4 |T |+ 1 hold. The associated rules of SEOTG are created accordingly (see Fig. 2

(A)).

Finally, suppose that T is a tagged tree of size greater than 2. Let r be the root of T .

Let (v0 = r, v1, v2, . . . , vg = x) be the path from the root to the tagged node x. Let vi be

the first node in the path such that |T (vi)| ≤ 1
2 |T |. Here we let v = vi−1. As in the case of

non-tagged tree, we partition T into T1 = T − T (v) ∪ {v} and T2 = T (v). Let w1, . . . , wh

be the children of v, and wj = vi. Then, we partition T2 into T3 = sub(v, w1, . . . , wj)

and T4 = sub(v, wj+1, . . . , wh) if |sub(v, w1, . . . , wj)| < |sub(v, wj, . . . , wh)|. Otherwise, we

partition T2 into T3 = sub(v, w1, . . . , wj−1) and T4 = sub(v, wj, . . . , wh). Here, we assume

without loss of generality that T4 contains wj . From |T4| ≤ |T3|, we can see that |T4| ≤ 1
2 |T |+1

holds. Though the size of T3 may be close to |T |, T3 is a non-tagged tree and thus is

decomposed into subtrees whose sizes are not greater than 3
4 |T | in the next recursive step.

The associated rules of SEOTG are created accordingly (see Fig. 2 (B)). It is to be noted

that each of T1, T2, T3 and T4 contains at most one tagged node.

There are some exceptional cases: either T1 is empty or vi−1 has only one child. In

the former case, we directly decompose T into T3 and T4. In the latter case, we directly

decompose T into T1 and T2. In each case, the properties on the size of trees and the number

of tagged nodes are preserved.

If a generated subtree T is isomorphic to a previously generated subtree T ′, we assign

the same nonterminal label to both edges corresponding to T and T ′, and do not recur for

further decomposition of T .

6

(A)

(B)

wjw1 wj+1 wh

T3 T4

T2

T3 T4v0T1

T2

wj wj+1

w1 wh

v0T1

wj wh

A2 A3 A4

A1

A2

A

A2 A3 A4

A1

A2

Aw1 wj-1

vi-1

wj

w1 wh

v0

vi-1

wj wj+1

w1 wh

T

vi-2

v0

vi-1

wj

w1 wh
wj

T

vi-2

Figure 2: Illustration of TREE-BISECTION. (A) Case of non-tagged tree T . (B) Case of
tagged-tree T . In each case, Ti is generated from Ai.

6 Analysis

If we consider trees of height 1 (i.e., the depth of each node is at most 1), EOTG corresponds

to CFG and thus the lower bounds on the approximation ratio on compression in [3] holds

for EOTG. In the same way, the lower bound for BISECTION (Theorem 5 in [3]) holds also

for TREE-BISECTION.

Proposition 1 The approximation ratio of TREE-BISECTION is Ω(
√

n/ log n).

In order to analyze the upper bound of TREE-BISECTION, we first establish mk Lemma

[3] for EOTG.

Lemma 2 If a tree T is generated by an EOTG of size m, es(T) contains at most 2mk

distinct substrings of length k.

Proof. We transform EOTG into CFG by splitting each rule (except the starting one) into a

pair of rules in CFG by breaking LHS and RHS of each rule before and after x. For example,

AxA → BBCxC is split into A → BBC and A → C. Since we assume that a non-empty

unique Euler string is generated by a given EOTG, the same string is generated by this CFG

of size 2m. Then, the proof of mk Lemma in [3] can be directly applied to this case. �

7

Using the above mentioned relationship between EOTG and CFG, the following proposi-

tion directly follows from Lemma 1 of [3].

Proposition 2 The smallest EOTG that generates a tree of size n has size Ω(log n).

Here, we consider the tree T representing a recursive process of TREE-BISECTION, where

each subtree constructed in TREE-BISECTION is associated with a distinct node in T in the

following way. T0 corresponds to the root of T . If T is decomposed into T1 and T2 in TREE-

BISECTION, the node corresponding to T has two children corresponding to T1 and T2. For

each node p of T , e(p) denotes the number of edges in the corresponding tree.

Lemma 3
∑

p∈Vd(T) e(p) ≤ |E(T0)| = n − 1 holds for any d.

Proof. TREE-BISECTION recursively decomposes a tree into edge disjoint subtrees. Since

the sum is taken over edge disjoint subtrees that are obtained from T0, the lemma holds. �

Lemma 4 The depth of recursive calls of TREE-BISECTION is O(log n).

Proof. Consider any downward path (p1, p2, . . . , p5) in T . Let T i denote a tree associated

with pi. Then, we can see that |T 5| ≤ 3
4 |T 1| always holds. Therefore, the length of a path

from the root of T to any leaf is 5(log(4/3) n + 1). �

From this lemma, it is seen that TREE-BISECTION works in polynomial time. Now, we

show our main result.

Theorem 2 TREE-BISECTION computes in polynomial time an SEOTG of size O(m∗n5/6)

for a given rooted ordered tree T , where m∗ is the size of the smallest EOTG for T , and

n = |T |.

Proof. As in [3], it is enough to bound the number of non-isomorphic subtrees generated

by TREE-BISECTION because a production rule of size at most 4 is generated per subtree.

First, we count the number of subtrees generated by TREE-BISECTION whose sizes are

greater than nα, where α is a constant to be determined later. From Lemma 3, the number

of such subtrees generated by recursive calls at depth d is (n − 1)/nα < n1−α. Since the

maximum depth is O(log n) from Lemma 4, the number of subtrees whose sizes are greater

than nα is O(n1−α log n).

8

Next, we count the number of non-isomorphic subtrees of size at most nα. Recall that

the Euler string of any tagged tree has a form of s1xs2, where each s1 and s2 is a substring

of es(T0). Therefore, the number of non-isomorphic subtrees of size k is bounded by

2m∗(2k − 2) +
(2k−2)−1∑

k1=1

(2m∗k1)(2m∗((2k − 2) − k1)) ≤ c1(m∗)2k3

from Lemma 2 since the length of the Euler string of a subtree of size k is 2(k − 1), where

c1 is some constant. Then, the number of non-isomorphic subtrees of size at most nα is∑nα

k=1 c1(m∗)2k3 ≤ c2 · (m∗)2 · n4α.

By summing up these two numbers, the total number of non-isomorphic subtrees gener-

ated by TREE-BISECTION is O((m∗)2 · n4α + n1−α log n). Letting α = 1/6 and assuming

that m∗ is O(n(1/6)), we can see that the total number of non-isomorphic subtrees is

O(m∗ · n(1/6) · n(4/6) + n(5/6) log n) = O(m∗ · n(5/6) + n(5/6) log n).

Since m∗ · n(5/6) ≥ n holds for m∗ ≥ n1/6 and m∗ is Ω(log n), the number of non-isomorphic

subtrees generated by TREE-BISECTION is O(m∗n5/6). �

TREE-BISECTION can be modified for compression of rooted unordered trees of bounded

degree (i.e., rooted unordered trees in which the number of children of each node is bounded

by a constant H). In this case, the definitions of grammars remain the same except that we

do not distinguish the orders of children. For example, we do not distinguish type (IIIA)

rules from type (IIIB) rules. Let EUTG (elementary unordered tree grammar) and SEUTG

(simple elementary unordered tree grammar) be the resulting grammars corresponding to

EOTG and SEOTG, respectively.

For compression of unordered trees, we modify TREE-BISECTION as follows.

• In partition of a non-tagged tree T , we partition T2 into T2+i = sub(v, wi) (i = 1, . . . , h).

• In partition of a tagged tree T , we also partition T2 into T2+i = sub(v, wi) (i = 1, . . . , h).

• We replace the subtree isomorphism test for ordered trees with one for unordered trees.

Let UNORDERED-TREE-BISECTION denote the resulting algorithm. It is to be noted that

UNORDERED-TREE-BISECTION does not necessarily output an SEUTG, instead it may

output an EUTG because production rules of size 2H may be generated. Since T2 is uniquely

determined from T and is uniquely decomposed into T2+is, the decomposition of an input

9

tree is independent of the ordering of children. That is, the same unordered grammar is

always obtained if isomorphic trees are given.

Theorem 3 UNORDERED-TREE-BISECTION computes in polynomial time an EUTG of size

O(m∗n5/6) for a given rooted unordered tree T of bounded degree, where m∗ is the size of the

smallest EUTG for T , and n = |T |.

Proof. It is straight-forward to verify that Proposition 2, Lemma 3 and Lemma 4 hold for

UNORDERED-TREE-BISECTION. Since it is known that isomorphism of unordered trees can

be tested in linear time [4], the algorithm works in polynomial time.

Next, we consider the approximation ratio. Though we do not distinguish the orders of

children in grammars or input trees, we can assume that an input tree is generated by a

minimum size EOTG and then the orders of children are ignored. Therefore, the number

of non-isomorphic unordered subtrees of size k is bounded by c1(m∗)2k3 as in the proof of

Theorem 2 and thus the total number of non-isomorphic subtrees produced by the algorithm

is O(m∗ · n(5/6) + n(5/6) log n), which is O(m∗ · n(5/6)) because m∗ is Ω(log n). Since the size

of each generated production rule is bounded by 2H and H is assumed to be a constant, the

size of the resulting grammar remains O(m∗ · n(5/6)). �

Acknowledgement

The author would like to thank Morihiro Hayashida and Yang Zhao for helpful discussions.

References

[1] T. Akutsu, A relation between edit distance for ordered trees and edit distance for Euler

strings, Information Processing Letters 100 (2006) 105–109.

[2] G. Busatto, M. Lohrey, S. Maneth, Efficient memory representation of XML document

trees, Information Systems 33 (2008) 456–474.

[3] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, A. Shelat,

The smallest grammar problem, IEEE Transactions on Information Theory 51 (2005)

2554–2576.

[4] Y. Dinitz, A. Itai, M. Rodeh, On an algorithm of Zemlyachenko for subtree isomorphism,

Information Processing Letters 70 (1999) 141–146.

10

[5] J. C. Kieffer, E-H. Yang, Grammar-based codes: A new class of universal lossless source

codes, IEEE Transactions on Information Theory 46 (2000) 737–754.

[6] W. Rytter, Application of Lempel-Ziv factorization to the approximation of grammar-

based compression, Theoretical Computer Science 302 (2003) 211–222.

[7] S. Murakami, K. Doi, A. Yamamoto, Finding frequent patterns from compressed tree-

structured data, Proc. 11th Int. Conf. Discovery Science (2008) 284–295.

[8] H. Sakamoto, S. Maruyama, T. Kida, S. Shimozono, A space-saving approximation algo-

rithm for grammar-based compression, IEICE Transactions on Information and Systems

92-D (2009) 158–165.

[9] K. Yamagata, T. Uchida, T. Shoudai, Y. Nakamura, An effective grammar-based com-

pression algorithm for tree structured data, Proc. 13th Int. Conf. Inductive Logic Pro-

gramming (2003) 383–400.

11

