A Postweaning Reduction in Circulating Ghrelin Temporarily Alters Growth Hormone (GH) Responsiveness to GH-Releasing Hormone in Male Mice But Does Not Affect Somatic Growth

Author(s)
Ariyasu, Hiroyuki; Iwakura, Hiroshi; Yamada, Go; Kanamoto, Naotetsu; Bando, Mika; Kohno, Kenji; Sato, Takahiro; Kojima, Masayasu; Nakao, Kazuwa; Kangawa, Kenji; Akamizu, Takashi

Citation
Endocrinology (2010), 151(4): 1743-1750

Issue Date
2010-04

URL
http://hdl.handle.net/2433/139426

Right
© 2010 Endocrine Society

Type
Journal Article

Textversion
publisher
A Postweaning Reduction in Circulating Ghrelin Temporarily Alters Growth Hormone (GH) Responsiveness to GH-Releasing Hormone in Male Mice But Does Not Affect Somatic Growth

Hiroyuki Ariyasu, Hiroshi Iwakura, Go Yamada, Naotetsu Kanamoto, Mika Bando, Kenji Kohno, Takahiro Sato, Masayasu Kojima, Kazuwa Nakao, Kenji Kangawa, and Takashi Akamizu

Ghrelin Research Project (H.A., H.I., M.B., K.Ka., T.A.), Translational Research Center, Kyoto University Hospital, Kyoto 606-8507, Japan; Department of Endocrinology and Metabolism (G.Y., N.K., K.N.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Laboratory of Molecular and Cell Genetics (K.Ko.), Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan; Molecular Genetics (M.K., T.S.), Institute of Life Sciences, Kurume University, Kurume 839-0864, Japan; and Department of Biochemistry (K.Ka.), National Cardiovascular Center Research Institute, Osaka 565-8565, Japan

Ghrelin was initially identified as an endogenous ligand for the GH secretagogue receptor. When administrated exogenously, ghrelin stimulates GH release and food intake. Previous reports in ghrelin-null mice, which do not exhibit impaired growth nor appetite, question the physiologic role of ghrelin in the regulation of the GH/IGF-I axis. In this study, we generated a transgenic mouse that expresses human diphtheria toxin (DT) receptor (DTR) cDNA in ghrelin-secretion cells [ghrelin-promoter DTR-transgenic (GPDTR-Tg) mice]. Administration of DT to this mouse ablates ghrelin-secretion cells in a controlled manner. After injection of DT into GPDTR-Tg mice, ghrelin-secreting cells were ablated, and plasma levels of ghrelin were markedly decreased [nontransgenic littermates, 70.6 ± 10.2 fmol/ml vs. GPDTR-Tg, 5.3 ± 2.3 fmol/ml]. To elucidate the physiological roles of circulating ghrelin on GH secretion and somatic growth, 3-wk-old GPDTR-Tg mice were treated with DT twice a week for 5 wk. The GH responses to GHRH in male GPDTR-Tg mice were significantly lower than those in wild-type mice at 5 wk of age. However, those were normalized at 8 wk of age. In contrast, in female mice, there was no difference in GH response to GHRH between GPDTR-Tg mice and controls at 5 or 8 wk of age. The gender-dependent differences in response to GHRH were observed in ghrelin-ablated mice. However, GPDTR-Tg mice did not display any decreases in IGF-I levels or any growth retardation. Our results strongly suggest that circulating ghrelin does not play a crucial role in somatic growth. (Endocrinology 151: 1743–1750, 2010)

G H secretion is predominantly regulated by two hypothalamic peptides, one factor is GHRH and a second is somatostatin (SST). In 1999, Kojima et al. (1) discovered ghrelin as an endogenous ligand for the GH secretagogue receptor (GHS-R or ghrelin receptor) from rats’ stomach. Ghrelin, an acylated peptide of 28 amino acids, is synthesized primarily in endocrine cells of the stomach, named X/A-like or ghrelin cells (2). Peripheral administration of ghrelin strongly stimulates GH secretion (1, 3). Because coadministration of GHRH and ghrelin produces synergistic effects on pituitary GH release (4), circulating ghrelin may play a role in augmentation of GHRH-stimulated GH pulses. Therefore, circulating ghrelin was thought to be the third peptide which

Abbreviations: BMD, Bone mineral density; CT, computed tomography; DT, diphtheria toxin; DTR, DT receptor; GHS-R, GH secretagogue receptor; GPDTR-Tg, ghrelin-promoter DTR-transgenic; HB-EGF, heparin-binding epidermal growth factor-like growth factor; SST, somatostatin; WT, nontransgenic littermates.
regulates GH secretion. Indeed, patients with a functional mutation in GHS-R, ghrelin receptor, display familial short stature (5). Okimura et al. (6), however, demonstrated that circulating ghrelin levels do not correlated with those of GH; also, administration of a GHS antagonist to freely moving rats did not reduce plasma GH levels. Ghrelin knockout mice also exhibit normal growth patterns (7). On the other hand, ghrelin receptor knockout mice exhibit modest, but significant, body weight reductions and decreased serum IGF-I levels (8). Together, these findings question the physiologic significance of ghrelin in the regulation of GH secretion. As always with such model mice, there may be confounding factors, such as developmental adaptation and other compensatory mechanisms. To avoid these factors, it may be necessary to ablate ghrelin after birth or before puberty. Moreover, during the prepubertal and pubertal period, GH-dependent proportional body growth is observed in many mammalian species. The fetal growth is GH-independent, and growth during the early postnatal is only partial dependent upon GH. Therefore, to evaluate whether an absence of circulating ghrelin can influence a somatic growth through GH/IGF-I axis modification, we think that it is appropriate to choose a postweaning model.

In this study, we adopted a diphtheria toxin (DT) receptor (DTR)-mediated conditional and targeted cell ablation strategy to ablate ghrelin secretion cells, X/A-like cell, in a specific and controlled manner (9). We generated a transgenic mouse expressing human DTR cDNA, which encodes human heparin-binding epidermal growth factor-like growth factor (HB-EGF), under the control of the transcriptional regulatory regions of ghrelin. In this mouse, ghrelin-secreting cells express the human DTR and can be ablated after the administration of a small amount of DT. By using this transgenic mouse, we ablated ghrelin-secreting cells after weaning, which allowed us to evaluate the physiologic significance of ghrelin in GH secretion and somatic growth.

Materials and Methods
All animal experiments were approved by the Kyoto University Graduate School of Medicine Committee on Animal Research. Procedures were performed in accordance with the principles and guidelines established by that committee.

Plasmid construction and generation of transgenic mice [ghrelin-promoter DTR-transgenic (GPDTR-Tg) mice]

The pGPDTR plasmid was constructed by replacement of the mouse albumin enhancer/promoter region of pMS7 (9) with a 4.1-kb Mst-HindIII fragment containing the 5′-flanking region of the human ghrelin gene (−4110/-33) derived from the p-4110/-33GHRE plasmid (human ghrelin promoter in pGL3) (Fig. 1A) (10). The 6.4-kb NotI-Xhol fragment of pGPDTR was microinjected into the pronucleus of fertilized eggs obtained from C57/B6 mice (SLC, Shizuoka, Japan). The viable eggs were transferred into the oviducts of pseudopregnant female ICR mice (Japan CLEA, Osaka, Japan) by using standard techniques (11). Founder transgenic mice, identified by PCR analysis, were bred with C57BL/6 mice. Mice were housed in air-conditioned animal quarters, with light between 0800 and 2000 h. Except where noted, animals were fed standard rat chow (CE-2, 352 kcal/100 g; Japan CLEA) and water ad libitum.

Semiquantitative PCR
Total RNA was extracted using a Sepasol-RNA kit (Nacalai Tesque, Kyoto, Japan). RT used a high capacity cDNA RT kit (Applied Biosystems, Foster City, CA).

Semiquantitative PCR determined the distribution of the DTR in GPDTR-Tg mice, using the following primers: sense 5′-CCTCCTCCTCGTGCGGG-3′ and antisense 5′-AGTCAC-CAGTGCGAGAGAAGCTG-3′. Thirty-five cycles of thermal performance was set at 94°C for 30 sec, 55°C for 30 sec, and 72°C for 30 sec. Human heart mRNA (purchased from Clontech, Palo Alto, CA) was used as a positive control.

DT injection
DT was purchased from Sigma-Aldrich Japan (Tokyo, Japan). According to the previous report using DTR-mediated cell ablation systems (9), DT was injected im.

Histological procedures
Formalin-fixed, paraffin-embedded tissue sections were immunostained using avidin-biotin peroxidase complex methods (Vectastain “ABC” Elite kit; Vector Laboratories, Burlingame, CA) as described (11). Sections were incubated overnight at 4°C with anti-ghrelin-(1–11) antiserum that specifically recognizes acylated ghrelin (final dilution, 1:5000). Tissue sections were also stained with hematoxylin and eosine.

Measurement of plasma ghrelin levels
Measurement of plasma ghrelin levels was performed as reported previously (12). Blood samples drawn from the retroorbital vein at 1000 h were immediately transferred to chilled siliconized glass tubes containing Na2EDTA (1 mg/ml) and...
aprotinin (1000 KIU/ml; Ohkura Pharmaceutical, Kyoto, Japan). After centrifugation at 4°C to separate out the plasma, hydrochloric acid was added to samples at a final concentration of 0.1 N. Plasma was immediately frozen and stored at −80°C until assayed. Plasma ghrelin concentrations were determined using a ghrelin ELISA kit (Mitsubishi Kagaku Iatron, Tokyo, Japan).

TABLE 1. PCR primers and TaqMan probes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sense</th>
<th>Antisense</th>
<th>Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ghrelin</td>
<td>5'-GCATGCTCTCTAGATGGAATGACATG-3'</td>
<td>5'-TGCGTGCTCTTTCCATGATCCTC-3'</td>
<td>5'-AGCCCGAGACCAAAAGCCCA-3'</td>
</tr>
<tr>
<td>GH</td>
<td>5'-AAAGAGTTCAGGCTGCTACA-3'</td>
<td>5'-GAACGACCTCTCAGGAGCACTCTGACCC-3'</td>
<td>5'-CCATGCCAAAGGAGGAGATGAG-3'</td>
</tr>
<tr>
<td>GHRH</td>
<td>5'-ACCCGAGCCTACCAAAATGAC-3'</td>
<td>5'-CACCAGACTCTCTAGCCAT-3'</td>
<td>5'-TGCTGTGAGAACACATGATGTTG-3'</td>
</tr>
<tr>
<td>SST</td>
<td>5'-GCCACCCAGCAATGGCACCC-3'</td>
<td>5'-CaCCTGGAATAAG-3'</td>
<td>5'-ACCCGAGCCTACCAAAATGAC-3'</td>
</tr>
<tr>
<td>IGF-1</td>
<td>5'-GGTGCTGAGACAGCAGCATGATGTTG-3'</td>
<td>5'-ACCCGAGCCTACCAAAATGAC-3'</td>
<td>5'-CAGAGAATCTATCCAGTT-3'</td>
</tr>
<tr>
<td>GHS-R</td>
<td>5'-AGCCCAGAGCACCAGAAAGC-3'</td>
<td>5'-AGGATGCAGCGACACGTAGA-3'</td>
<td>5'-GCATGCCATCTGGGCTCTTGCGATAG-3'</td>
</tr>
</tbody>
</table>

Real-time PCR analysis

Extraction of total RNA from various tissues and RT was performed as described above. Real-time quantitative PCR used an ABI PRISM 7500 Sequence Detection System (Applied Biosystems) using the primers and TaqMan probes described in Table 1. The mRNA expression levels of each gene were normalized to that of 18S rRNA. All samples were examined in triplicate in 96-well plates using an ABI Prism 7500 sequence detector according to the manufacturer’s protocol.

GH provocative test

GH provocative test was carried out as previously described (12). These experiments were conducted in unanesthetized mice. Human GH-RNA was purchased from Sumitomo Pharmaceuticals Co., Ltd. (Osaka, Japan). Serum samples were collected at 15 and 30 min after sc injection of 180 mcg/kg of GHRH.

Ghrelin-rescue experiments

Osmotic infusion pumps (Alzet Micro-Osmotic pump, Model 1002; Durect Corp., Cupertino, CA) were implanted sc in 3-wk-old male GPDT-R-Tg mice. Ghrelin (60 mcg/kg/d; Peptide Institute, Osaka, Japan) or saline was continuously infused through the osmotic infusion pumps. Then mice were started to treat with DT (50 ng/kg twice a week) a day after pump implantation. The average plasma ghrelin levels during continuous infusion of ghrelin were 31.6 ± 5.3 fmol/ml in the DT-treated GPDT-R-Tg mice, whereas those without ghrelin infusion were 1.7 ± 0.2 fmol/ml. GH provocative test were carried out in these mice at the age of 5 wk.

Measurement of serum GH and IGF-I levels

Blood samples were collected from the tail veins of mice. Serum was isolated by centrifugation and stored at −20°C until assayed. Serum GH levels and IGF-I levels were measured using the appropriate EIA kits from SPI-BIO (Bonde, France) and Diagnostic Systems Laboratories, Inc. (Webster, TX), respectively, according to the manufacturers’ instructions.

Measurement of body lengths

Mouse body length was measured by manual immobilization and extension of mice to determine nose-to-anus length. All measurements were performed by the same individual in a blind fashion.

Measurement of fat mass and bone mineral density (BMD)

The fat mass (% fat) and BMD of mice were measured by computed tomography (CT) (Laboratory CT; Lacita, Aloka, Japan) under pentobarbital anesthesia.

Statistical analysis

Results are expressed as the means ± SEM. Multiple comparisons between groups were made by Turkey-Kramer test, with α set at P < 0.05. The results on body weight and serum GH levels after GHRH injection were analyzed by a two-way ANOVA followed by Tukey’s post hoc test, with a set at P < 0.05. Statistical analyses were carried out with STATVIE 4.0 software (Abacus Concepts, Inc., Berkley, CA).

Results

Generation of transgenic mice in which ghrelin can be ablated in a controlled manner

Transgenic mice

To elucidate physiologic role of ghrelin in GH secretion and somatic growth, we developed transgenic mice in which ghrelin can be ablated in controlled manner. We adopted a DTR-mediated conditional and targeted cell ablation strategy. We created transgenic mice that expressed the gene for the human DTR, human HB-EGF,
under the control of the ghrelin promoter. By injecting transgenes into 184 eggs, we obtained three lines of transgenic mouse (Tg 1-2, Tg 5-1, and Tg 5-8). We continued with the Tg 5-1 transgenic line, because Tg 1-2 animals did not exhibit decreases in plasma ghrelin levels after injection of high-dose DT and Tg 5-8 required high doses of DT (50 mcg/kg) to ablate ghrelin-producing cells (data not shown). In Tg 5-1 transgenic animals, semiquantitative PCR analysis revealed high expression of DTR mRNA in the stomach and weak expression in the duodenum and jejenum. No expression, however, could be detected in the ileum, colon, pancreas, hypothalamus, pituitary, liver, or lung (Fig. 1B). In Tg 5-1 mice, the ghrelin-producing cells of the stomach were ablated by injection with low-dose DT (10 or 50 ng/kg) (Fig. 2, A, B, and D). We therefore designated the Tg 5-1 transgenic line and nontransgenic littermates as GPDTR-Tg mice and wild-type (WT) mice, respectively.

Ablation of ghrelin-producing cell

To determine the dose and timeframe of DT injection, preliminary studies were performed: GPDTR-Tg mice were injected with saline or DT twice a week at a dose of 10, 30, 50, 100, and 500 ng/kg (on d 0 and 2). Plasma ghrelin levels on d 4 were decreased to approximately 60, 30, 5, 5, and 5% of control mice (Tg mice treated with saline) after 10, 30, 50, 100, and 500 ng/kg of DT injection, respectively. Thus, we judged that 50 ng/kg of DT is the smallest effective dose to reduce plasma ghrelin. The final results using 10 and 50 ng/kg of DT were described below. Next, GPDTR-Tg mice were injected with 50 ng/kg of DT with four schedules: once a week (on d 0), twice a week (on d 0 and 2), three times a week (on d 0, 2, and 4), or daily (from d 0 to 6), and plasma ghrelin levels were measured on d 7. The once-a-week injection of DT was insufficient, but the twice-a-week injection of DT had enough effect on reduction in plasma ghrelin concentration.

To ablate ghrelin-producing cells, 8-wk-old male WT and GPDTR-Tg mice were injected im with 10 or 50 ng/kg DT daily on d 0 and 2 and analyzed on d 4. WT mice treated with saline or DT and GPDTR-Tg mice treated with saline were used as control mice.

To evaluate the effects of DT injection on ghrelin-producing cell, we analyzed stomach by immunohistochemical analysis with antighrelin antisera (Fig. 2A) and real-time PCR (Fig. 2, B and C). DT injection reduced in a dose-dependent manner both the number of ghrelin-positive cells and the expression of ghrelin mRNA in the stomach of GPDTR-Tg mice (Fig. 2, A and B). DT injection did not produce in any abnormalities in WT mice, because these mice do not possess the DTR, making them insensitive to DT. In transgenic animals, DT injection also reduced ghrelin mRNA levels in the duodenum, pancreas, pituitary, and hypothalamus of GPDTR-Tg mice (Fig. 2C). Plasma ghrelin levels in GPDTR-Tg mice treated with 10 and 50 ng/kg of DT were decreased to approximately 60 and 5–7% of control mice, respectively (Fig. 2D). These results suggested that this transgenic mouse model is a useful tool for evaluating the physiologic role of circulating ghrelin.

FIG. 2. Ablation of ghrelin-secretion cells. Eight-week-old male GPDTR-Tg mice (Tg) and nontransgenic littermates (WT) were injected with saline or 10 or 50 ng/kg of DT (im) on d 0 and 2, then analyzed on d 4. A, Histological analysis of stomach sections. Immunohistochemical analysis of ghrelin peptide expression and hematoxylin and eosin staining. Original magnification, ×100. B, Ghrelin mRNA levels in the stomach. C, Ghrelin mRNA levels in the duodenum, pancreas, pituitary, and hypothalamus of GPDTR-Tg and WT mice injected with 50 ng/kg of DT. D, Plasma ghrelin levels in GPDTR-Tg and WT mice. For B–D, data represent the means ± SEM (n = 8).

Histological analysis with hematoxylin and eosin staining revealed that no inflammatory cell infiltration was seen in the stomach (Fig. 2A), small intestine, colon, pancreas, pituitary, and hypothalamus of the GPDTR-Tg mice with 50 ng/kg of DT injection. Other historical abnormalities were also not observed in these tissues (data not shown).

The effects of a reduction in circulating ghrelin after weaning on the GH/IGF-I axis and somatic growth

To study the effects of postweaning reductions in circulating ghrelin on the GH/IGF-I axis and somatic growth, 3-wk-old WT and GPDTR-Tg mice were treated with DT
and after DT injection. B, GH response to GHRH administration (180 ng/kg i.m. twice a week) on the expression of mRNA encoding GHRH and SST in the hypothalamus and encoding GH and GHS-R in the pituitary. There were no differences in mRNA expression levels of these mediators among any animal groups in male and female at 5 wk of age (Fig. 4).

As expected from the results of the IGF-I studies, no evidence of growth retardation could be found in either male or female GP-DTR-Tg mice treated with DT during the observation period. There were no differences in body weight or length in comparison with three groups of control mice at any point (Fig. 5, A and B, for male; and Fig. 5, D and E, for female animals). CT analysis of body composition demonstrated that there were no differences in percent fat or BMD among any animal groups at 5 and 8 wk of age (Fig. 5C for male, and Fig. 5F for female animals). There were no differences in weekly food intake from 3 to 8 wk of age [WT vs. GP-DTR-Tg (treated with DT); male, 18.4 ± 0.5 vs. 18.9 ± 0.7; female, 18.4 ± 1.0 vs. 18.5 ± 0.6 (g/wk)]. These results suggested that although GH responses to GHRH were temporarily reduced under conditions of decrease in circulating ghrelin, somatic growth was not impaired.

(50 ng/kg) or saline twice a week for 5 wk (from 3 to 8 wk old). After DT injection, plasma ghrelin levels of GP-DTR-Tg mice decreased rapidly. In GP-DTR-Tg mice, ghrelin levels were undetectable by 5 wk of age, remaining so thereafter (Fig. 3A). The data obtained from GP-DTR-Tg mice were compared with those from three groups of control mice (WT with saline, WT with DT, and GP-DTR-Tg with saline).

To elucidate whether a postweaning reduction in circulating ghrelin can influence GH secretion, we measured basal serum GH levels and performed GH provocative test with GHRH. There were no differences in basal serum GH levels between GP-DTR-Tg mice treated with DT and control mice in either males or females at 5 or 8 wk of age. GH provocative test with GHRH showed some intriguing results (Fig. 3B). The GH responses to GHRH in male GP-DTR-Tg mice treated with DT were significantly lower than those in three controls at 5 wk of age. However, those responses were normalized at 8 wk of age. On the other hand, there were no differences in GH response to GHRH among four groups (WT with saline or DT, and Tg with saline or DT) in females at 5 or 8 wk of age.

To elucidate whether temporarily attenuation of GH responses to GHRH can affect IGF-I regulation, we investigated serum IGF-I levels and IGF-I mRNA expressions in the liver, skeletal muscle, and distal femur. There were no differences in serum IGF-I levels among any animal groups in either males or females at 5 or 8 wk of age (Fig. 3C). There were also no differences in IGF-I mRNA expressions in the liver, skeletal muscle, or distal femur among any animal groups at 5 wk of age (Fig. 3D). We then investigated the effects of decreases in circulating ghrelin on the expression of mRNA encoding GHRH and SST in the hypothalamus and encoding GH and GHS-R in the pituitary. There were no differences in mRNA expression levels of these mediators among any animal groups in male and female at 5 wk of age (Fig. 4).

FIG. 3. The effects of a postweaning reduction in circulating ghrelin on the GHRH/GF-1 axis. Three-week-old GP-DTR-Tg and WT mice were injected saline or DT at a dose of 50 ng/kg twice a week for 5 wk (from 3 to 8 wk old). A, Plasma ghrelin levels before and after DT injection. B, GH response to GHRH administration (180 μg/kg sc) in GP-DTR-Tg and WT mice at 5 and 8 wk of age. C, Serum IGF-I levels of GP-DTR-Tg and WT mice at 5 and 8 wk of age. D, IGF-I mRNA levels in liver, skeletal muscle, and femur in GP-DTR-Tg and WT mice at 5 wk of age. Data represent the means ± SEM (n = 12).

FIG. 4. The effects of a postweaning reduction in circulating ghrelin on the expression of mRNA encoding GHRH, SST, GH and GHS-R. Three-week-old GP-DTR-Tg and WT mice were injected saline or DT at a dose of 50 ng/kg twice a week for 5 wk (from 3 to 8 wk old). Pituitary mRNA levels of GH and GHS-R and hypothalamic mRNA levels of GHRH and SST in GP-DTR-Tg and WT mice at 5 wk of age. Data represent the means ± SEM (n = 12).
GH response to GHRH in the ghrelin-rescued GPDTR-Tg mice

To elucidate whether GH responsiveness to GHRH can be ameliorated by ghrelin replacement in the ghrelin-ablated mice, GH provocative test were carried out in the DT-treated GPDTR-Tg mice whose circulating ghrelin were rescued by continuously administration of ghrelin with osmotic pump. The average plasma ghrelin levels during continuous infusion of ghrelin were 31.6 \pm 10.6 fmol/ml in the DT-treated GPDTR-Tg mice, whereas those without ghrelin infusion were 1.7 \pm 0.7 fmol/ml in the WT mice. Serum GH levels at 0, 15, and 30 min after GHRH administration in the ghrelin-ablated mice were 7.8 \pm 1.6, 26.2 \pm 4.2, and 12.3 \pm 0.8 ng/ml, respectively, whereas those in mice without ghrelin replacement were 6.8 \pm 1.5, 10.9 \pm 2.6, and 11.3 \pm 1.6 ng/ml, respectively. These results suggested that attenuated response to GHRH seen in ghrelin-ablated mice without ghrelin replacement was due to acute ghrelin deficiency.

Discussion

In this study, we generated transgenic mice expressing the DTR driven by the transcriptional regulatory machinery of ghrelin. Injection of DT into this mouse can ablate ghrelin-secreting cells. Approximately 70–80% of circulating ghrelin originates from the stomach (13). Ghrelin-producing cells are also found throughout the small intestine, with the duodenum producing approximately one-tenth that of the stomach (14). Semiquantitative PCR revealed that DTR was only expressed in stomach and not in pituitary, hypothalamus, and pancreas and the intensity of the band of DTR in stomach was very low. Three possibilities might be considered to explain this result. The first is the low efficiency of gene transfection. Three lines of GPDTR-Tg mice that we generated in this study were inserted with low copy numbers of transgene (DTR cDNA). Thus, the expression levels of DTR mRNA could be very low even in stomach. The second is the efficiency of gene expression. In this study, we designed a fusion gene comprising the 4085-bp fragment contained a partial sequence of the 5’-flanking region of the human ghrelin gene and human DTR. The efficiency of gene expression driven by this fragment might be lower than those driven by the original ghrelin promoter region. The last, except gastrointestinal tract, transcription of ghrelin gene might be driven by a different size of fragment of the 5’-flanking region. Immunohistochemical and PCR analyses demonstrated that ghrelin-secreting cells in the stomach and duodenum were ablated after DT injection into GPDTR-Tg mice, resulting in marked reduction of plasma ghrelin levels. In contrast, ghrelin-producing cells of the pituitary and hypothalamus were unaffected. Thus, this transgenic mouse is a useful model to explore the role of circulating ghrelin, because plasma ghrelin levels can be abrogated in a controlled manner without altering pituitary and hypothalamic ghrelin mRNA expression levels.

The physiologic roles of ghrelin in the regulation of GH secretion remain unclear, because previous reports using rodents deficient or reduced in ghrelin signals have given conflicting results (7, 8, 15, 16). Sun et al. (7) reported that ghrelin-deficient mice did not exhibit any growth retardation or decreases in serum IGF-I levels. Wortley et al.
were unable to observe any significant differences between ghrelin-deficient mice and WT mice in body weight or basal serum GH levels, when fed a standard diet. Moreover, Zigman et al. (16) demonstrated there was no significant difference in serum IGF-I levels between ghrelin receptor knockout and WT mice. Sun et al. (8), however, showed that ghrelin receptor knockout mice exhibited only a small reduction in body weight and serum IGF-I levels. In addition, Pantel et al. (5) showed that two unrelated families with short stature have a missense mutation of GHS-R. This mutation impairs the constitutive activity of the GHS-R. They also reported a young patient with growth delay who has a recessive partially isolated GH deficiency due to GHS-R mutations (17). These results indicate importance of ghrelin/GHS-R signals in GH secretion and somatic growth.

The purpose of this study is to evaluate whether an absence of circulating ghrelin can influence GH secretion and somatic growth via GH/IGF-I axis in mammals. First, we investigated basal serum GH levels and the GH response to GHRH. Although basal serum GH levels in the ghrelin-abrogated mice did not differ from those seen in WT mice, the GH responses to GHRH in male GPDTR-Tg mice were significantly lower than those in WT mice at 5 wk of age. As coadministration of GHRH and ghrelin produces synergistic effects on pituitary GH release (4), circulating ghrelin may play a role in augmentation of GHRH-stimulated GH pulses. Indeed, GH responsiveness to GHRH was ameliorated by ghrelin replacement in the ghrelin-ablated mice. However, the attenuated response to GHRH in the ghrelin-ablated mice had persisted only for a short term. The GH responses to GHRH in male GPDTR-Tg mice were recovered and were not different from those in WT mice at 8 wk of age. It is possible that an adaptation to reduced circulating ghrelin occurred within a short term. Indeed, Popovic et al. (18) reported that 10 patients who underwent total-gastrectomy at least 2 yr ago, a state of acquired chronic hypoglycemia, exhibited normal GH response to GHRH compared with normal subjects. Meanwhile, in female mice, there were no differences in either basal serum GH levels or GH response to GHRH between WT and GPDTR-Tg mice at 5 or 8 wk of age. The secretory pattern of GH in rodents is sexually differentiated. In male rats, GH is secreted in episodic pattern with low levels between pulses, whereas in females, the pulses are lower and plasma GH levels between pluses are higher than males (19). The secretory pattern of GH differs between male and female by 30 d of age (20). Gonadal steroids are thought to produce the sexual differences in GH secretion. We assumed that the sexual differences in GH response to GHRH in ghrelin-ablated mice may depend on gonadal steroids.

As GH secretion is pulsatile in nature, a single measurement of GH concentration in blood would not adequately reflect endogenous GH secretion. To estimate the amplitude and frequency of GH pulses, short-interval blood sampling under a conscious state is required. Such studies are difficult to perform in mice. Instead, we investigated serum IGF-I levels, skeletal muscle IGF-I mRNA expression, and anthropometric parameters that reflect pulsatile GH release under similar nutritional conditions (21). Serum IGF-I levels and IGF-I mRNA expression in skeletal muscle did not decrease in the ghrelin-abrogated mice in comparison with WT mice. These results suggest that circulating ghrelin does not play a dominant role in the GH/IGF-I axis. Due to significant differences between species in the regulation of GH secretion (21), we have to give careful considerations to apply the results of animal experiments concerning GH secretion directly to humans; insulin-induced hypoglycemia is a potent stimulus of GH secretion in humans, whereas rats respond to the stress of hypoglycemia by decreasing GH secretion (22, 23). L-arginine is a potent GH secretagogue in humans, but does not (or less overtly) stimulate GH secretion in rats (21, 24).

Somatic growth is affected not only by GH and IGF-I but also by thyroid hormones, sex steroids, and glucocorticoids. It also depends on genetic background and nutrition. Adequate nutrition is one of the most important factors affecting somatic growth. In present study, there were no differences in food intake between the ghrelin-abrogated mice and WT mice. Body weight, length, and body composition also were not influenced by plasma ghrelin levels. These results suggest that circulating ghrelin does not play a dominant role in somatic growth.

We cannot exclude the possibility that hypothalamic ghrelin may regulate GH secretion, as hypothalamic ghrelin-secreting cells were preserved in this animal model. Shuto et al. (25) demonstrated that transgenic rats expressing antisense GHS-R mRNA within the arcuate nucleus of the hypothalamus displayed growth retardation, suggesting that ghrelin/GHS-R systems in the hypothalamus function in the regulation of GH. Further studies will be needed to elucidate the role of hypothalamic ghrelin in GH secretion.

In summary, we have succeeded in generating transgenic mice in which circulating ghrelin can be abrogated in a controlled manner after birth. Our results suggest that circulating ghrelin does not play a crucial role in somatic growth.

Acknowledgments

We thank Dr. Shimatsu for fruitful discussions and Ms. Chieko Ishimoto and Ms. Chinami Shiraiwa for their excellent technical assistance.
Address all correspondence and requests for reprints to: Hiroyuki Ariyasu, M.D., Ph.D., Ghrelin Research Project, Translational Research Center, Kyoto University Hospital, 54 Shogin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan. E-mail: ariyasu@kuhp.kyoto-u.ac.jp.

This work was supported by funds from the Japan Ministry of Education, Culture, Sports, Science, and Technology and the Ministry of Health, Labor, and Welfare of Japan, and by research grants from the Program for the Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation and from the Takeda Foundation in Japan.

Disclosure Summary: The authors have nothing to disclose.

References

