A Postweaning Reduction in Circulating Ghrelin Temporarily Alters Growth Hormone (GH) Responsiveness to GH-Releasing Hormone in Male Mice But Does Not Affect Somatic Growth

Ariyasu, Hiroyuki; Iwakura, Hiroshi; Yamada, Go; Kanamoto, Naotetsu; Bando, Mika; Kohno, Kenji; Sato, Takahiro; Kojima, Masayasu; Nakao, Kazuwa; Kangawa, Kenji; Akamizu, Takashi

Endocrinology (2010), 151(4): 1743-1750

http://hdl.handle.net/2433/139426

© 2010 Endocrine Society

Journal Article
A Postweaning Reduction in Circulating Ghrelin Temporarily Alters Growth Hormone (GH) Responsiveness to GH-Releasing Hormone in Male Mice But Does Not Affect Somatic Growth

Hiroyuki Ariyasu, Hiroshi Iwakura, Go Yamada, Naotetsu Kanamoto, Mika Bando, Kenji Kohno, Takahiro Sato, Masayasu Kojima, Kazuwa Nakao, Kenji Kangawa, and Takashi Akamizu

Ghrelin Research Project (H.A., H.I., M.B., K.Ka., T.A.), Translational Research Center, Kyoto University Hospital, Kyoto 606-8507, Japan; Department of Endocrinology and Metabolism (G.Y., N.K., K.N.), Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Laboratory of Molecular and Cell Genetics (K.Ko.), Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan; Molecular Genetics (M.K., T.S.), Institute of Life Sciences, Kurume University, Kurume 839-0864, Japan; and Department of Biochemistry (K.Ka.), National Cardiovascular Center Research Institute, Osaka 565-8565, Japan

Ghrelin was initially identified as an endogenous ligand for the GH secretagogue receptor. When administrated exogenously, ghrelin stimulates GH release and food intake. Previous reports in ghrelin-null mice, which do not exhibit impaired growth nor appetite, question the physiologic role of ghrelin in the regulation of the GH/IGF-I axis. In this study, we generated a transgenic mouse that expresses human diphtheria toxin (DT) receptor (DTR) cDNA in ghrelin-secretion cells [ghrelin-promoter DTR-transgenic (GPDTR-Tg) mice]. Administration of DT to this mouse ablates ghrelin-secretion cells in a controlled manner. After injection of DT into GPDTR-Tg mice, ghrelin-secreting cells were ablated, and plasma levels of ghrelin were markedly decreased [nontransgenic littermates, 70.6 ± 10.2 fmol/ml vs. GPDTR-Tg, 5.3 ± 2.3 fmol/ml]. To elucidate the physiological roles of circulating ghrelin on GH secretion and somatic growth, 3-wk-old GPDTR-Tg mice were treated with DT twice a week for 5 wk. The GH responses to GHRH in male GPDTR-Tg mice were significantly lower than those in wild-type mice at 5 wk of age. However, those were normalized at 8 wk of age. In contrast, in female mice, there was no difference in GH response to GHRH between GPDTR-Tg mice and controls at 5 or 8 wk of age. The gender-dependent differences in response to GHRH were observed in ghrelin-ablated mice. However, GPDTR-Tg mice did not display any decreases in IGF-I levels or any growth retardation. Our results strongly suggest that circulating ghrelin does not play a crucial role in somatic growth. (Endocrinology 151: 1743–1750, 2010)

GH secretion is predominantly regulated by two hypothalamic peptides, one factor is GHRH and a second is somatostatin (SST). In 1999, Kojima et al. (1) discovered ghrelin as an endogenous ligand for the GH secretagogue receptor (GHS-R or ghrelin receptor) from rats’ stomach. Ghrelin, an acylated peptide of 28 amino acids, is synthesized primarily in endocrine cells of the stomach, named X/A-like or ghrelin cells (2). Peripheral administration of ghrelin strongly stimulates GH secretion (1, 3). Because coadministration of GHRH and ghrelin produces synergistic effects on pituitary GH release (4), circulating ghrelin may play a role in augmentation of GHRH-stimulated GH pulses. Therefore, circulating ghrelin was thought to be the third peptide which

Abbreviations: BMD, Bone mineral density; CT, computed tomography; DT, diphtheria toxin; DTR, DT receptor; GHS-R, GH secretagogue receptor; GPDTR-Tg, ghrelin-promoter DTR-transgenic; HB-EGF, heparin-binding epidermal growth factor-like growth factor; SST, somatostatin; WT, nontransgenic littermates.
regulates GH secretion. Indeed, patients with a functional mutation in GHS-R, ghrelin receptor, display familial short stature (5). Okimura et al. (6), however, demonstrated that circulating ghrelin levels do not correlate with those of GH; also, administration of a GHS antagonist to freely moving rats did not reduce plasma GH levels. Ghrelin knockout mice also exhibit normal growth patterns (7). On the other hand, ghrelin receptor knockout mice exhibit modest, but significant, body weight reductions and decreased serum IGF-I levels (8). Together, these findings question the physiologic significance of ghrelin in the regulation of GH secretion. As always with such model mice, there may be confounding factors, such as developmental adaptation and other compensatory mechanisms. To avoid these factors, it may be necessary to ablate ghrelin after birth or before puberty. Moreover, during the prepubertal and pubertal period, GH-dependent proportional body growth is observed in many mammalian species. The fetal growth is GH-independent, and growth during the early postnatal is only partial dependent upon GH. Therefore, to evaluate whether an absence of circulating ghrelin can influence a somatic growth through GH/IGF-I axis modification, we think that it is appropriate to choose a postweaning model.

In this study, we adopted a diphtheria toxin (DT) receptor (DTR)-mediated conditional and targeted cell ablation strategy to ablate ghrelin secretion cells, X/A-like cell, in a specific and controlled manner (9). We generated a transgenic mouse expressing human DTR and transcriptional regulatory regions of ghrelin. In this mouse, ghrelin-secreting cells express the human DTR and can be ablated after the administration of a small amount of DT. By using this transgenic mouse, we ablated ghrelin-secretion cells after weaning, which allowed us to evaluate the physiologic significance of ghrelin in GH secretion and somatic growth.

Materials and Methods

All animal experiments were approved by the Kyoto University Graduate School of Medicine Committee on Animal Research. Procedures were performed in accordance with the principles and guidelines established by that committee.

Plasmid construction and generation of transgenic mice [ghrelin-promoter DTR-transgenic (GPDTR-Tg) mice]

The pGPDTR plasmid was constructed by replacement of the mouse albumin enhancer/promoter region of pMS7 (9) with a 4.1-kb MscI-HindIII fragment containing the 5′-flanking region of the human ghrelin gene (−4110/−33) derived from the p-4110/−33GHEP plasmid (human ghrelin promoter in pGL3) (Fig. 1A) (10). The 6.4-kb NotI-XhoI fragment of pGPDTR was microinjected into the pronucleus of fertilized eggs obtained from C57B6 mice (SLC, Shizuoka, Japan). The viable eggs were transferred into the oviducts of pseudopregnant female ICR mice (Japan CLEA, Osaka, Japan) by using standard techniques (11). Founder transgenic mice, identified by PCR analysis, were bred with C57BL/6 mice. Mice were housed in air-conditioned animal quarters, with light between 0800 and 2000 h. Except where noted, animals were fed standard rat chow (CE-2, 352 kcal/100 g; Japan CLEA) and water ad libitum.

Semiquantitative PCR

Total RNA was extracted using a Sepasol-RNA kit (Nacalai Tesque, Kyoto, Japan). RT used a high capacity cDNA RT kit (Applied Biosystems, Foster City, CA).

Semiquantitative PCR determined the distribution of the DTR in GPDTR-Tg mice, using the following primers: sense 5′-CCTCTCTCTGGTGCGGG-3′ and antisense 5′-AGTCAC-CAGTGCCGAGAGACTG-3′. Thirty-five cycles of thermal performance were set at 94°C for 30 sec, 55°C for 30 sec, and 72°C for 30 sec. Human heart mRNA (purchased from Clontech, Palo Alto, CA) was used as a positive control.

DT injection

DT was purchased from Sigma-Aldrich Japan (Tokyo, Japan). According to the previous report using DTR-mediated cell ablation systems (9), DT was injected im.

Histological procedures

Formalin-fixed, paraffin-embedded tissue sections were immunostained using avidin-biotin peroxidase complex methods (Vectastain “ABC” Elite kit; Vector Laboratories, Burlingame, CA) as described (11). Sections were incubated overnight at 4°C with antighrelin-(1–11) antiserum that specifically recognizes acylated ghrelin (final dilution, 1:5000). Tissue sections were immunostained using avidin-biotin peroxidase complex methods (Vector Laboratories, Burlingame, CA) as described (11). Sections were incubated overnight at 4°C with antighrelin-(1–11) antiserum that specifically recognizes acylated ghrelin (final dilution, 1:5000). Tissue sections were also stained with hematoxylin and eosine.

Measurement of plasma ghrelin levels

Measurement of plasma ghrelin levels was performed as reported previously (12). Blood samples drawn from the retroorbital vein at 1000 h were immediately transferred to chilled siliconized glass tubes containing Na2EDTA (1 mg/ml) and
aprotinin (1000 KIU/ml; Ohkura Pharmaceutical, Kyoto, Japan). After centrifugation at 4°C to separate out the plasma, hydrochloric acid was added to samples at a final concentration of 0.1N. Plasma was immediately frozen and stored at −80°C until assayed. Plasma ghrelin concentrations were determined using a ghrelin ELISA kit (Mitsubishi Kagaku Iatron, Tokyo, Japan). After centrifugation at 4°C to separate out the plasma, aprotinin (1000 KIU/ml; Ohkura Pharmaceutical, Kyoto, Japan) or saline was continuously infused through the osmotic infusion pumps. Then mice were started to treat with DT (50 ng/kg twice a week) a day after pump implantation. The average plasma ghrelin levels during continuous infusion of ghrelin were 31.6 ± 10.3 fmol/ml in the DT-treated GPDTR-Tg mice, whereas those without ghrelin infusion were 5.3 ± 0.2 fmol/ml. GH provocative test were carried out in these mice at the age of 5 wk.

Measurement of serum GH and IGF-I levels
Blood samples were collected from the tail veins of mice. Serum was isolated by centrifugation and stored at −20°C until assayed. Serum GH levels and IGF-I levels were measured using the appropriate EIA kits from SPI-BIO (Borde, France) and Diagnostic Systems Laboratories, Inc. (Webster, TX), respectively, according to the manufacturers’ instructions.

Measurement of body lengths
Mouse body length was measured by manual immobilization and extension of mice to determine nose-to-anus length. All measurements were performed by the same individual in a blind fashion.

Measurement of fat mass and bone mineral density (BMD)
The fat mass (% fat) and BMD of mice were measured by computed tomography (CT) (Laboratory CT; Lacita, Aloka, Japan) under pentobarbital anesthesia.

Statistical analysis
Results are expressed as the means ± SEM. Multiple comparisons between groups were made by Turkey-Krammer test, with α set at P < 0.05. The results on body weight and serum GH levels after GHRH injection were analyzed by a two-way ANOVA followed by Tukey’s post hoc test, with α set at P < 0.05. Statistical analyses were carried out with STATVIE 4.0 software (Abacus Concepts, Inc., Berkley, CA).

Results

Generation of transgenic mice in which ghrelin can be ablated in a controlled manner

Transgenic mice
To elucidate physiologic role of ghrelin in GH secretion and somatic growth, we developed transgenic mice in which ghrelin can be ablated in controlled manner. We adopted a DTR-mediated conditional and targeted cell ablation strategy. We created transgenic mice that expressed the gene for the human DTR, human HB-EGF,
under the control of the ghrelin promoter. By injecting transgenes into 184 eggs, we obtained three lines of transgenic mouse (Tg 1-2, Tg 5-1, and Tg 5-8). We continued with the Tg 5-1 transgenic line, because Tg 1-2 animals did not exhibit decreases in plasma ghrelin levels after injection of high-dose DT and Tg 5-8 required high doses of DT (50 mcg/kg) to ablate ghrelin-producing cells (data not shown). In Tg 5-1 transgenic animals, semiquantitative PCR analysis revealed high expression of DTR mRNA in the stomach and weak expression in the duodenum and jejunum. No expression, however, could be detected in the ileum, colon, pancreas, hypothalamus, pituitary, liver, or lung (Fig. 1B). In Tg 5-1 mice, the ghrelin-producing cells of the stomach were ablated by injection with low-dose DT (10 or 50 ng/kg) (Fig. 2, A, B, and D). We therefore designated the Tg 5-1 transgenic line and nontransgenic littermates as GPDTR-Tg mice and wild-type (WT) mice, respectively.

Ablation of ghrelin-producing cell

To determine the dose and timeframe of DT injection, preliminary studies were performed: GPDTR-Tg mice were injected with saline or DT twice a week at a dose of 10, 30, 50, 100, and 500 ng/kg (on d 0 and 2). Plasma ghrelin levels on d 4 were decreased to approximately 60, 30, 5, 5, and 5% of control mice (Tg mice treated with saline) after 10, 30, 50, 100, and 500 ng/kg of DT injection, respectively. Thus, we judged that 50 ng/kg of DT is the smallest effective dose to reduce plasma ghrelin. The final results using 10 and 50 ng/kg of DT were described below. Next, GPDTR-Tg mice were injected with 50 ng/kg of DT with four schedules: once a week (on d 0), twice a week (on d 0 and 2), three times a week (on d 0, 2, and 4), or daily (from d 0 to 6), and plasma ghrelin levels were measured on d 7. The once-a-week injection of DT was insufficient, but the twice-a-week injection of DT had enough effect on reduction in plasma ghrelin concentration.

To ablate ghrelin-producing cells, 8-wk-old male WT and GPDTR-Tg mice were injected im with 10 or 50 ng/kg DT daily on d 0 and 2 and analyzed on d 4. WT mice treated with saline or DT and GPDTR-Tg mice treated with saline were used as control mice.

To evaluate the effects of DT injection on ghrelin-producing cell, we analyzed stomach by immunohistochemical analysis with antighrelin antisera (Fig. 2A) and real-time PCR (Fig. 2, B and C). DT injection reduced in a dose-dependent manner both the number of ghrelin-positive cells and the expression of ghrelin mRNA in the stomach of GPDTR-Tg mice (Fig. 2, A and B). DT injection did not produce in any abnormalities in WT mice, because these mice do not possess the DTR, making them insensitive to DT. In transgenic animals, DT injection also reduced ghrelin mRNA expression in the duodenum, but not the pancreas, pituitary, or hypothalamus (Fig. 2C). Plasma ghrelin levels in GPDTR-Tg mice treated with 10 and 50 ng/kg of DT were decreased to approximately 60 and 5–7% of control mice, respectively (Fig. 2D). These results suggested that this transgenic mouse model is a useful tool for evaluating the physiologic role of circulating ghrelin.

Histological analysis with hematoxylin and eosin staining

Histological analysis with hematoxylin and eosin staining revealed that no inflammatory cell infiltration was seen in the stomach (Fig. 2A), small intestine, colon, pancreas, pituitary, and hypothalamus of the GPDTR-Tg mouse with 50 ng/kg of DT injection. Other historical abnormalities were also not observed in these tissues (data not shown).

The effects of a reduction in circulating ghrelin after weaning on the GH/IGF-I axis and somatic growth

To study the effects of postweaning reductions in circulating ghrelin on the GH/IGF-I axis and somatic growth, 3-wk-old WT and GPDTR-Tg mice were treated with DT
and after DT injection. B, GH response to GHRH administration (180 ng/kg twice a week for 5 wk (from 3 to 8 wk old). A, Plasma ghrelin levels before and after DT injection. B, GH response to GHRH administration (180 μg/kg sc) in GPDTR-Tg and WT mice at 5 and 8 wk of age. C, Serum IGF-I levels of GPDTR-Tg and WT mice at 5 and 8 wk of age. D, IGF-I mRNA levels in liver, skeletal muscle, and femur in GPDTR-Tg and WT mice at 5 wk of age. Data represent the means ± SEM (n = 12).

FIG. 3. The effects of a postweaning reduction in circulating ghrelin on the GH/IGF-I axis. Three-week-old GPDTR-Tg and WT mice were injected saline or DT at a dose of 50 ng/kg twice a week for 5 wk (from 3 to 8 wk old). After DT injection, plasma ghrelin levels of GPDTR-Tg mice decreased rapidly. In GPDTR-Tg mice, ghrelin levels were undetectable by 5 wk of age, remaining so thereafter (Fig. 3A). The data obtained from GPDTR-Tg animals). To elucidate whether a postweaning reduction in circulating ghrelin can influence GH secretion, we measured basal serum GH levels and performed GH provocative test with GHRH. There were no differences in basal serum GH levels between GPDTR-Tg mice treated with DT and control mice in either males or females at 5 or 8 wk of age. GH provocative test with GHRH showed some intriguing results (Fig. 3B). The GH responses to GHRH in male GPDTR-Tg mice treated DT were significantly lower than those in three controls at 5 wk of age. However, those responses were normalized at 8 wk of age. On the other hand, there were no differences in GH response to GHRH among four groups (WT with saline or DT, and Tg with saline or DT) in females at 5 or 8 wk of age.

To elucidate whether temporarily attenuation of GH responses to GHRH can affect IGF-I regulation, we investigated serum IGF-I levels and IGF-I mRNA expres-
sions in the liver, skeletal muscle, and distal femur. There were no differences in serum IGF-I levels among any animal groups in either males or females at 5 or 8 wk of age (Fig. 3C). There were also no differences in IGF-I mRNA expressions in the liver, skeletal muscle, or distal femur among any animal groups at 5 wk of age (Fig. 3D). We then investigated the effects of decreases in circulating ghrelin on the expression of mRNA encoding GHRH and SST within the hypothalamus and encoding GH and GHS-R in the pituitary. There were no differences in mRNA expression levels of these mediators among any animal groups in male and female at 5 wk of age (Fig. 4).

As expected from the results of the IGF-I studies, no evidence of growth retardation could be found in either male or female GPDTR-Tg mice treated with DT during the observation period. There were no difference in body weight or length in comparison with three groups of control mice at any point (Fig. 5, A and B, for male; and Fig. 5, D and E, for female animals). CT analysis of body composition demonstrated that there were no differences in percent fat or BMD among any animal groups at 5 and 8 wk of age (Fig. 5C for male, and Fig. 5F for female animals).

There were no differences in weekly food intake from 3 to 8 wk of age [WT vs. GPDTR-Tg (treated with DT); male, 18.4 ± 0.5 vs. 18.9 ± 0.7; female, 18.4 ± 1.0 vs. 18.5 ± 0.6 (g/wk)]. These results suggested that although GH responses to GHRH were temporarily reduced under conditions of decrease in circulating ghrelin, somatic growth was not impaired.

FIG. 4. The effects of a postweaning reduction in circulating ghrelin on the expression of mRNA encoding GHRH, SST, GH and GHS-R. Three-week-old GPDTR-Tg and WT mice were injected saline or DT at a dose of 50 ng/kg twice a week for 5 wk (from 3 to 8 wk old). Pituitary mRNA levels of GH and GHS-R and hypothalamic mRNA levels of GHRH and SST in GPDTR-Tg and WT mice at 5 wk of age. Data represent the means ± SEM (n = 12).
The physiologic roles of ghrelin in the regulation of GH secretion remain unclear, because previous reports using rodents deficient or reduced in ghrelin signals have given conflicting results (7, 8, 15, 16). Sun et al. (7) reported that ghrelin-deficient mice did not exhibit any growth retardation or decreases in serum IGF-I levels. Wortley et al.
As GH secretion is pulsatile in nature, a single measurement of GH concentration in blood would not adequately reflect endogenous GH secretion. To estimate the amplitude and frequency of GH pulses, short-interval blood sampling under a conscious state is required. Such studies are difficult to perform in mice. Instead, we investigated serum IGF-I levels, skeletal muscle IGF-I mRNA expression, and anthropometric parameters that reflect pulsatile GH release under similar nutritional conditions (21). Serum IGF-I levels and IGF-I mRNA expression in skeletal muscle did not decrease in the ghrelin-ablated mice in comparison with WT mice. These results suggest that circulating ghrelin does not play a dominant role in the GH/IGF-I axis. Due to significant differences between species in the regulation of GH secretion (21), we have to give careful considerations to apply the results of animal experiments concerning GH secretion directly to humans; insulin-induced hypoglycemia is a potent stimulus of GH secretion in humans, whereas rats respond to the stress of hypoglycemia by decreasing GH secretion (22, 23). L-arginine is a potent GH secretagogue in humans, but does not (or less overtly) stimulate GH secretion in rats (21, 24).

Somatic growth is affected not only by GH and IGF-I but also by thyroid hormones, sex steroids, and glucocorticoids. It also depends on genetic background and nutrition. Adequate nutrition is one of the most important factors affecting somatic growth. In present study, there were no differences in food intake between the ghrelin-ablated mice and WT mice. Body weight, length, and body composition also were not influenced by plasma ghrelin levels. These results suggest that circulating ghrelin does not play a dominant role in somatic growth.

We cannot exclude the possibility that hypothalamic ghrelin may regulate GH secretion, as hypothalamic ghrelin-secreting cells were preserved in this animal model. Shuto et al. (25) demonstrated that transgenic rats expressing antisense GHS-R mRNA within the arcuate nucleus of the hypothalamus displayed growth retardation, suggesting that ghrelin/GHS-R systems in the hypothalamus function in the regulation of GH. Further studies will be needed to elucidate the role of hypothalamic ghrelin in GH secretion.

In summary, we have succeeded in generating transgenic mice in which circulating ghrelin can be abrogated in a controlled manner after birth. Our results suggest that circulating ghrelin does not play a crucial role in somatic growth.

Acknowledgments

We thank Dr. Shimatsu for fruitful discussions and Ms. Chieko Ishimoto and Ms. Chinami Shiraiwa for their excellent technical assistance.
Address all correspondence and requests for reprints to: Hiroyuki Ariyasu, M.D., Ph.D., Ghrelin Research Project, Translational Research Center, Kyoto University Hospital, 54 Shogin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan. E-mail: ariyasu@kuhp.kyoto-u.ac.jp.

This work was supported by funds from the Japan Ministry of Education, Culture, Sports, Science, and Technology and the Ministry of Health, Labor, and Welfare of Japan, and by research grants from the Program for the Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation and from the Takeda Foundation in Japan.

Disclosure Summary: The authors have nothing to disclose.

References