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In single-molecule protein experiments, the observable variables are restricted within a small fraction
of the entire degrees of freedom. Therefore, to investigate the physical nature of proteins in detail,
we always need to estimate the hidden internal structure referring only to the accessible degrees of
freedom. We formulate this problem on the basis of Bayesian inference, which can be applied to
various complex systems. In the ideal case, we find that in general the framework actually works.
Although careful numerical studies confirm that our method outperforms the conventional method
by up to two orders of magnitude, we find a striking phenomenon: a loss-of-precision transition
occurs abruptly when the design of the observation system is inappropriate. The basic features of the
proposed method are illustrated using a simple but nontrivial model. © 2011 American Institute of

Physics. [doi:10.1063/1.3516587]

I. INTRODUCTION

Continual experimental innovations in recent years have
produced high-resolution data on the dynamics of com-
plex systems such as proteins'~’ and cells.®° However, even
when provided with the most sophisticated experimental tech-
niques, one can access only a limited numbers of the degrees
of freedom out of the entire complex system. For instance,
even in single molecular motors, one of the best-studied sys-
tems, the motion of a large probe particle coupled to the mo-
tor is typically the only observable*”’ (see Fig. 1). Thus, we
always face the following problem: estimation of the hidden
internal structure from measurements on only the visible part
of the system.

Despite the generality and the importance of problems
of this kind, a general and practical framework applicable to
them is still out of reach. In many recent experimental stud-
ies, heuristic methods were used to analyze time-series data,'°
the relevance of which has not been theoretically estab-
lished. In addition, several theoretical studies have attempted
to extract the topology of the (Markovian) state space from
single-molecule time series.!!!3 Although these theories aim
to obtain information on the structure of the state space, a
framework that enables the estimation of the physical parame-
ters of systems with hidden internal structure has not yet been
proposed.

This article presents a framework for inferring the phys-
ical parameters of systems in the presence of hidden degrees
of freedom. We base our approach on a standard Bayesian ar-
gument, and thus, it applies to a wide spectrum of systems. By
using this framework, we obtain general evidence that the er-
ror of the estimate decreases in proportion to the observation
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time, and in the limit of infinite observation time, the sys-
tem parameters can be estimated exactly. We also examine
the practical utility of this method for finite observation time
and in the presence of measurement noise. By comparing with
the estimates from spectrum fitting, we confirm that the pro-
posed method is generally more accurate than a conventional
method by at most two orders of magnitude. In addition, we
find that a critical line exists in the original parameter space
below which the precision of the estimate is abruptly lost.

Il. GENERAL FRAMEWORK

We first describe the mathematical framework of our
method. Suppose that a system consists of multiple de-
grees of freedom denoted by x = (x1,x2,...,x,) and y
=1, Y2, ..., Ym). We assume that the motion of the mem-
bers of the vector y can be observed with a sufficiently high
temporal and spatial resolution, while the motion of the mem-
bers of the vector x is completely hidden. A set of parameters
I = (117, I3, . .., 1'[;‘,) characterize the system, and an as-
terisk denotes true values of the system parameters. Here, our
task is to estimate the values of the system parameters IT*
without referring to the motion of x (the hidden part); thus
our estimates are based on measurements of the motion of y.

If the system is simple enough, we can determine the mo-
tion of x from the motion of y by assuming an appropriate
model and solving it. Once we determine the motion of the
entire system we use a variety of fitting algorithms to esti-
mate IT*. However, such a procedure requires a case-by-case
treatment and expertise.

To overcome such problems, we adopt the framework of
Bayesian inference,'4'® which not only enables us to formu-
late the problem in a unified way but also facilitates calcula-
tion of the marginal likelihood by various approximation tech-
niques. To apply the Bayesian approach, we need to assume
an appropriate model of the system. If the molecular structure
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FIG. 1. Example of a system with hidden degrees of freedom. (a) Side view
of the single-molecule observation system for a rotary molecular motor, Fj-
ATPase (Refs. 5 and 19). Attaching a probe particle to the central subunit
y (magenta) allows us to visualize the stepwise rotation of the central sub-
unit, which is surrounded by cylinder subunits a3 83 (gray and blue). Since
the connection is elastic, the motion of the probe particle does not precisely
follow that of the central subunit. To simplify the problem, we consider the
case where ATP is absent, and thus, the central subunit fluctuates around a
certain resting angle. Here, we want to estimate the physical parameters of
the protein, such as the interaction potential between the central subunit and
the cylinder subunits, and the friction coefficient for the rotation of the cen-
tral subunit by measuring the fluctuating motion of the probe particle alone.
Moreover, this is the usual case in single-molecule experiments, the elasticity
of the linker is unknown, and because the probe particle is very close to the
substratum, it is also difficult to predict the friction coefficient of the probe
particle from Stokes’ law (Ref. 20). (b) Model for the system depicted in (a).
A small bead trapped in a harmonic potential corresponds to the central sub-
unit y, and a large bead connected to it via a spring corresponds to the probe
particle. As in the usual approximation for this rotary molecular motor, we
assume that spatial degrees of freedom other than rotation along the central
axis of the molecule are irrelevant. For simplicity, we also assume that the
central position of the harmonic potential is already given by the histogram
of probe positions.

of the protein being examined has been solved, we can con-
struct an elastic network model based on the structure. Note
that at this moment, we need not know the physical param-
eters of the model such as elastic moduli and friction coeffi-
cients. Instead, estimation of these parameters is the task we
consider here.

Once we determine the structure of the mechanical model
we can write a formal expression of the probability for a tra-
jectory of the system from time r = 0 to r = t, denoted by
the degrees of freedom mentioned previously as [X, y]. Let
P([x, y]|II) express this path probability, which indicates the
probability density of a certain trajectory [X, y] under a given
parameter value IT. To apply Bayes’ theorem, we need to cal-
culate the marginal likelihood, defined as

P(Iy]IIT) = / DxP([x, y]|TD), 1

where the integral is taken over all possible trajectories of x.
The marginal likelihood [Eq. (1)] along with Bayes’ theorem
yields the expression for the posterior probability of the pa-
rameters

P(II|ly]) = w, 2

(IyD

where P(II) is the prior probability for the system parameters.
In accordance with the Bayesian inference, the estimate of the
parameter denoted by IT can be obtained by maximizing the
posterior probability P(IT|[y]) with respect to II. Here, we
adopt the noninformative prior P(IT) = constant over a large
parameter region; this enables us to replace the maximization
of P(II|[y]) with the minimization of the “Hamiltonian” de-
fined by using the marginal likelihood
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Ho()[y] = —7 " In P([y]|T). A3)

Once the system parameters have been estimated, the
Bayesian framework also allows us to estimate the motion
of the hidden degrees of freedom as the maximum a pos-
teriori (MAP) estimator. The MAP estimator is obtained by
maximizing P([x]|[y]; ) with respect to [x].'” Here, we use
Bayes’ theorem again

P([x, y]|TD)
P(lylIfn)

we can replace the maximization of P([x]|[y]; f[) with that of
the path probability P([x, y]|IT). Therefore, we can obtain the
MAP estimator from the following equation:

P([x]|[y]; 1) = 4)

In P([x, y]|TT) = 0. ®)

8x(1)

The MAP estimator [X] represents the most heavily weighted
trajectory of x(¢). As Bialek et al. pointed out,'® it corre-
sponds to the classical trajectory in the language of field
theory. (Regarding the correctness of [X], see the discussion
below.)

The strategy mentioned above is quite standard in the
framework of the Bayesian inference. The question we ad-
dress here is: can we precisely estimate the system parame-
ters within this framework? Although the answer depends on
the nature of the system of interest, we can obtain a simple
and general consequence for the ideal case with an infinitely
large observation time t — oo. In this case, we can prove
that Ho(IT) has a minimum exactly at II* (see Appendix A).
Therefore, if the value of the Hamiltonian evaluated at this
point is smaller than any other minima, we can obtain the cor-
rect estimate. Furthermore, if we assume that this point is the
global minimum, we can then derive the general consequence
that the error of the estimates is proportional to T~ for finite T
(see Appendix A). Therefore, if the above assumption is cor-
rect, the systematic error of the estimate decreases asymptot-
ically proportional to t, and in the limit of 7 — oo, we can
obtain the correct estimate.

However, the above assumption is nontrivial, and thus we
must confirm whether other minima of H,(IT)[y] exist in the
parameter space. In addition, because 7 can be large but fi-
nite in practice, we must carefully examine how the finite-
ness of the data affects the estimate. Furthermore, in actual
experiments, contamination with measurement noise is un-
avoidable. In the next section, we study a simple but nontriv-
ial example to check whether the present framework actually
works.

lll. EXAMPLE: BROWNIAN DOUBLE PENDULUM
A. Model

To verify the practical utility of our framework, we exam-
ine a simple model shown in Fig. 1(b). In this model, we con-
sider two Brownian particles connected via a spring, and one
of the particles is trapped in a harmonic potential. If we regard
the trapped particle as a central subunit of the rotary molecu-
lar motor F;-ATPase, and the other particle as the probe parti-
cle attached to the central subunit, this serves as a very crude
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model of a typical experimental setup for F;-ATPase (Ref. 19)
(see Fig. 1).

By letting x(¢) and y(¢) denote the angles of the central
subunit and the probe, respectively, the dynamics of the entire
system can be modeled by the Langevin equations’!

yx(t) = —kx(t) — h(x(r) — y(1)) + £(1), 6)

Ly(t) = —h(y(1) — x(1)) + n(1), @)

where £(¢) and n(z) are the zero-mean white Gaussian noise
with variances 2y kg T and 2I'kg T, respectively, and they are
uncorrelated with each other. kg is the Boltzmann constant
and T is the temperature of the system. Four physical param-
eters characterize this model: the stiffnesses of the harmonic
potential £* and the connecting spring #*, and the friction co-
efficients of the trapped bead y* and the probe particle I'*.

We suppose the position of the trapped bead x(¢) is com-
pletely invisible, whereas we can monitor the position of the
probe particle y(¢) at sufficiently high temporal and spatial
resolution. Then, we must simultaneously estimate the four
physical parameters I1* = {k*, h*, y*, ['*} that only refer to
the motion of the probe y(¢). We assume that we already
know T because we need it to specify the energy scale of the
system.

Note that the present choice of the model is solely for
the sake of simplicity. We study the simplest case here to
obtain basic insights into the effectiveness of the proposed
method. However, the proposed framework itself is applica-
ble to more complicated systems that have more visible and
hidden degrees of freedom as well as nonlinear interactions
among the components. We discuss such applications in our
final remarks.

B. Path probability

The path probability for the entire system is decomposed
into the initial and transition probabilities,

P([x, y][IT) = Pinit(x0, Yol TD) Pur((xo, yo) — [x, yI[II),
®)

where x and y( express the position of the central subunit and
the probe, respectively, at t = 0. For the initial probability, the
canonical distribution under the given temperature is naturally
chosen as

Pinit(x, y[II) = exp[—AH (x, y; D], ©))

27TkBT

ko, h 2
H(x,y; ) = 5% +§(y—x) , (10)
where 7! = kg T.

Next, we consider the transition probability. Let the data
be collected at discrete time intervals At¢. Thus, the num-
ber of time points is expressed as N + 1 with N = t/A¢.
We express the value of variables at each time point by x;
= x(iAt) and y; = y(i Ar). Following these notations, the
transition probability can be expressed in terms of the
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Onsager—-Machlup path probability?>23

Pu((x0, yo) = [x, y]II)

(T

Ak T At

where the action functional is expressed as

N
) exp[—=BS([x, yl: ID], an

1= Xit1 — X Xit1 + X
S ’ ;H = At i+1 i k i+1 i
(e yl ) = ;} [y o Tk
Y h Xig1 + X Yig1+ i 2
2 2
keT(k+hye 1 = -
_ B o At Fyl-i-l Yi
2y ar
i=0
(y[+1 + Yi xl+1 +xl )i|2 kBThT
+ h 5 .

12)

Note that the variables are evaluated at the intermedi-
ate time points, corresponding to the Stratonovich-type
interpretation.>* 2

C. Calculating the Hamiltonian by the
Wentzel-Kramers—Brillouin (WKB) method

According to the definition of the marginal likelihood
[Eq. (1)], we integrate out the trajectory of x(¢) in Eq. (8).
The Wentzel-Kramers—Brillouin method allows this calcu-
lation to be done straightforwardly.?® Owing to the linearity
of the present model, we can obtain the exact expression for
P([y]|IT) as follows.

The first step in the WKB method is to determine the clas-
sical trajectory, or, in the language of Bayesian statistics, the
MAP estimator [X]. Because our final task is to estimate IT,
we solve Eq. (5) here using temporarily settled values of II to
obtain the temporal MAP estimator. The temporal MAP esti-
mator depends on the observed trajectory [y] and the choice
of the temporal parameter set II. Therefore, we specify this
dependency as [X]([v]; IT). For the present model, we can ob-
tain a unique and exact solution of [£]([y]; IT).?’

The second step is to calculate the path integral. For con-
venience, we rewrite the path probability [Egs. (8)-(12)] as
follows:

_ \/E V428 N
PAx M) = T (4nkBTAt>
x exp[—BF([x, y]; ID)], (13)
F([x, y]; II) = H(xo, yo; IT) + S([x, y]; IT). (14)

According to the WKB method, we can use the MAP estima-
tor [X]([y]; IT) to rewrite F([x, y]; II) as

F(lx, y]; ) = F([£([y]; IT), y]; )
|
+ EUZ:O (xi — £ ([y]; D) Ay

x (x; — £;([yl; M), 15)
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FIG. 2. Results of the numerical experiments. The system of units is fixed as k* = y* = kgT = 1. It shows the I'* and 4™ dependence of the (a) systematic
error and (b) sample-averaged variance of II*. Because the estimate should be a positive number, these quantities are defined on a logarithmic scale as
err. = ||{log ﬁj)s —log I*|| and s.a.var. = ({ | log l'I:Tr,i — (log Hii)rnz )r)s, where || - - - || represents the Euclidean norm, (- - -), = %Etf:l ... represents
the replica average, and (- - -); = %2 ;'=1 ... represents the sample average (i: index number of initial setting of IT*, j: index number of [y]). The black regions
in the upper left corners of (a) and (b) represent areas where the estimates always diverge in the optimization process. We also evaluate the estimate at a normal
scale and obtain almost the same features as at a logarithmic scale. (c) Relaxation time courses of the sample-averaged variance in the optimization process.
These data are taken from data points in (b). The color of dots in (b) corresponds to the color of lines in (c). In all cases, the time resolution and the length of
the time series are At = 10~ and 7 = 10, respectively. The iteration number of the optimization process is fixed at 10°, and the total replica number and the

total sample number are r = 10 and s = 3, respectively.

where the (N + 1) x (N + 1)-square matrix A is defined by

_ 9*F([x, y]; M)
jE

(16)
3)6,' 0x j N
[x]=[X1([y); )

Note that Eq. (15) is exact because F([x, y]; IT) is quadratic
with respect to [X]. Therefore, the WKB method gives the
exact result for the present model. We easily evaluate the re-
maining path integral by the technique of Wiegel®?%2° with
slight modifications.*"

As a result, the Hamiltonian is expressed as

sAE Y1) Vo + x*
kg T 2
_1n(F/4nkBTAt) n c(Xo, yo; IT)
2At T
where ¢? = (k + h)?/y? and x*> = h*/yT. s((%, y]; D) is

the time-normalized action functional defined as s([x, y]; IT)
= t~18([%, y]; TI), and

) | kh ¢+ + 12
c(Xg, yo; Il) =—1In 3

wksT(k+h) ¢+ /¢ + x2

H (%o, yo; IT)
kgT
Since c¢(Xg, yo; IT) does not depend on 7, the last term in

Eq. (17) becomes irrelevant when t is sufficiently large. In
this manner, we obtain the expression for the Hamiltonian.

H.(ID[y] =

. a1

(18)

IV. RESULTS OF THE NUMERICAL EXPERIMENTS
A. Numerical results for finite ¢ cases

Now, we numerically evaluate the model described
above. First, we numerically integrate the model equations (6)
and (7) from ¢ = 0 to t = 7 under the condition of IT*, and we
obtain the true trajectory set [x, y]. Here, we assume that [y]

is the only observable part of the system, and our task is to
estimate IT from [y]. Next, we temporarily set IT at random.
This serves as the starting point to search for a better estima-
tion of II. Then, on the basis of the obtained trajectory [y]
alone, we seek a better Il in accordance with the minimiza-
tion of H,(IT)[y].

We apply different initial settings of IT to a single datum
of [y] at random and optimize them independently. We name
the index number of these different settings as the replica
number i and we denote each of these optimized parame-
ters as Hf. Then, we select the l'IlI that possesses the mini-
mal value of H, as the estimate denoted as 1. In addition,
to investigate the effect of the variety in [y], we also exam-
ine different [y]. We name the index number of [y] as the
sample number j and we specify this dependency as l'[f, ;and

3| j. For more details on this numerical experiment, see the
Appendix B.

Figure 2(a) displays the systematic error of the estimate.
As this figure shows, when I'* increases and h* decreases,
the error gradually increases. Therefore, to obtain a good esti-
mate of the system parameters, the probe should be small and
tightly coupled to the hidden part. This is consistent with our
intuition.

Next, we investigated the global structure of H,(II) in
the parameter space. If the landscape of H . (IT) is smooth and
‘H.(IT) has a steep valley around IT*, we can easily obtain the
precise estimate. In contrast, if the landscape is rough and a lot
of local minima exist, we have difficulty obtaining the precise
estimate. To clarify the roughness of H,(II) in the param-
eter space, we employ the sample-averaged variance of IT
(see the caption of Fig. 2) instead of normal variance. That is
because the global minimum point of . (IT) should vary be-
tween different [y], and thus when we evaluate normal vari-
ance, which has a large finite value in both cases. Instead, the
sample-averaged variance yields almost zero only in the for-
mer case. Therefore, we can ascertain the roughness of H, (IT)
from the sample-averaged variance.
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FIG. 3. Dependence on At and 7. The plots in (a) and (c) display typical examples of the dependence of the error on At and t, respectively, in the precise
phase [except T < 10° for 1* = 0.79, I'* = 0.03 and * = 5.01, I'* = 0.19 in (c)]. We do not plot several data points in (a) where At = 10~2 for h* = 5.01, I'*
=0.19 and Ar > 1073 for h* = 12.6, I'* = 0.08 because all these estimates diverge (divergent phase). The plots in (b) and (d) display the dependence of the
sample-averaged variance on Af and 7, respectively. For the dependence on At [(a) and (b)], T is fixed at 10", and At is varied as shown in these figures.
Similarly, for the dependence on t [(c) and (d)], At is fixed at 10~* and 7 is varied. In the limit of T — oo in (d), the action density in Eq. (12) is explicitly
calculated from the fact that the temporal average in the expression of the action can be replaced with the ensemble average. Then, by taking the limit 7 — oo
of Eq. (17), we obtain Hoo(IT). By using Hoo(IT), we can evaluate the estimates in the same manner as at finite 7 (Ref. 30). In all cases, the optimization
protocol is the same as in Fig. 2. The total replica number r and the total sample number s for these plots are as follows. For (a) and (c), we adopt r = 1
for all data points because as Fig. 2(c) shows, the variability of the estimates obtained from the same [y] should be small in the precise phase. The s-values
for (a) and (¢) are: s = 100 for At > 10~* and v < 10!, and s = 30 for Ar < 10~ and v > 10'. For (b), we adopt r = 10 for all cases and s values of:
s =25 for At = 1072, s = 11 for At = 1073, and s = 3 for At = 10~*. For (d), we adopt r = 10 for all cases and s values of: s =9 for r = 1 and s = 3

for = 10.

Figure 2(b) shows our sample-averaged variance result.
When I'* increases and h* decreases, the sample-averaged
variance increases not gradually but abruptly by more than
four orders of magnitude, at a certain curve. Figure 2(c)
displays typical relaxation courses of the sample-averaged
variance in the optimization process. In Fig. 2(b), in the
region where I'* is small and /#* is large, the sample-averaged
variance decreases step-by-step and almost converges to a
tiny value. We also confirm that in this region, the error
converges. In contrast, in the region where I'* is large and i*
is small, the sample-averaged variance shows no visible sign
of convergence.

Our careful investigation of the relaxation property con-
firms that we can classify the parameter space into three dis-
tinct regions [see Fig. 2(b)]. When I'* is small and 2* is large,
I converges almost uniformly (l'I;r is independent of i ). From
the result in Fig. 2(a), we can obtain a precise estimate in this
region (precise phase). On the other hand, below the critical
line, the effect of noise originating from [y] can no longer be
ignored, and the landscape of H; is roughened. Therefore, the
minimization process of H, greatly affects IT and the estimate
is unreliable in this region (nonprecise phase). In the small re-
gion in the upper left corner of Fig. 2(c), the estimates always
diverged (divergent phase). The next section gives the reasons
for this behavior.

B. Dependence on At and =

We next address the dependence on At and t. For exper-
iments, it is particularly important to clarify how the precise
phase shifts and how the systematic error of the estimate de-
creases with increasing time resolution and observation time.
The results are depicted in Fig. 3.

As Figs. 3(b) and 3(d) show, the critical line between the
divergent and precise phases seems to depend only on At.
This is quite natural because the critical line is directly cou-
pled to the relaxation time scale of the probe: 7, ~ I'*/h*. To
obtain the estimate, At should be smaller than 7,; otherwise,
we cannot follow the motion of the probe. In contrast, the crit-
ical line between the precise and nonprecise phases depends
only on 7. This line should also be related to the relaxation
time scale of the probe t, because it partly specifies the char-
acteristic duration needed to collect enough information on
the system.

However, note that even in the limit of T — oo, the
critical line still seems to exist. In this limit, the fluctuations
inherent in [y] must vanish. Therefore, the result should be in-
terpreted as follows. The landscape of H . (IT) becomes flat-
tened around the bottom when {h*, I'*} crosses over a certain
threshold. In this case, the optimization process continues to
seek a better estimate, but cannot find a small dip in the flat-
tened bottom. Thus, the estimates vary. As a matter of course,
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the nature of this line differs from that of finite 7 (Fig. 4), this
result implies that once we choose inappropriate values for the
probe size and the stiffness of the linker, it abruptly becomes
hard to obtain a precise estimate even if we collect data for an
almost infinite amount of time with super-high temporal and
spatial resolution.

Figures 3(a) and 3(c) display the dependence of the sys-
tematic error on At and t, respectively. These plots clearly
suggest that the error of the estimate depends on 7, while in-
terestingly, it is almost independent of Az. All of the data are
not shown, but we have confirmed that these properties hold
at various {h*, I'*}. As Fig. 3(c) shows, when t increases, the
error gradually decreases and the slope approaches t~!. In
addition, we numerically verify that H,(IT) possesses a min-
imum at exactly II = IT*. This behavior is consistent with the
theoretical prediction.

C. Effect of measurement noise

In practice, as well as the finiteness of the data length,
we cannot avoid measurement noise. we examine the effect
of the addition of the white Gaussian noise to [y]. Figure 5
shows the result. When the power of the noise decreases be-
low a characteristic value, the systematic error of the estimate
becomes almost independent of the noise. We also confirm
that the sample-averaged variance in this case is almost zero.
In contrast, if the power of the noise is larger than the thresh-
old value, all of the estimates diverge. In summary, when we
can obtain estimates and confirm that the estimates uniformly
converge, we can obtain precise estimates in the presence of
measurement noise.

D. Estimating the motion of the hidden part

Note that the present method does not require a cor-
rect estimate of the trajectory of the hidden part in order to
precisely estimate the system parameters. Indeed, the MAP
estimator [X] does not coincide with the true trajectory even
after the system parameters have been correctly estimated.
Figure 6 displays examples of [%] calculated from the true
parameter values. As we can easily imagine, if we intend to
obtain a good estimate of the trajectory of the hidden part, the
probe should be tightly coupled to the hidden part.

Although this numerical result is quite natural, we can
derive the same result analytically. For instance, to obtain the
precise estimate of the motion of the hidden part, the MAP
estimator £ () should satisfy the following relation:

(k@) —x@)) < 1, (19)
where  (---) = lim,_ o f—lf_fgzdt ... By
(x()%), (£(t)%), and (x(£)%(1)),>* we finally obtain

calculating

; 2 _ 2t
CO-xON = g S- T @)

where «* =1+ k*/h* and g* = y*/I'*. Equation (19) is
satisfied if k* < h*, which is consistent with the numerical
result.
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FIG. 4. Loss-of-precision transition for an infinite observation interval. Re-
laxation courses of the variance in the optimization process at various
{h*, ['*}. (The sample-averaged variance is consistent with the normal vari-
ance in this limit because the variety of the sample [y] vanishes in the
limit of T — 00.) The colors of the lines in the bottom figure correspond
to the colors of the dots in the top figure. As these figures show, the char-
acteristic time scale of the optimal parameter search increases when I'* in-
creases and h* decreases. However, this is different from the case of finite 7
[see Fig. 2(c)]. The numerical result obtained from I'* > 1, h* <« 1 (bro-
ken line in the bottom figure) indicates that the relaxation time scale of
the optimization process gradually increases and diverges to oo in the limit
of I'*/y* — oo and h*/k* — 0. This seems natural because the effect of
the noise arising from [y] becomes irrelevant and the landscape of H.(IT)
becomes smooth in the limit of T — oo, thus the critical line of the loss-
of-precision transition should disappear. In all the cases, Ar = 10* and
r = 200.
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FIG. 5. Effect of contamination by measurement noise. The plot shows the
dependence of the systematic error on the standard deviation (SD) of the
noise, opoise- We select all {h*, ['*} from the precise phase with no measure-
ment noise. We do not plot several data points where opeise > 5.62 X 10~ for
h* =0.79, T* = 0.03, opoise > 1.78 x 107! for h* = 5.01, I'* = 0.19, and
Onoise = 3.16 x 107! for h* = 12.6, I'* = 0.08 because all these estimates
diverge. In all cases, At = 1074, 7 =10,r = 10, and s = 3. The system of
units is the same as Fig. 2, therefore, the SD of the fluctuation of x(¢) is 1.

E. Comparison with the conventional method

Since the present model is simple enough, we can directly
calculate the power spectrum of [y] from the original model.*
Therefore, following a conventional procedure, we can also
estimate the system parameters by fitting the analytical solu-
tion to the observed spectrum of [y]. Figure 7 compares the
performance of the present method with that of spectrum fit-
ting. It clearly shows that the present method performs better
in almost all cases. Indeed, in the region that overlaps the pre-
cise phase [see Fig. 2(c)], the present method is more accurate
than the conventional method by 1-2 orders of magnitude.

V. CONCLUSIONS AND DISCUSSION

In the present paper, we studied the fundamental aspects
of the problem of parameter estimation in the presence of hid-
den degrees of freedom. First, on general grounds, we for-
mulated the problem within the framework of the Bayesian
inference. This formulation provides a systematic proce-
dure for estimating the system parameters by minimizing the
Hamiltonian when an appropriate model has been input. As-

J. Chem. Phys. 134, 085108 (2011)
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FIG. 7. Comparison with the conventional method. (a) Example of the power
spectrum of y(¢) and the analytical solution at IT = IT*. System parameters in
this plot are * = 5.01, I'* = 0.19. (b) Comparison of the error in proposed
and conventional methods. Error of the present method divided by error of the
spectrum fitting is plotted. In the blue region, the error of the present method
is smaller than that of the spectrum fitting. This is not our main concern, but
we find that the dependence of the estimates from spectrum fitting on {h*, I'*}
has a structure similar to that of the proposed method. We also compare the
error of the estimate at a normal scale and find features similar to those visible
at a logarithmic scale. Optimization protocol, At, 7, r, and s are the same as
in Fig. 2.

suming that the original system has an ergodic property and
that there is no contamination of the measurement noise, we
proved that the distance between the true value of the system
parameters (IT*) and the minimum point of the Hamiltonian
(IT) decreases in proportion to the observation time length (7),
and the Hamiltonian exhibits a minimum at exactly the correct
value of the system parameters in the limit of infinitely large
data length (t — 00). It should be noted that even though the
derivation procedure is different, a similar asymptotic behav-
ior of the maximum likelihood estimator has been known.?!>32

However, a careful numerical study of the finite-time case
revealed the presence of a striking phenomenon: a loss-of-
precision transition occurred at a certain curve in the space of
the original system parameters. In the present case, when the
size of the probe increases and the stiffness of the coupling
spring decreases to a certain curve in the parameter space, the
precision of the estimation is abruptly lost. In this phase, the
roughness originating from noise in the time series of the data
[v] dominates the landscape of H,; and numerous minima ap-
pear around the bottom of the Hamiltonian. Thus, the inferred
values of the system parameters vary over orders of magni-
tude. As the observation time increases, the noise inherent
in [y] becomes negligible, and the primary structure of H,

uswaoe|dsip

time

FIG. 6. Examples of the estimated trajectory of the hidden part. We plot the trajectory of the visible part [y], true trajectory of the hidden part [x], and MAP
estimator of the hidden part [£] obtained from the correct system parameters. In these plots, I['* is fixed at 0.12 and ~* varies as (a) 0.12, (b) 1.25, and (c) 12.5.

In all cases, the system of units is the same as Fig. 2, and At = 1074,
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appears. In this limit, the landscape of H, around the bottom
becomes almost completely flattened below the critical curve.
This is why the critical curve shifts as the observation time
increases, but it seems to exist even in the limit of infinite ob-
servation time.

The unexpected presence of such a transition suggests a
limit on the choice of experimental conditions. In the model
studied here, the transition occurs when the size of the probe
increases or the stiffness of the linker coupled to the motor
decreases. This implies that if inappropriate values are cho-
sen for these parameters, the entire system might enter the
nonprecise phase, which would make the precise and accu-
rate estimation of the system parameters hopeless.

In contrast, if the system is in the precise phase, the
present method provides an accurate and precise estimate of
the system parameters in the presence of hidden degrees of
freedom, the error of which decreases in proportion to the
observation time. Compared to the conventional method of
spectrum fitting, if the appropriate model for the system has
been selected, the present method yields an estimate that is up
to two orders of magnitude more accurate. This is partly be-
cause the present method naturally incorporates the dynamic
structure of the system. In addition, considering an actual ap-
plication to single-molecule experiments, we clarified the ef-
fect of the contamination of measurement noise. We found
that the noise does not affect the preciseness of our estimate
if the power of the noise is small enough. The Bayesian in-
ference thus provides a powerful framework for interpreting
experimental results.

For this paper, we chose a simple yet nontrivial exam-
ple to clarify the basic features of the proposed method.
However, because the Onsager—Machlup functional integral
approach has broad applications to over-damped Langevin
equations,’>2® the proposed method can be applied to a va-
riety of complex models. For instance, we can model the
motion of particles in three dimensional space by increas-
ing the number of degrees of freedom. In addition, we can
increase the number of particles to describe the structure of
proteins more precisely within the framework of elastic net-
work models. We can also incorporate nonlinear interactions,
including metastable potentials,* into the model. Although,
in these cases exact calculations of the marginal probability
become difficult, we expect that the WKB method would give
a reasonable approximation of the marginal likelihood under
suitable conditions.?*33 We could also incorporate numerical
methods such as the Markov-chain Monte Carlo method.'>'®
Further studies in this direction will enables us to examine
more complex systems.

In addition to the parameter estimation, the choice of
the model itself is an important problem. For this problem,
if we have several candidates for the model, we can adopt
either an empirical or a hierarchical Bayesian approach to
determine the most likely model.'>'® Suppose we have sev-
eral models to test, then, by minimizing the Hamiltonian for
each model, and by comparing the minimum values of the
Hamiltonian or the marginalized Hamiltonian with respect to
the model parameters, we could determine the most likely
model.

J. Chem. Phys. 134, 085108 (2011)

Once we determine the model, we need to choose an
appropriate condition for the experimental system. Although
we examined only one model in this study, the presence of
the loss-of-precision transition in the simplest model natu-
rally suggests that such a transition is a universal feature
among various complex models. Therefore, by evaluating the
sample-averaged variance of the estimates, we can verify
whether the present experimental condition is in the precise
phase or not, and we can find an appropriate condition by
testing various conditions. When we confirmed that the sys-
tem is in the precise phase, we can adopt one of the many
available optimization algorithms, including the expectation—
maximization (EM) algorithm,** to improve the searching ef-
ficiencies. To obtain more precise estimates, the bias correc-
tion techniques® should also be helpful because we know
general asymptotic dependence of the estimates on the data
duration.

In actual experiments, even if we carefully optimize
the experimental condition, we expect that the Hamiltonian
possesses several minima because of the slow protein dynam-
ics, drift of the measurement system, and so on. Therefore,
in practice, we face the problem of how to guarantee that the
minimum we locate corresponds to the correct estimate. One
strategy is to change not all but only several values of the
system parameters experimentally,> and to confirm whether
only those parameter values are altered as expected. For cases
in which the measurement noise is too large, the hierarchical
Bayesian approach might be applicable. First, we would es-
timate the most probable trajectory of the observable degrees
of freedom from noisy data. Second, by marginalizing these
variables around the most probable trajectory, we could calcu-
late the (marginalized) Hamiltonian. Then, in a similar man-
ner to the example studied here, we might obtain reasonable
estimates of the system parameters.

In summary, the proposed method facilitates the precise
quantification of the physical parameters of the systems with
the hidden degrees of freedom. Since this method enables us
to extract information about a molecule from a single time
series, it can be used to calibrate the attached probe on a
molecule-to-molecule basis. We hope that the development of
sophisticated methods of data analysis together with precise
measurement techniques will bring us novel insights into the
mechanics of single proteins.
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APPENDIX A: GENERAL CONSEQUENCES
OF THE PROPOSED METHOD

If the original system possesses an ergodic property, the
long-term limit of Eq. (3) can be replaced with the ensemble
average as follows:

1
Hoo(I) = —TlingO;/DyP([y]IH*)ln P([y]ITD)

= — (In P([y]I M) - .

Then, by the Bayes’ theorem [Eq. (2)] and the assumption that
P(II) is a noninformative prior, we can confirm that 7, (IT)
indeed exhibits a minimum at IT = IT* as follows. First,

0H oo (D)
oIl

(AD)

19
=— lim ——— [ DyP([y]|I*
m T yP([y]|IT")

T—00 T

n=m*
=0. (A2)

Next, the components of the Hessian matrix of H(II) eval-
uated at IT = IT*, which is denoted by H, are calculated as

g, = e

R 18 ) s PN M
_ [ 9In P([y]|IT*) 8 In P([y]|TT") (A3)
B EhE oTT .

Since this expression has the form of a correlation matrix, we
can confirm that the Hessian is a non-negative definite. We
thus find that IT = IT* gives a minimum of the Hamiltonian.
Furthermore, a perturbative calculation about this min-
imum in the series of ¢ = 19/t (79 is the characteristic
timescale of the system we examine) yields a prediction for
how the systematic error will decrease with increasing 7.
First, we note that the Hamiltonian can be expanded into a
series of ¢:
H.(I)[y] = —t~"In P([y]|T)
= ¢o(I) + £ (I) + O(¢?). (A4)

Note that the zeroth-order term is identical to H..(IT) because

¢o(Il) = 1im H(I1) = Hoo(TD). (AS)
Next, we expand the solution of the estimate as

=1, + eI, + 0(e?), (A6)
which should satisfy

% i =0. (A7)

By substituting Eq. (A6) into Eq. (A7), a standard perturbative
calculation leads to the following set of equations:

| _ A8)
E)

3%po(I) - d¢(IT)
2 |pq, RTY _— (A9)
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and so on. Recalling Eq. (A5) and the result that the Hamil-
tonian satisfies Eq. (A2), we find I, = IT* from Eq. (AS8).
Therefore, Eq. (A9) yields

n:n*] ’

fr - [H_l 91 (D)
oIl
under our assumption that this Hessian is a positive definite
rather than a non-negative definite.
In summary, from Egs. (A6) and (A10), we obtain the
expression of the estimate in the case of finite t as

A ¢ (T1
n=n*—g[H1- I
Tl

where ¢ (IT) can be defined as
o1 (1) = gLH%[Hr(H)[y] — Hoo(ID]/e.

(A10)

] + 0@, (AlD)
n=m*

(A12)

Since the first-order term in Eq. (A11) depends only on IT*
and not on t, the error of the estimate decreases in proportion
to 7. Although we defined the error using a logarithmic scale
in the main text, we can easily prove from Eq. (Al1) that it
has the same features as in a normal scale.

APPENDIX B: NUMERICAL EXPERIMENT

We adopt the zero-temperature Metropolis method for
minimizing H,. Because the system parameter should be
a positive number, we optimize H, in a logarithmic scale.
The procedure we use follows. (A) We randomly generate
an initial condition of the system parameter I1° as log I'I?
= log IT} 4 U;, and we evaluate H, using IT°. Here, i denotes
the index number of the system parameter and U; represents
uniform random variables with range (—1, 1). (B) The sys-
tem parameter changes randomly as log Hf“ =log I} + G;,
where s means the present number of iteration steps, and
G, represents the zero-mean Gaussian random variables with
standard deviation of 0.01. (C) We evaluate . using IT**!
and if H, decreased by this step, we store !, other-
wise we restore IT*. We repeat (B) and (C) for 10° steps. In
some cases, || log IT — log IT*|| becomes considerably large.
We remove such an irrelevant result from the analysis when
| log - log IT*|| > 3. We also test the larger value of vari-
ance in G; and find the same features in the results. Only the
optimization efficiency decreases in those cases.

In the least-square fitting of the power spectrum of [y],
we only replace H; in the source code of the Bayesian method
with the fitting function for the power spectrum, and then exe-
cute the estimation program under the same settings. To avoid
the effect of the aliasing of the power spectrum on the esti-
mation results, we do not use one order of magnitude of the
high-frequency component in the fitting.
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