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The road network in the Keihanshin area (the second most populated urban region in Japan encompassing the 

metropolitan areas of the cities of Osaka in Osaka prefecture, Kobe in Hyōgo Prefecture, and Kyoto in Kyoto 

prefecture) is modeled as two layers from the viewpoint of the frequency of use of roads by freight vehicles. This model 

was derived ,tested and validated from the probe car data of 300 trucks operated by 21 freight companies in the 

Keihanshin area. The two layers are called high-frequency-network and low-frequency-network layers. Characteristics, 

such as the density of probe data, average driving time, and speed of both network layers, were estimated. This analysis 

revealed that trucks spend a duration about 6 times longer on the high-frequency network even though it is 1/4 the size 

of the low-frequency network. The instantaneous velocity histograms indicated a significant difference in speeds 

between the two network layers of 25.03 km/h in the high-frequency layer and 16.87 km/h in the low-frequency layer. 

Service-level evaluations, reliability analysis, and route-selection modeling should become easier to deal with in the 

future by introducing these layered networks. 
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1. Introduction 
 
We tried to identify frequently used road networks, 

or the distribution of probe data in other words, traveled 

by freight vehicles from truck probe data. This was done 

through an experiment involving 300 trucks from 21 

freight companies in the Keihanshin area of Japan. If we 

can understand frequently used networks traveled by 

freight vehicles, we can study the behavior of freight 

vehicles that choose routes more efficiently than that in 

studies without knowledge on frequently used networks. 

There have been several papers that have discussed the 

spatial coverage problem and the construction of driver 

route-choice models based on probe car data. However, 

very few studies have been done on the spatial 

distribution of probe cars. To estimate the density of 

probe data, the target area in the Keihanshin area was 

divided into small cells of 20 by 20 m and the probe data 

that fell into these cells were counted. This count was 

defined as probe density. We found that the distribution 

in the number of cells with respect to the minimum 

probe density followed that of the sum of two different 

exponentially decaying functions. We assumed that the 

road network could be separated into two distinctive 

layers according to the frequency of the use of road links 

acquired from the probe data. These layers reflected the 

actual truck traffic flow and were generated from the 

viewpoint of the frequency of truck probe car traffic. 

Two layers, i.e., high-frequency-network and 

low-frequency-network layers, were generated based on 

these distributions. This assumption was tested, 

validated and we propose a formulation of the model. 

This model should contribute to useful evaluations of 

road-network-service levels and reliability. 

Route-selection models should be able to be formulated 

based on the high-frequency-network layer in the future. 

 

2. Literature Review 

 
There have been several papers that may be related 

to the topic of this paper. One direction of research has 

been aimed at estimating the travel time based on probe 

data. Early work on probe car based measurements of 

travel time appeared in the late 1990s. For instance, 

Yokota [1] described the principles underlying a method 

of estimating the travel time based on the up-link travel 

time sent from vehicles via the communication 

capabilities of roadside infra-red vehicle detectors. He 

also described methods of estimating and predicting 

travel times from an insufficient number of probe data 

[2]. Fushiki [3] formulated a relationship between area 

coverage, the update cycle of travel time, and the traffic 

volume of probe cars.  

There has been another direction in probe car 

research, i.e., concerning the identification of driver 

behavior in choosing routes and modeling. Kitamura [4] 

and Miwa [5], [6] discussed driver behavior in choosing 

routes from taxi-probe data assuming several different 

levels of drivers cognition of travel time on everyday 

roads. So-called data cleansing is an important issue in 



 

processing probe-car data. Sarvi [7] proposed a method 

of data cleansing and identifying the end of a trip; 

however, the technology he proposed was for buses and 

taxis and was not intended to be applied to freight 

vehicles. Most of this work was based on taxi probe data 

and they did not intend to analyze the behavior of freight 

vehicles. This means freight vehicles have barely been 

studied.  

Several studies have been done, however, concerning 

the trip chains or tours of commercial vehicles. Figliozzi 

[8] proposed a set of continuous approximation models 

for four different types of tours. The likely impact of 

policies or networks changes by using the models he 

discussed. Figliozzi [9] also formulated a tour model and 

analyzed the impact of congestion with respect to 

different conditions. He categorized tours into three 

classes based on the average distance per stop and the 

percentage of time spent driving with an example of 

empirical tour data in Sydney. Greaves [10] introduced 

probe data based analysis of commercial-vehicle-tour 

data and described his pilot survey in Melbourne. He 

also discussed potential applications such as estimating 

O-D matrices and constructing trip-length distributions. 

However, this pilot survey studied few vehicles (30 

trucks) and was not intended to obtain unbiased results. 

Holguin-Veras [11] discussed the trip chain behavior of 

commercial vehicles and estimated the probability of the 

trip‟s purpose with respect to the vehicle category and 

the number of trip chains, average number of stops, and 

length of trip chains from data on the basis of travel 

diaries in Denver. Brown [12] reviewed urban-freight 

survey techniques in the UK since the 1970s to the 

present mostly based on questionnaires and not based on 

probe data. Christian [13] reviewed urban-freight 

surveys in France with case studies carried out in 

Marseilles, Bordeaux, and Dijon. Similarly, the surveys 

were mostly based on questionnaires administered to 

drivers. Anderson et al. [14] presented survey results 

obtained in Norwich and London based on 

questionnaires. Vleugel and Janic [15] statistically 

investigated the route-choice behavior by freight drivers 

based on interviews and questionnaires in Dutch cities.  

To the best of the authors‟ knowledge, none of the 

existing research has covered road choice by freight 

vehicles or route-choice behavior based on actual probe 

data. There are many road links in urban cities such as 

those in the Keihanshin area; however, which roads are 

mainly used by freight vehicles is not very well 

understood. It needs to be emphasized that it is important 

to know which roads are frequently used by freight 

vehicles before we proceed to investigate route-choice 

behavior. Understanding the frequency characteristics of 

road use is an approach to understanding the 

characteristics of freight vehicles. 

 

 3. Constructing Road Network Layer 

    from Probe Data 

We conducted a probe-car experiment from October 

1 to 31 in which almost 300 trucks belonging to 21 

different transport operators participated. We carefully 

chose and negotiated with the companies to diversify 

the locations of origin and destination. Almost 270 truck 

probe cars contributed to the probe experiment on 

weekdays while the number decreased on Saturdays, 

Sundays, and a public holiday (October 12). 

Furthermore, the total mileage of the probe cars that was 

counted was approximately 40,000 km on weekdays, 

while it decreased to about 10,000 km on Sundays and 

the public holiday. Layer models of road networks are 

often used in car-navigation systems mostly to reduce 

the time required in calculating routes under several 

criteria such as the shortest distance and the shortest 

time. In this case,, the layers of the network were 

defined according to the types of road classes or kinds 

of empirical criteria.  

Probe data were accumulated for 31 days and their 

density was calculated. The target area of about 20 by 

20 km of central Osaka was divided into cells of 20 by 

20 m. This amounted to 1 million cells. The size of the 

cells was chosen so that it was almost the same as the 

GPS error diameter. The number of probe data, which 

consisted of vehicle identification codes, timestamps, 

latitude and longitude, which fell into each cell, were 

counted. The interval of the probe data was 2 sec with a 

slight possibility of data being missed when the GPS 

reception was not completed. The number of probe data 

that fell into each cell was defined as the probe data 

density with units of “counts/cell•month” The concept 

underlying the layered network is outlined in Figure 1.  

 

 Figure 1  
Concept behind two-layered road 
network regarding frequency of road 
use by trucks  
 

The upper layer network represents a high frequency 

layer network that consists of roads frequently or 

commonly used by freight vehicles such as highways 



 

and major roads, while the lower layer is the low 

frequency layer, which consists of roads rarely used by 

freight vehicles. We assumed that when a truck started a 

trip, the origin was usually in a low frequency network 

such as a local road near a factory, distribution center, or 

a delivery destination (op in lower left of Figure 1). We 

also assumed the vehicle accessed a high frequency 

network such as a highway using a low frequency 

network (lower left network in Figure 1) and after 

driving along the highway for a while it exited (egress) 

the highway near its destination. After exiting the 

highway, the vehicle reached its destination using the 

low frequency network (lower right network in Figure 1). 

Each trip was assumed to take a series of transitions 

between the two layers in this way, starting from an 

origin, op, to the destination, dq, in the low frequency 

network via Op and Dq in the high frequency network, as 

illustrated in Figure 1. 

 

 
4 Model of Probe Density 
 

Probe density varies from place to place. We analyzed 

its distribution in the following way. Figure 2 plots the 

profile of the number of cells with at least some 

designated probe density (x-axis). The number of cells 

over four meshes covering about 20 by 20 km of the 

central Osaka area, viz., 513573, 513574, 523503, and 

523504 mesh codes, (JIS X 0410) is summed up. The 

actual number of cells, indicated by the solid line in 

Figure 2, is approximated by the sum of two exponential 

decaying functions. We estimated the optimum 

coefficients for the two exponential curves by 

minimizing the mean squared error and obtained the 

model of Eq. (1) 

 

                                                                    
                                                                                

 

where p is the designated minimum probe density. 

 

The coefficient of determination R
2
 of the model is 

0.9918, which is quite close to 1.0. The decaying 

coefficient of the high frequency network is -0.126957, 

which appears in the first term on the right hand side of 

Eq. (1), and this is about 17 times more significant than 

that (-0.007419) of the low frequency network in the 

second term on the right hand side of Eq. (1). 

The model defined by Eq. (1) is also indicated by the 

dashed lines in Figures 2 and 3. Figure 3 is an enlarged 

graph of Figure 2 with respect to the x-axis, and the 

profiles of each model layer, which are the two terms on 

the right hand side of Eq. (1), have been illustrated 

separately. The model in Figure 3 represents the 

summation of the dotted lines of the high frequency and 

low frequency models. The model seems to closely fit 

the actual profile. 

It was a little surprising that the probe distribution 

followed a model quite as simple as this one and we are 

studying why the distribution followed a simple 

summation of the two different exponential 

distributions.  

The probe density function, G(p), in Eq. (1) is defined 

as the integration of what we call the “cell distribution” 

function, K(q), which we also want to model as defined 

by Eq. (2).  

 

                                                                        
 

   

 

 

Here, we assume both G(p) and K(q) take the 

following forms, i.e., both are sums of different speed 

exponential distributions.  

 

                                                                   
 

                                                                   
 

                                                       
 

After integrating K(q) in Eq.(2) and comparing both 

sides, we obtain Eqs. (6) and (7) as 

 

                 
 

 
         

 

 
                  

 

                                                         
 

After substituting the values of A=151,110, B=53,539, 

a=0.1269757 and b=0.007419, respectively, for the four 

unknowns of C, D, c, and d in Eq. (7), we finally obtain 

the equation for K(p) as  

 

                                                                       
                                              

 

where p is the designated probe density. 

 

The profiles of the cell distribution function in Eq. (8) 

are plotted in Figures 4 and 5. 

To check if the distribution model in Figure 4 and 

Figure 5 was statistically valid, we tried to apply a 

chi-square test; however, it was rejected. This was 

because a chi-square test is not suitable for these types 

of problems with thousands of degrees of freedom. The 

number of cases N was 2583. With these thousands of 

samples, small differences between the model and the 

actual data can easily reject the test even though the 

goodness of fit is as good as R
2
=0.9918. Ransom and 

Cramer [18] pointed out a similar issue, i.e., a 

chi-square test only allows for sampling variations, and 

thus tests the hypothesis that the model distribution 

holds exactly. Since our model was not exactly the same 

as the real distribution, we thought that this was not an 



 

 Figure 2   Actual probe density and  

          model probe density G(p) 
 

 
Figure 3 Enlarged graph of actual probe 
density and model distribution 

 
Figure 4 Actual cell distribution and  
      model distribution K(p) 
 

 
Figure 5 Actual cell distribution and    
 model distribution K(p) on log scale 



 

important issue. We calculated Kullback–Leibler 

divergence [19] in Eq. (9) as another approach. It yielded 

values of  0.051 nat or 0.074 bit for the model defined 

in Eq.(8), which enabled us to conclude that the model 

fitted quite well from the viewpoint of information 

theory 

 

 
Figure 6    Digital road map:  
All roads with minimum width of 5.5 
meters  
 

 

 
Figure 7   Probe density map: 
Black lines are high frequency network 
and gray lines are low frequency 
network 
 

 

 

                   
    

    
 

 

   

                                 

 

where P(i) is the observed normalized distribution 

indicated by the solid line in Figure 4, and K(i) is the 

model distribution derived from Eq. (8), which is 

plotted by the dashed line in Figure 4 and Figure 5. If 

we make the model more elaborate by introducing more 

factors to it, this may contribute more to the goodness of 

fit; however, it will become more complex to interpret 

the model. The same examples have been presented to 

enable the differences between the two layers to be 

compared. The digital roadmap of mesh code 523503 is 

in Figure 6 where all roads over 5.5 meters wide have 

been shown.  There is a probe density map in Figure 7 

where the solid black lines correspond to the high 

frequency network and the gray lines correspond to the 

low frequency road network. The threshold that 

separates the high frequency cells from those of low 

frequency is 30 probes/cell·month, which roughly 

means that at least one of 300 trucks visits these links 

every day on average. 

 

5. Difference in Characteristics Between 

    Two Network Layers 

 
Our next concern was to find whether there were any 

significant characteristic differences between the high 

frequency and low frequency networks. One serious 

concern may be to find how long the driver is staying in 

each network. The number of probes with respect to 

probe density of each layer is shown in Figure 8. Here, 

the distribution is calculated with the cell distribution 

model in Eq. (8) and multiplying it by the probe density. 

Table 1 summarizes the characteristics of the probe data 

in each network.  

 

Table 1   
Comparison of two layered networks 
 

 
 

Since each piece of probe data was recorded every 2 

sec, the number is proportional to the time trucks were 

driven in each network. The probe density map such as 

that in Figure 7 indicates the actual frequency that 

trucks use road networks. Instead of counting the actual 



 

probe data in each network, we counted the number of 

cells and probe density, because, we do not currently 

think that map matching is necessary for analyzing 

network characteristics. In map-matching processing, 

each item of probe data, which has longitude and latitude, 

is assigned to a corresponding nearby point on the link of 

a digital road map. This is useful for calculating the link 

travel time or congestion or for any link-based studies. 

For example, once the link travel time is obtained, 

studies on choices of routes or applications such as 

calculating the fastest route can be dealt with. However, 

map-matching processing especially that based only on 

GPS data is quite difficult in metropolitan areas such as 

in the Keihanshin area. There are many cases where 

elevated roads coexist with parallel roads running 

underneath them. In these cases, it is quite difficult to 

distinguish roads only from GPS probes that do not have 

adequate height resolution. 

Hence, we currently propose cell-based analysis in 

this paper instead of link-based analysis until a 

map-matching technology with sufficient reliability is 

developed. How to overcome this problem will be 

another focus of our research in the future. Although the 

ambiguity of roads in dense areas has been left 

unresolved, it is sufficient to check whether the proposed 

layered network model is valid or not. 

The discovered network sizes in terms of cells, i.e., the 

number of cells in the high frequency network, is 

estimated to be 53,539 while that in the low frequency 

network is 151,110. The ratio is about 26% to 74%, as 

illustrated in Figure 9. The total amount of time drivers 

spend in each network is derived by integrating the 

profiles plotted in Figure 8. As seen in Figure 10, 

86.56% of the time is spent in the high frequency 

network while only 26.16% of cells are in the network. 

Therefore, trucks spend durations that are about 6 times 

longer in the high frequency network even though it is 

1/3 the size of the low frequency network. The ratio of 

the number of cells can be substituted for the ratio of the 

road length, which we could not calculate from the 

digital roadmap data base because we did not do 

map-matching in our study. It should be emphasized that 

roughly 90% of the time spent by trucks was in the high 

frequency network. Thus, improving the reliability of the 

high frequency network, its efficiency, and safety 

deserves a higher priority.  

Because this high frequency network is derived from the 

probe data, it is adaptive to actual truck probe data. A 

reasonable threshold for the two layers can be the point 

at which the two curves cross in Figure 8, i.e., about 30 

counts/cell·month in this case.  
Figure 11 shows the extracted high frequency network 

covering about 20 by 20 km in central Osaka. We can 

clearly see that only limited networks are used by trucks. 

Figure 12 shows both of the two layered network cells. 

The high frequency network cells are in black and the 

low frequency network cells are in gray. Both kinds of 

cells form corresponding networks. To see if there is a 

difference in the velocity characteristics between the 

two layers, the instantaneous velocity data of 244 trucks 

on Monday, October 1st, 2009 were analyzed. The 

probe data, which were recorded every 2 sec, were data 

cleansed by re-sampling every 20 sec according to the 

method explained in the next section to eliminate stops 

related to truck operation. 

 

 Figure 8  Probe density distribution in 
  both network layers  
 

 
Figure 9 Number of cells in both layers 
 

 
Figure 10 Driving time in each layer 
 



 

The results are in the graphs in Figures 13 and 14. These 

were calculated for four meshes of 513573, 513574, 

523503, and 523504, as illustrated in Figures 11. The 

velocity distribution for the high frequency network has 

slightly shifted to a higher speed than that of the low 

frequency network. The mean value is 16.87 km/h in the 

low frequency network and 25.03 km/h in the high 

frequency network. The difference is quite obvious. 

 

 
Figure 11 High frequency network cells 
    for 4 meshes 

 

 
Figure 12 High frequency network cells  

     and low frequency network cells 
Solid lines indicate high frequency 

network and gray lines indicate low 
frequency network 

 

The number of re-sampled probes on October 1st that 

fell into the high frequency network was 53,843, while 

there were 15,092 in the low frequency network. The 

percentage for the former is 78.1% and that for the latter 

is 21.9%. This is close to the percentages in Table 1, 

which were derived with the model obtained from the 

one month survey (86.6% for the former and 13.4% for 

the latter.) 

 
 

Figure 13  Velocity graph of  
           both layered networks 

 

Figure 14 Normalized velocity graph  
          of both layered networks 
 

6. Extraction of Stopping Points for Trucks 
 
 The number of probe data for 300 trucks during one 

month in October 2009 consisted of 36,761,274 records. 

The data consisted of vehicle ids, time stamps, longitude, 

and latitude. To evaluate the velocity characteristics of 

the road network, we must distinguish stops, which are 

due to inherent truck operations such as loading or 

unloading goods, resting, or stopping at intersections. 



 

Figures 15(a) and (b) plot the distributions for the 

estimated number of vehicle stop points versus the 

minimum stop time in all the probe data in all areas of 

the Keihanshin area where there were probe data 

including the two layered networks on a typical weekday 

on October 1. The only difference between Figures 15(a)  

 

 
Figure 15(a)  Estimated Number of  
             Stop Points 
 

 
Figure 15(b)  Estimated number of 
             stop points 
 

 Figure 16  Estimated density of stop 
            Points 
 
and (b) is in the shown scales. We chose 2.0 km/h as the 

threshold value to determine that a vehicle had stopped 

based on the results in the Appendix, i.e., a 95% 

confidence interval for the velocity corresponding to 

actual stops, taking GPS positioning fluctuations into 

account. We can see that there is a saddle point in the 

range of minimum stop times that ranges from 200 to 

600 sec in Figures 15(a) and (b). Figure 16 plots the 

density of the number of stop points versus the duration 

of stop time. This was obtained by differentiating the 

data of Figure 15(b). Based on these results, we set the 

threshold time of stops related to truck operation at 600 

sec. This meant that any stops that lasted for less than 

600 sec were regarded as stops caused by traffic 

congestion although situations where vehicles waited 

for 600 sec at intersections or in congested traffic were 

very rare. However, this is not critical if we chose 200 

sec as the threshold value from Figure 15(a).  

 
7. Conclusion 

 

 We presented results that we obtained by analyzing 

truck probe data. The six main findings were: 

1) The road network could be modeled as a two layered 

network, and both layers could be adaptively 

constructed according to the frequency of road use, 

which was calculated with probe data.  

2) Trucks in the Keihanshin area spent about 6 times 

longer on the high frequency network even though it 

was 1/4 the size of the low frequency network. It 

should be emphasized that 87% (model) or 78% 

(actual) of the time spent by trucks was in the high 

frequency network in the Osaka area. Thus, 

improving the reliability, efficiency, and safety of 

the high frequency network deserves a higher 

priority. 

3) The instantaneous velocity histograms did reveal a 

significant difference between the two layers as one 

of their main characteristics, e.g., the mean value 

was 16.87 km/h in the low frequency network and 

25.03 km/h in the high frequency network.  

4) There was a saddle point in the profile of the number 

of stop points for trucks. The saddle point ranged 

from 200 to 600 sec. This means that trucks‟ 

inherent stops ranged from about 600 seconds. 

5) Evaluation of services, analysis of reliability and 

modeling of route selection should become easier to 

deal with and become simpler and more effective 

based on this two-layered network.  

6) The concept of the layered network model may also 

be applied to traffic involving passenger vehicles. 
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APPENDIX 

Criteria for Determining Stops Taking into 

Account GPS Positioning Error 

 
The probe data suffers from measurement errors. The 

GPS errors in this experiment were measured for the 

purpose of setting an optimum threshold to determine 

whether a vehicle had stopped. Figure 17 shows a typical 

example of the trajectory for a truck that stood still for 

460 sec. The lattitude and longitude fluctuated and their 

histograms for two orthogonal directions are in Figures 

18(a) and (b). The absolute GPS positioning error is 

plotted in Figure 19. From this, we determined that 90% 

percentile  error was within about a 10-m radius (20-m 

diameter) and 95% percentile  error was within 12 m 

radius. We need to set a threshold value for 

instantaneous velocity to determine whether a vehicle 

has stopped. Because of fluctualtions in GPS 

measurements, the instantaneous velocity that was 

calculated from adjacent-position data was not free from 

error. This error becomes significant as the sampling 

interval of GPS data decreases. Figure 19 plots the 

occurance of velocity error calculated with different 

sampling intervals. The probe data are the same as those 

used in Figures 17 and 18, i.e., the vehicle is known to 

be standing still.  From this, it is obvious that the 

velocity error decreases as the interval increases.  This 

is because the GPS positioning error is upper bounded 

while the sampling interval can be increased. However, 

the temporal resolution, which is important for analyzing 

the characteristics of the movement of vehicles, will 

reduce as the interval decreases. We finally set the 

interval value to 20 sec as the best compromise. In this 

case, the 95% error percentile of velocity error is about 2 

km/h which is below human walking velocity and quite a 

reasonable value to distingish stops from running. 

 

 
  Figure 17 Typical GPS fluctuations  
 

  
 (a)   (b) 

Figure 18 Graph of GPS fluctuations  
 

 
Figure 19 Typical  GPS absolute  
          error distribution  
 

 
Figure 20 GPS Velocity error   
               distributions 


