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Abstract

The output of frequent pattern mining is a huge number of frequent patterns, which are
very redundant, causing a serious problem in understandability. We focus on mining frequent
subgraphs for which well-considered approaches to reduce the redundancy are limited because
of the complex nature of graphs. Two known, standard solutions are closed and maximal
frequent subgraphs, but closed frequent subgraphs are still redundant and maximal frequent
subgraphs are too specific. A more promising solution is δ-tolerance closed frequent sub-
graphs, which decrease monotonically in δ, being equal to maximal frequent subgraphs and
closed frequent subgraphs for δ=0 and 1, respectively. However, the current algorithm for
mining δ-tolerance closed frequent subgraphs is a naive, two-step approach in which frequent
subgraphs are all enumerated and then sifted according to δ-tolerance closedness. We propose
an efficient algorithm based on the idea of “reverse-search” by which the completeness of enu-
meration is guaranteed and for which new pruning conditions are incorporated. We empirically
demonstrate that our approach significantly reduced the amount of real computation time of
two compared algorithms for mining δ-tolerance closed frequent subgraphs, being pronounced
more for practical settings.

1 Introduction

Mining frequent patterns is a major research subject in data mining and knowledge discovery
over a wide variety of modern data, including itemsets, strings, trees and graphs. In particular,
graphs are the most challenging data in knowledge discovery, with a lot of scientific applications
such as chemoinformatics, bioinformatics and network analysis [17, 6]. Furthermore mining fre-
quent subgraphs can be a basis for searching, indexing [25] and classifying [11] graphs in scientific
databases, especially chemical compounds which are often found in chemistry, biology and phar-
maceutical and medical sciences. The most important notion in mining frequent subgraphs is the
support of a subgraph G, denoted by support(G), which is the number of records containing G in
a given dataset of graphs. A subgraph is frequent if its support is not less than a given threshold,
called minimum support or minsup. The purpose of frequent subgraph mining is to enumerate all
frequent subgraphs in a given graph dataset, and efficient algorithms for this problem have been
developed [23, 3, 15].
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The number of outputs of frequent subgraph mining is usually huge and redundant, because all
subgraphs of a frequent graph are frequent, due to the definition of frequent subgraphs. This huge
number makes it difficult to understand and further analyze generated frequent graphs in terms of
knowledge discovery. Thus reducing redundant outputs is an important issue, but because of the
complex data structure of graphs, approaches for this problem are limited. The two most typical
ideas are closed [24, 4] and maximal [14, 20] frequent subgraphs, which are natural extensions
from closed and maximal frequent itemsets [22], respectively. A frequent subgraph G is closed
unless the support of one of its supergraphs is the same as that of G. That is, frequent graph G
can be removed from outputs if its support is the same as that of its frequent supergraph. This
idea is powerful against transaction data of itemsets with a lot of duplications, but this cannot
necessarily work well in scientific graph data such as a chemical library with no duplications,
where the support of a supergraph of G is likely to be slightly smaller than the support of G.
Thus, the number of closed frequent subgraphs is still too large in scientific applications. On the
other hand, a frequent subgraph is maximal unless one of its supergraphs is frequent, meaning
that all subgraphs of a frequent graph can be discarded. This drastically reduces the outputs,
but maximal frequent subgraphs become very small in number and too specific.

Thus we need to further explore the problem of reducing the number of frequent subgraphs
to an appropriate size. In fact, for frequent itemsets, a lot of ideas have been already consid-
ered for this issue, including non-derivable frequent sets, the top-k most frequent closed patterns,
condensed patterns and k-summarized patterns etc [12]. However, for frequent subgraphs, to the
best of our knowledge, only a small number of approaches have been presented. Their strategy
is rather straightforward: they first generate closed frequent subgraphs and then choose repre-
sentative patterns by clustering them [16, 7]. On the other hand, a more sophisticated idea is
δ-tolerance closed frequent subgraphs [9], which were originally used in a method, called FG-
Index, for indexing graphs. The δ-tolerance closed frequent subgraphs allow to smoothly link
maximal and closed frequent subgraphs by using parameter δ, which takes a real value between
zero and one. A frequent subgraph G is δ-tolerance closed unless the support of any supergraph
of G is larger than or equal to max((1−δ)×support(G),minsup). Thus δ-tolerance closed frequent
subgraphs are a natural extension from closed frequent subgraphs by relaxing the strict definition
on closedness to reduce redundant frequent subgraphs more. Furthermore, δ-tolerance closed fre-
quent subgraphs have nice properties: 1) The number of δ-tolerance closed frequent subgraphs
is monotonically decreasing in δ, which is a key to develop pruning rules in our enumeration al-
gorithm. 2) δ-tolerance closed frequent subgraphs are equivalent to maximal frequent subgraphs
and closed frequent subgraphs when δ=1 and 0, respectively.

Although δ-tolerance closed frequent subgraphs are very promising, the current algorithm for
mining these graphs, i.e. the index extraction part of FG-Index [9], is straightforward (or naive).
That is, the algorithm has simple two steps: All frequent subgraphs are first enumerated by
using the gSpan algorithm, i.e. an existing frequent subgraph mining method, and then they are
checked by the criterion of δ-tolerance closed frequent subgraphs. Of course the purpose of [9]
was to build graph indices, and such a simple approach was enough for that purpose, because the
upper limit was placed on the index size in [9]. However, in terms of frequent pattern mining, we
need to enumerate all δ-tolerance closed frequent subgraphs, urging to develop a more efficient
approach by considering pruning the search space more. In particular pruning must be more
useful to improve the computational efficiency for the case with the minsup of a lower value, since
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the number of outputs is larger with that minsup. Consequently it’s clearly worth pursuing a
time-efficient method for moderating the size of outputs in mining frequent subgraphs.

In this work, we present an efficient algorithm for mining δ-tolerance closed frequent subgraphs
by incorporating a lot of pruning techniques to cut down the space of enumerating subgraphs.
Our algorithm is closely related with those for mining closed frequent subgraphs (by depth-first
search (DFS) [24] and by breadth-first search (BFS) [5]), which however sometimes have serious
flaws on the completeness of enumerating all closed frequent graphs due to overpruning [21, 4].
Thus, in this work, to avoid the problem of overpruning, we started with formulating the problem
of mining frequent subgraphs by using a general enumeration (or pattern growth) framework called
“reverse-search” [2], for which the completeness of enumeration is guaranteed. We emphasize that
this formulation makes the completeness and the uniqueness of frequent subgraphs clear not only
in our problem but in more general subgraph enumeration from a given graph dataset. Under
this framework, we develop a “partial-reverse-search” algorithm, by which traversing and pruning
a search space can be clearly represented over a search tree (or an enumeration tree). We empha-
size that such a well-organized search space allows our algorithm to use possible pruning rules.
For example, our algorithm can incorporate so-called “right-blanket pruning” and “left-blanket
pruning,” which were modified from the original ones for closed frequent subtree mining [10, 13],
and both pruning techniques have not been used in closed frequent subgraph mining yet. Fig. 1
shows a summary of the current literature flow of mining frequent trees and graphs and indexing
graphs. One item of note is that while δ-tolerance closedness was developed for itemsets first [8]
and then graphs [9] mainly in the literature of indexing, a totally similar idea, called α-closedness,
was independently developed for trees [13] in the literature of bioinformatics.

We evaluated our method with a variety of real datasets of graphs, particularly chemical
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compounds. We first checked practical computation time of our algorithm on these datasets,
under different settings of minsup, comparing our proposed algorithm with two naive methods,
including the index extraction part of FG-Index [9]. Results showed that real computation time of
the naive methods was drastically reduced by our algorithm, particularly for the case with minsup
of lower values, such as 5%. In fact, this difference is sizable, because our method can be easily
applied to cases, for which the naive methods cannot work at all practically. We then examined the
number of frequent subgraphs generated by our mining method with changing the value of δ from
zero to one. The result showed that our method could smoothly reduce the number of outputs
from a very large number to a small size. We further checked real examples of δ-tolerance closed
frequent subgraphs obtained by four methods: standard frequent subgraph mining and three
different parameter values of δ-tolerance closed frequent subgraph mining: 0 (closed frequent
subgraph mining), 0.2 and 1 (maximal frequent subgraph mining). We could see that subgraphs
obtained by δ of zero are almost the same as those by standard frequent subgraph mining, being
very redundant, while those by δ of one are too diverse. On the other hand, the subgraphs
by δ of 0.2 are moderate and well-balanced. These results clearly revealed the effectiveness of
our approach of efficiently mining δ-tolerance closed frequent subgraphs which are reduced from
redundant frequent graphs, to find significant, key patterns out of graph data.

2 Preliminaries

Here we show the notation and concepts which are already defined in mining frequent patterns
(particularly subgraphs) and will be used in our proposed algorithm.

2.1 Notation

Given two tuples a = (a1, a2, . . . , am) and b = (b1, b2, . . . , bn) where pairwise order ai < bi between
i-th elements is all available, we can define lexicographical order a < b between these two tuples
if ai = bi (∀i ≤ m) and m < n, or if there exists j such that ai = bi (∀i < j) and aj < bj. Let set
X be the set of all tuples, and the total order < on X is x < y or y < x for any x ∈ X, y ∈ X
and x �= y.

A graph G = (V,E) is a collection of nodes V and edges E. An edge is denoted by (u, v); u
and v are adjacent. A graph is undirected if its edges are unordered pairs of distinct nodes, and is
labeled if one of several labels is assigned to each node and each edge. We write the label of node
v as label(v), and that of edge (u, v) as label((u, v)). A graph G′ = (V ′, E′) is a subgraph of G,
denoted by G′ ⊂ G, and G is a supergraph of G′, if V ′ ⊆ V and E′ ⊆ E and an induced subgraph
if (u, v) ∈ E′ ⇔ (u, v) ∈ E for any u, v ∈ V ′.

A sequence of distinct edges from v1 to vn: (v1, v2), (v2, v3), . . . , (vn−1, vn) in G is called a
cycle if v1 = vn. An undirected graph is connected if, for every distinct pair of nodes, one node
can be reached from the other node along with edges. A tree is a connected undirected graph
which contains no cycles. A spanning tree of an undirected graph G is a subgraph which is a tree,
containing all nodes of G. A rooted tree is a directed graph with the root node having no edges
leading to it, all other nodes having one edge leading to them, and no cycles. For two nodes v
and w, which are connected without using the root in a directed, rooted tree, if v is closer to the
root, then v is called an ancestor of w and w is a descendant of v.
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Figure 2: DFS Code Examples

A depth-first search (DFS) traverses all nodes in a graph. This search always proceeds to the
next adjacent unvisited node until reaching a node that has no unvisited adjacent nodes, then
backtracks to the previous node and continues along any as-yet unexplored edges from that node.
By running a DFS, each node v has a pre-order index, denoted by idx(v), which is a time-stamp
(or an index) when v is first discovered. For an edge (u, v), we can have a pre-order index pair
(idx(u), idx(v)). Note that an edge with a pre-order index pair (i, j) is always either tree edge if
i < j or a back edge if i > j, when we consider undirected graphs with no self-loops, i.e. i �= j.

In this paper, we assume that input graphs are undirected, connected and labeled, and we
consider their induced subgraphs.

2.2 DFS Code for Graphs

2.2.1 Minimum DFS Code

A DFS gives an edge sequence with pre-order indices on nodes. Thus, we can order all edges in
a graph as they are first discovered. For given graph G, each edge (u, v) can be a 4-tuple:

(
(idx(u), idx(v)), label(u), label((u, v)), label(v)

)
,

and a DFS code of G, denoted by code(G), can be an edge sequence by an ordered list of 4-tuples.
Fig. 2 shows brief examples of two graphs ((a) and (b)) and their DFS codes.
Since a graph has at least one DFS code, we can examine all graphs by checking all possible DFS
codes. However, since different codes can correspond to the same graph because of the graph
isomorphism problem, we have to put equivalent DFS codes into one single code.

We then define the “order” for multiple DFS codes of a graph and take the minimum one as
the representative among them. Since a DFS code is a tuple of 4-tuples, if the order between
any 4-tuples is available, we can sort DFS codes in lexicographical order. For example, the order
between two DFS codes in Fig. 2 (a) is decided by the order between two 4-tuples: ((2, 0), B, a,A)
and ((2, 3), B, a,A). Similarly, for Fig. 2 (b), two DFS codes are sorted by the order between
two 4-tuples: ((0, 2), A, a,A) and ((1, 2), A, a,A). According to this lexicographical order, we
can simply choose the minimum code for our purpose. This coding by the minimum DFS code
guarantees both completeness and uniqueness as representations of graphs. Here the completeness
means that graphs can be enumerated without any oversight, while the uniqueness means that
graphs can be enumerated without redundancy.

Property 1 (Minimum DFS Code [23]). For a given graph G, the minimum DFS code of G,
denoted by min{code(G)}, is unique and complete. Thus, it can be one canonical representation
of graphs.
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Table 1: The order on pre-order index pairs

x1 < x2 (tree)
x2 < y2 ⇒ x ≺ y
x2 = y2 x1 > y1 ⇒ x ≺ y

y1 < y2 (tree)
x2 = y2 x1 < y1 ⇒ x � y
x2 > y2 ⇒ x � y

x1 > x2 (back)
x1 < y1 ⇒ x ≺ y
x1 = y1 x2 < y2 ⇒ x ≺ y

y1 > y2 (back)
x1 = y1 x2 > y2 ⇒ x � y
x1 > y1 ⇒ x � y

x1 < x2 (tree) x2 ≤ y1 ⇒ x ≺ y
y1 < y2 (back) x2 > y1 ⇒ x � y

A DFS code of a graph is called minimal among all DFS codes for the same graph, if this
code is the minimum DFS code. We can show an important property of the minimum DFS code
which allows to enumerate frequent subgraphs efficiently, by using the prefix subcodes of a DFS
code (a1, a2, . . . , an) which can be defined as (a1, a2, . . . , ai) where i ≤ n.

Property 2. Any prefix subcode of the minimum DFS code is also minimal for the corresponding
graph.

In order to define this canonical coding more precisely, it suffices to specify the order between
any 4-tuples. Since we usually can order labels alphabetically, 4-tuples can also be sorted in
lexicographical order by using the order on pre-order index pairs. Thus, the problem ends up in
defining the order between any two pre-order index pairs. For given two pre-order index pairs:
x = (x1, x2) and y = (y1, y2) (x �= y), the total order ≺ between any x and y can be defined as in
Table 1.

Property 3 (Total Order on DFS Codes [23]). The total order ≺ between two pre-order index
pairs can define the total order between any two DFS codes, meaning that any pair of DFS codes,
even code(G) and code(G′) from two different graphs G and G′, can be compared.

Thus, we can search all possible subgraphs in this order, skipping corresponding DFS codes
except minimum DFS codes.

2.2.2 Identifying the Minimum DFS Code

For given c = code(G), we can easily generate graph G from the definition of the DFS code. We
write this as G = graph(c). Given graph G, we can directly generate the minimum DFS code
min{code(G)}. Since DFS codes are defined in lexicographical order, any prefix subsequence of a
code must be the minimum DFS code among all codes representing the corresponding subgraph
of G. Then, starting from the 1-edge ((0, 1), x, y, z) that the label (x, y, z) is minimal among all
edges of G, we add the remaining edges one by one by DFS. Whenever we find multiple edges to
be added next, we can take only the minimal one. If there are multiple minimal edges, we simply
trace all of them until it turns out that they are not minimal. After adding all edges of G, we can
find the minimum DFS code min{code(G)} in the set of currently generating edge-sequences.
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Hence, for identifying whether a code c is the minimum DFS code, we first generate graph
G = graph(c), then check whether c = min{code(graph(c))} or not. We note that this check can
be efficient when c is not minimal, because this case, at some point, we will fail to find the prefix of
c in any of the currently generating minimal edge sequences. Other heuristic pruning conditions
are also possible, and if interested, please see the original paper [23]. In fact, in our method, we
borrow the pruning techniques in [23] when checking whether a given code is minimal or not.

It should be noted that the graph isomorphism problem is a problem in NP, which is neither
known to be solvable in polynomial time nor NP-complete. On the other hand, the more general
subgraph isomorphism problem is known to be NP-complete.

2.3 δ-Tolerance Closed Frequent Subgraphs

Given a set of graphs, the support of a graph G is the number of graphs containing G, denoted
by support(G) (or support(G|D) for given graph set D). A frequent subgraph is a graph whose
support is larger than or equal to a given cut-off value called minimum support, denoted by
minsup. For efficiently mining frequent subgraphs, we can show an important property, which is
used for all types of frequent patterns in common and is here shown for graphs.

Property 4 (Downward Closure). A graph is not frequent if any of its subgraphs is not frequent.

This property indicates that the corresponding graph to any prefix subcodes of a frequent
graph is also frequent. The gSpan algorithm [23], the most popular algorithm for mining frequent
graphs, is based on enumeration or pattern growth, which uses this property as well as the
minimum DFS codes of graphs. In brief the gSpan algorithm generates a supergraph from each
graph in a depth-first manner, computing the support of each of the generated graphs and it is
further grown only if the generated graph is frequent, due to the downward closure property.

A frequent subgraph is said to be closed if no supergraphs have the same support. Similarly, it
is said to be maximal if no supergraph is frequent. Maximal frequent subgraphs are always closed
from the definition. We introduce a parametric interpolation between a set of closed subgraphs
and a set of maximal subgraphs as δ-tolerance closed subgraphs, which will be defined below.

Definition 1 (δ-Tolerance Closed Frequent Subgraph [9]). A frequent subgraph G is defined to
be δ-tolerance closed if no frequent supergraphs have a support larger than or equal to (1 − δ) ·
support(G).

This definition means that the strict condition of closedness, which is that support(G) =
support(G′) for G′ and G (G′ ⊃ G), is relaxed to a milder one, which is that support(G′) �
(1 − δ) · support(G), although this condition is still stronger than that of maximality, which
requires only that G′ is frequent. In other words, a frequent subgraph is said to be δ-tolerance
closed unless support(G′) � max((1− δ) · support(G),minsup) for any G′ ⊃ G. The parameter δ
is assumed to take a value between zero and one.

Given a set of graphs and a minsup, let F , C, and M be the set of all frequent subgraphs,
that of all closed frequent subgraphs, and that of all maximal frequent subgraphs, respectively.
We can first observe the following nested hierarchies in frequent subgraphs.

Property 5. Let Aδ be the set of all δ-tolerance closed frequent subgraphs for some fixed δ. Then,
it always satisfies that M⊆ Aδ ⊆ C ⊆ F for 0 � δ � 1.
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Input: Graph set D, minsup, δ
Output: All δ-tolerance closed frequent subgraphs Tδ in D
1: procedure BuildIndex(D, minsup, δ)
2: Enumerate all frequent subgraphs F using gSpan
3: Sort F s.t. ∀G1, G2 ∈ F , G1 is higher ranked than G2 if G1  G2.
4: Tδ ← F
5: Partition F into P1,P2, . . . where Pi is the set of graphs with i edges.
6: for i ∈ 1, 2, . . . do
7: for G ∈ Pi do
8: for G′ ∈ Pi+1 do
9: if G ⊂ G′ then /* solve subgraph isomorphism */

10: if support(G′) � (1− δ) · support(G) then
11: Tδ ← Tδ − {G}
12: end if
13: end if
14: end for
15: end for
16: end for
17: end procedure

Figure 3: A naive algorithm: δ-tolerance closed frequent subgraph extraction part in FG-Index

We can then find the following nice properties on Aδ.

Property 6. A parametric family Aδ is monotonically decreasing when parameter δ is increasing:
Aδ ⊆ Aδ′ for any δ � δ′. Furthermore, the largest set A0 corresponds to the closed frequent
subgraphs C, while the smallest set A1 to the maximal frequent subgraphs M.

Property 7. Any subgraph of a δ-tolerance closed frequent subgraph is also frequent. Thus, we
can retrieve all frequent subgraphs from Aδ.

We consider of enumerating all elements in Aδ for a given set of graphs. Due to Property 5
and 6, the possible largest output is C when δ = 0, while we are able to enumerateM even when
δ = 1 in the same framework.

2.4 Index Construction Part of FG-Index: Obtaining δ-Tolerance Closed Fre-
quent Subgraphs

In order to have δ-tolerance closed frequent subgraphs, we can first think of the following primitive
strategy (or a naive method), due to Property 5.

Method 1 (Naive). (1) Apply the gSpan algorithm to enumerate all frequent subgraphs F , (2)
for each subgraph of F , check the condition of δ-tolerance closedness and output it if the condition
is satisfied.
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The index construction part of FG-Index [9] implements this approach, and Fig. 3 shows the
pseudocode of this part, which is directly extracted from [9]. In this figure, the graph set order
 can be defined in the following manner.

Definition 2 (Graph Set Order [9]). Given a set of graphs G, a graph set order  on G is a
total order which can be defined as follows: Let G1, G2 ∈ G. G1  G2 if one of the following three
statements is true.

1. size(G1) < size(G2)

2. size(G1) = size(G2) and support(G1) > support(G2)

3. size(G1) = size(G2), support(G1) = support(G2), and h(G1) � h(G2) where h : G → N is
an injective function that assigns a unique ID n ∈ N to each subgraph in G.

We can further define G1 ≺ G2 if G1  G2 and G1 �= G2.

Fig. 3 shows the pseudocode of the naive method. As shown in this figure, this algorithm
simply generates all frequent subgraphs and repeats checking whether each of them is δ-tolerance
closed frequent subgraph or not. This strategy covers all solutions since Aδ ⊆ F , but can be
improved because we do not need to search all of F for enumerating Aδ. More concretely, while
the search by the gSpan algorithm runs for F , if we find that no descendants of the current
subgraph can be δ-tolerance closed, we do not have to search the descendants in the enumeration
tree. This means that we can prune the corresponding edges in the enumeration tree.

3 Reverse Search Reformulation for Enumerating Frequent Sub-
graphs

Before moving on to our algorithm, we first reformulate the enumeration by the gSpan algorithm
in our context, giving another view to the gSpan algorithm as an example of reverse search
enumeration. In the enumeration of subgraphs, we have to examine possible subgraphs one by
one, avoiding 1) overlooking some subgraphs to be enumerated, and 2) checking the same subgraph
in multiple times because of efficiency. However, it is not apparent in what order graphs should
be examined in an efficient search.

This issue can be solved by an abstract technique which was developed in another field. In
fact, enumerating all objects that satisfy a specified property is a fundamental problem not only
in data mining but also in a lot of other fields such as combinatorics, computational geometry,
and operations research. Avis and Fukuda [2] presented an exhaustive search technique, called
reverse search, in a general framework which includes various enumeration problems in broader
applications. In reverse search, we first define a rooted spanning tree, called enumeration tree, in
which nodes are the set to be enumerated. In our case, an enumeration tree can be defined over
F . Once we can have an enumeration tree, we simply traverse it from the root to leaves. Since a
spanning tree covers all nodes, the search examines each node (a frequent subgraph) exactly only
once. Thus, we can avoid any redundant search, such as checking the same subgraph multiple
times, without overlooking any necessary subgraphs. This fact can guarantee the completeness
and uniqueness of the enumeration. If a node to be examined next is always given at any node,
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the spanning tree on F can be defined implicitly. More concretely, we first define a unique parent
in F for each subgraph (child) in F . By doing this without causing any cycles, we can generate
an enumeration tree by switching the direction of examining node from the above child-to-parent
to the “reverse” direction, i.e., parent-to-child. Fig. 4 gives an illustrative example of generating
an enumeration tree. Thus, it is a key to uniquely define the parent of a node as well as to find
an efficient way to “reverse” the direction of examining nodes.

Precisely speaking, the objects to be enumerated in our problem is the set of minimum DFS
codes corresponding to F . We can use Properties 2 and 4 to define the unique parent for a
subgraph. Then, for any graph G ∈ F , we can always uniquely assign its parent G′ ∈ F : For
the minimum DFS code c = (a1, a2, . . . , am) of G, its parent G′ is defined by its prefix subcodes
(a1, a2, . . . , am−1) with removing the last edge from c. We assume the special node, called the root
denoted by ⊥, as the parent of 1-edge codes like (a1). Since the graph size of the parent is smaller
by one edge than those of the children, this parent-child relationship does not form any cycle.
Thus, by “reversing” this parent-child relationship, we can build an enumeration tree rooted at
⊥ for reverse search of F .

Property 8 (Reverse Search). For a given minimum DFS code (a1, a2, . . . , am), its children can
be examined by finding all minimum DFS codes, which are (a1, a2, . . . , am, b) with one additional
edge b, and whose corresponding graphs are frequent. We call this procedure a local search. Starting
with root ⊥, recursively iterating a local search in the depth-first manner completes the reverse
search for enumerating F .

In other words, given minimum DFS code (a1, a2, . . . , am) at each recursion, for its possible
children, it is sufficient to consider only the following three points: (1) whether to take a form
of (a1, a2, . . . , am, b), (2) whether to be minimal, and (3) whether to be frequent. We note that
the edge extension defined by (1) and (2) is also known as rightmost extension, which was orig-
inally defined for enumerating frequent subtrees [1]. Practically, the above procedure is done as
follows: We first find all frequent 1-edge subgraphs as frequent patterns and save the locations
where corresponding graphs are found in given graphs. We then attempt to “grow” the frequent
pattern by adding a possible adjacent edge b and tracing all locations of the frequent patterns
simultaneously (which was originally done in [3]). We note that since the above edge extension in
local search can be ordered, we can attempt to add an edge in this order. This will help making
enumeration efficient in mining δ-tolerance closed frequent subgraphs as described later.

Property 9 (DFS Lexicographical Ordered Tree). Since the total order between DFS codes is
available, any siblings in an enumeration tree can be ordered. Thus, the enumeration tree is an
ordered spanning tree.

4 Proposed Procedure: Partial Reverse Search for Efficiently
Enumerating δ-Tolerance Closed Frequent Subgraphs

Avis and Fukuda [2] introduced a simple modification of reverse search called partial reverse
search for solving a certain class of hard optimization problems. This technique also can be
applied to enumerating δ-tolerance closed frequent subgraphs Aδ, although our problem is an
enumeration problem rather than an optimization problem. We here can consider two types of
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(a) (b) (c)

Figure 4: (a) Objects to be enumerated, (b) unique parents of nodes, and (c) reverse search:
rooted spanning tree on set (a).

pruning conditions on closedness and δ-tolerance closedness. Our algorithm is then summarized
in the following:

Method 2 (Proposed). (1) Apply reverse search for enumerating F , (2) during the search proce-
dure, at some subgraph, (2-1) if we find all of its descendants not to be closed, prune this branch
of the enumeration tree; (2-2) we can further check the condition of δ-tolerance closedness and
output the subgraph if it satisfies the condition.

The feature of our proposed algorithm can be summarized into two points: pruning conditions
on closedness and efficiently checking the condition on δ-tolerance closedness, which are shown
in Sections 4.1 and 4.2, respectively. Section 4.1 shows a new algorithm, which is specialized to
mining closed graphs and free from overpruning, and Section 4.2 shows an efficient algorithm on
checking the δ-tolerance closedness.

4.1 Pruning by Occurrence-Matched Graphs and Feasible Edges

We first introduce occurrence-matched graphs, which was originally defined in mining frequent
subtrees in [10] and is also important for graphs, being equivalent to equivalent occurrence in [24]
and another idea in [5] (Note: They extended their idea to perfect extension of [4] where the
overpruning issue described below was avoided.). If we prune edges by using this notion only,
they can include the cases which should not be pruned, resulting in overpruning. This means
that we need another notion by which we can avoid overpruning. We then define feasible edges
and attempt to use both occurrence-matched graphs and feasible edges for pruning, resulting in
the idea of right- and left-blanket pruning for the case of mining closed frequent subgraphs. We
emphasize that there have been no methods which realize both right- and left-blanket pruning for
mining closed frequent subgraphs.

4.1.1 Occurrence-Matched Graphs and Feasible Edges

Definition 3 (1-Edge Extension). For a given graph G, a supergraph which can be generated by
adding another adjacent edge e to any node of G is said to be 1-edge extension of G, denoted by
G + e, and e is called an extended edge.

Definition 4 (Blanket). For a given graph G, a blanket of G, denoted by B(G), is a set of all
possible 1-edge extensions of G. The set B(G) can be divided into two subsets: the right-blanket
BR(G) and the left-blanket BL(G). The right-blanket BR(G) is a set of supergraphs of G which
can be the children of G in the enumeration tree. The left-blanket is defined as the complementary
set of BR(G) in B(G).

11
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Figure 5: An example of occurrence-matched graphs and not occurrence-matched graphs.
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Figure 6: Left- and right-blankets of G in Fig. 5

In short, the right-blanket is a set of all 1-edge rightmost extensions of G, while the left-blanket
is a set of 1-edge extensions which cannot be generated by rightmost extension from G. Here we
first note that the rightmost extension is described in Section 3. Then once again we show the
following property which recalls the important relationship between minimum DFS codes and
corresponding nodes in the enumeration tree. We will then not mention the minimum DFS codes
any more after this property.

Property 10 (Enumeration Tree with Minimum DFS Codes). Given an enumeration tree and
a graph G where min{code(G)} = (a1, a2, . . . , an), if there is a node corresponding to G in the
enumeration tree, a child of the node corresponding to G has minimum DFS code (a1, a2, . . . , an, b).

We then define occurrence-matched graphs.

Definition 5 (Occurrence-Matched Graphs). Two subgraphs G and G′ ∈ B(G) are occurrence-
matched, if G′ always appears at the same location as that of G in any of given graphs. We write
G

OM←→ G′ when G and G′ are occurrence-matched.

Fig. 5 shows an illustrative example of occurrence-matched graphs. In this figure, given two
graphs (a) and (b), G and G′ are occurrence-matched, because G′ always appears at the same
location as that of G. For example, when G appears at nodes 1, 2 and 4, G′ appears at nodes
1, 2, 4 and 7, and so on. On the other hand, G and G′′ are not occurrence-matched, because G′′

does not appear when G appears at nodes 1, 2 and 4.
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For trees, we can define pruning conditions by using blanket and occurrence-matched graphs
only [10]. However, graphs have intrinsically cycles, thus letting us need another concept to
define pruning conditions for graphs. We first define a bridge to be an edge where the number of
connected components of the graph increases when this edge is removed. This means that bridges
cannot be a part of any cycle in a graph. For example, in Fig. 5, bridges are C6-E9 in (a) and
C4-E5 in (b) only. Using bridges and the back edge defined in Section 2.1, we can define feasible
edges, which must be taken care of when our pruning strategy is applied.

Definition 6 (Feasible Edges). For a 1-edge extension G + e, edge e is feasible if it is a back
edge, or if it is a tree edge and all corresponding edges of e in graphs containing G are bridges.

We illustrate examples of feasible edges. Fig. 6 shows all sorted left- and right-blankets of G
in Fig. 5. For each 1-edge extension G + e ∈ B(G) in Fig. 6, e is drawn by a thick line. In this
figure, the extended edges in (b) and (d) only are feasible, since the extended edge in (b) is a
back edge, and in Fig. 5 all edges corresponding to the extended edge of (d) are bridges in both
two graphs ((a): C6-E9 and (b): C4-E5).

4.1.2 Right-Blanket Pruning

We now consider the pruning conditions based on these notions, and the first condition is given
for right-blanket.

Proposition 1 (Right-Blanket Pruning). For given G, if we have G′ = G+ e ∈ BR(G) such that
G′ OM←→ G and e is feasible, then graph G+e′, e′ �= e and any of its descendants in the enumeration
tree can be pruned.

Proof. In the enumeration tree, G can be replaced with G′ if G′(= G+e) OM←→ G and e is feasible.
Then, since graph G + e′, e′ �= e and any of its descendants cannot be closed, we can prune all
1-edge extensions of G except G′.

We further illustratively explain this pruning condition, focusing on the difference between
frequent subgraphs and frequent subtrees. Fig. 7 shows an example of mining from two graphs
with minsup = 2. For G1:A-B-C and G2:A-B-C-D, we can see G1

OM←→ G2 because A-B-C-D
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always appears at the same locations of A-B-C: A1-B2-C4 in (a), A1-B2-C6 and A8-B4-C in (b).
So any A-B-C can be always replaced with A-B-C-D, implying that we do not have to think about
G1 any more, resulting in that branches corresponding to all 1-edge extensions of G1, i.e. B(G1),
in the enumeration tree can be all pruned except G2. For example, G3 from G1 is not closed
because of G4 and we can obtain G4 also from G2. Thus, if input graphs are trees we can use
G1

OM←→ G2 only for pruning, but this is not necessary enough for graphs which include cycles. In
fact, we may miss closed subgraphs such as G5 in Fig. 7, if we use G1

OM←→ G2 only.
We further explain why G5 can be overlooked even though there are no exceptions of this

pruning rule for trees. Let us focus on G2 and G1. We first think about the inputs which are all
trees. If an input has both G1 and G2 at the same location, D can be reached from any node
of G1, i.e. A, B and C, by using only C-D, because if we could reach D from A without using
C-D, this means that there is a cycle which should not be in trees. For example, D9 and D11 in
Fig. 7 (b) would not be examined to be added to G1, if there is not C-D. We then think about
the case that inputs have graphs with cycles. When an input has both G1 and G2 at the same
location, D may be reached from a node of G1, say B, without using C-D, because we may have
two different ways from B to D via a cycle, which is allowed in graphs. For example, in Fig. 7 (a),
D7 can be reached from B2 via B2-C4-D7 or B2-F3-C5-D8-D7. This means that in G5, we can
reach D from B via B-F-C-D-D even if we do not have C-D. Thus, this fact contradicts the above
rule that “any A-B-C can be always replaced with A-B-C-D”. In fact, G5 cannot be generated
from G2 because A-B-C-D is not in G5, but can be from G1, and so we need to save G1. More
generally, on each input which has both G and G + e (e = (u, v)) at the same location, we have
to ensure that any node of G cannot reach to v without e, i.e. that e is a bridge. If e is a bridge
for all inputs, we can prune the branch of each G′ ∈ B(G) (G′ �= G + e). We here note that
when e is a back edge (For example, (b) in Fig. 6), since v is already included in G, we do not
need to consider whether to be a bridge. Thus we need two conditions for right-blanket pruning:
G′(= G + e) OM←→ G and e is feasible.

4.1.3 Left-Blanket Pruning

We can have the following:

Lemma 1. In DFS of the enumeration tree, G′ ∈ BL(G) is examined before G is examined:

min{code(G′)} < min{code(G)} for G′ ∈ BL(G)

Proof. This can be directly derived from Property 9 and the definition of minimum DFS codes.

This means that if a graph and its 1-edge extension in the left-blanket are occurrence-matched
and the adjacent edge between these two is feasible, the graph can be pruned.

Proposition 2 (Left-Blanket Pruning). For given G, if we have G′ = G + e ∈ BL(G) such that
G′ OM←→ G and e is feasible, then both G and any of its descendants in the enumeration tree can
be pruned.

Proof. This just follows Proposition 1 and Lemma 1.

14



Hereafter we write Bf -OM
L (G) := {G + e ∈ BL(G) | G OM←→ G + e}, where e is feasible. For

checking Bf -OM
L (G) �= ∅ in the left-blanket pruning, we can derive a practically time-efficient

procedure (which is summarized into the upper part of Fig. 10) as follows: We first note that
each G′ (∈ Bf -OM

L (G)) must appear at all occurrences (locations) of G in a given dataset D. This
means that Bf -OM

L (G) can be obtained by 1) first checking all possible 1-edge extensions of G at
each occurrence of G, 2) keeping G + e (∈ BL(G)) if e is feasible, and 3) taking the intersection
of the stored 1-edge extensions over all locations of G. From an opposite viewpoint, this means
that once we find G′ (= G + e) where e is not feasible at some location of G, G′ must not be in
Bf -OM

L (G). We can then prepare a tentative graph set Yi (which contains all G+e (∈ BL(G)) with
feasible edge e for the i-th location of G) and run the following procedure by using a tentative
graph set X with Yi to implement the above idea: 1) At i = 1, X ← Yi and 2) repeat X ← X∩Yi,
incrementing i, and once if X = ∅, it is guaranteed that Bf -OM

L (G) = ∅, meaning that G does
no longer satisfy Bf -OM

L (G) �= ∅ and we can soon quit checking Bf -OM
L (G) �= ∅. The upper part

of Fig. 10 shows the pseudocode of the above procedure on checking Bf -OM
L (G) �= ∅.

4.2 Condition of δ-Tolerance Closedness

We first show the testing condition on δ-tolerance closedness.

Proposition 3 (δ-Tolerance Closedness Testing). For given G, let Bδ(G) ⊆ B(G) be a set defined
by

Bδ(G) := {G′ ∈ B(G) | support(G′) � max((1− δ) · support(G),minsup)}.

Then, G is δ-tolerance closed if and only if Bδ(G) = ∅.

Proof. If G is δ-tolerance closed, the statement Bδ(G) = ∅ simply follows Definition 1. Thus, we
show the reverse implication: Suppose that Bδ(G) = ∅. Then, G′ ∈ B(G) satisfies support(G′) <
max((1− δ) · support(G),minsup). On the other hand, for any supergraph G′′ of G, there always
exists G′ ∈ B(G) that G ⊆ G′ ⊆ G′′, meaning support(G) � support(G′) � support(G′′). There-
fore, it always holds that support(G′′) < max((1 − δ) · support(G),minsup) for any supergraph
G′′ of G, and we can conclude that G is δ-tolerance closed.

In the procedure for checking Bf -OM
L (G) = ∅ of Section 4.1, we used the fact that Bf -OM

L (G)
can be obtained by an intersection of the sets over all locations of G. On the other hand, Bδ(G)
cannot be defined as an intersection of sets. We can raise differences between Bδ(G) and Bf -OM

L (G)
as follows: 1) We need to consider not only left-blanket but also right-blanket. 2) e is not needed
to be feasible for G + e ∈ Bδ(G). 3) We do not have to check each location of G, and instead,
given graph set D we can check G for each J ∈ D. 4) We cannot stop even if some tentative
set X becomes empty because Bδ(G) is not an interaction of sets. For formally presenting our
procedure, we first introduce a general notion, partial support, which gives a basis for developing
an efficient procedure.

Definition 7 (Partial Support). For given graph set D, the partial support of subgraph G in
S ⊆ D is defined by the number of graphs containing G in S, denoted by support(G | S) := |{J ∈
S | G ⊆ J}|.

15



J 1

G G

G

A

C
DE

A
B

D
E

B
A

FD

J 2

G
FA

C D

J 4

G B

C
D

occurrence

G
A

G

1-edge
extension

input graphs

J 3

G

G

A
B
C

DE

D

A
C

G
G

A
G

B
G

C

G
D
G

E

G
A
G

C

G
D
G

F

G
A
G

B
G

C

G
D
G

E

G
B
G

C

G
D

child

i = 1 i = 2 i = 3 i = 4

A B C

D E F

1 1 1

1 1 0

A B C

D E F

2 1 2

2 1 1

A B C

D E F

3 2 3

3 2 1

A B C

D E F

3 3 4

4 2 1
partial
support

support(G  |{J  , ... , J })1 i

Figure 8: An example of graph G and partial support.

Let J1, . . . , Ji, . . . , Jsupport(G) be graphs in D containing G. Fig. 8 shows one example of D
with four graphs J1, . . . , J4. In this figure, assuming that there are only six types of nodes A to
F for graph G, we can consider six types of 1-edge extensions of graph G. From J1 to J4, we
can then count each of six types of 1-edge extensions, resulting in that we can have the partial
support of each possible 1-edge extension, support(G′|{J1, . . . , Ji}) , for each G′ of six types.

We can implement a practically fast procedure for checking Bδ(G) = ∅, by using tentative
graph sets Yi (which is the set of graphs in B(G) for Ji) and X: 1) At i = 1, X ← Yi, and 2)
with increasing i, repeat X ← X ∪ Yi for i. We note that this time we update X by X ← X ∪ Yi,
instead of X ← X ∩ Yi. This means that the size of X does not monotonically decrease but
increases. However, for X, we can use a nice property of G, which is the following upper bound of
the partial support of G which can be used in improving the efficiency of testing the δ-tolerance
closedness.

Lemma 2. Let J1, . . . , Jsupport(G) be graphs containing G. Suppose we check each {Ji} from i = 1
to support(G). At i, for G′ (∈ B(G)), we can see that G′ �∈ Bδ(G) if G′ satisfies

support(G′ | {J1, . . . , Ji}) < i− support(G) + max((1 − δ) · support(G),minsup)

Proof. For G′ ∈ B(G), we can obtain the following upper bound.

support(G′) = support(G′ | {J1, . . . , Ji}) + support(G′ | {Ji+1, . . . , Jsupport(G)})
� support(G′ | {J1, . . . , Ji}) + |{Ji+1, . . . , Jsupport(G)}|
= support(G′ | {J1, . . . , Ji}) + support(G)− i.

If G′ (∈ B(G)) is in Bδ(G), it needs that support(G′) � max((1−δ) ·support(G),minsup). Hence,
if support(G′ | {J1, . . . , Ji}) < i − support(G) + max((1 − δ) · support(G),minsup) holds, then
the above upper bound must be less than max((1− δ) · support(G),minsup). Then this naturally
leads to support(G′) < max((1− δ) · support(G),minsup), which indicates that G′ �∈ Bδ(G).
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To implement a time-efficient procedure, we need to keep both X and the partial support of
all subgraphs in X during scanning over input graphs. At each i, we can then apply Lemma 2 to
X to remove G′, which satisfies Lemma 2. That is, we can run the following steps for each i, 1)
we check all G′ (= G + e ∈ B(G)) for all locations of G to be in Yi, 2) X is updated by merging
with Yi as X ← X ∪ Yi, and 3) if G′ ∈ X satisfies Lemma 2, G′ is removed.

We can raise an example of this procedure by using Fig. 8 where support(G) = 4. In this
figure, if minsup is 2 and δ = 0.3, support(G′) must be larger than 2.8, according to Proposition
3 (Note that 2.8 = max((1 − 0.3) × 4, 2)). We can scan Ji ∈ D from i = 1 to 4, to compute
the partial support of each G′ at each i. At i = 3, we can find the partial support of G′, i.e.
support(G′|{J1, J2, J3}), is only 1 for G′ with the additional node labeled with F . We then do
not have to consider this G′ at i = 4, because support(G′) cannot be 3 or larger, even if this G′

is in J4. This is formalized in Lemma 2.
We note that for Bδ(G), we cannot stop even if X = ∅ at some i, since even if X = ∅, we

cannot see that Bδ(G) = ∅, because Bδ(G) is not an intersection over all locations. This is an
important difference from that Bf -OM

L (G) = ∅. This leads the following proposition regarding
the stopping conditions of scanning D.

Proposition 4. For each i, X is updated by merging with Yi, and Lemma 2 is applied to X for
removing G′ in X. We can then terminate if either the following (i) or (ii) is satisfied, under the
assumption that minsup > 0: (i) X = ∅ and i > support(G)−max((1− δ) · support(G),minsup)
because Bδ(G) = ∅, (ii) X �= ∅ and maxG′∈X{support(G′ | {J1, . . . , Ji})} > max((1 − δ) ·
support(G),minsup) because Bδ(G) �= ∅.

Proof. An element (graph) of X must be in graphs of {J1, . . . , Ji}. This directly means that if
X = ∅, it is guaranteed that there are no graphs which are in Bδ(G) and in {J1, . . . , Ji}. However,
there might be a graph G′ which is not in any of {J1, . . . , Ji} but in any of {Ji+1, . . . , Jsupport(G)},
and satisfies support(G′) � max((1−δ) ·support(G),minsup). This is why we cannot immediately
conclude Bδ(G) = ∅ even if X = ∅ at i. We thus need to preclude the possibility that a graph
like the above G′ exists.

When X = ∅ at i, since the G′ is not in any of {J1, . . . , Ji}, we can have the following upper
bound of the support of G′.

support(G′) = support(G′ | {Ji+1, . . . , Jsupport(G)})
� |{Ji+1, . . . , Jsupport(G)}| = support(G)− i

This means that if i > support(G) − max((1 − δ) · support(G),minsup), the upper bound of
support(G′) is given by

support(G′) < max((1 − δ) · support(G),minsup)

That is, there is not any graph which is in Bδ(G) or satisfies support(G′) � max((1 − δ) ·
support(G),minsup). As a consequence, the statement (i) is proven to be true.

On the other hand, there is another way to terminate the procedure by finding Bδ(G) �= ∅.
That is, if we found support(G′ | {J1, . . . , Ji}) > max((1− δ) · support(G),minsup) for some G′ ∈
X, then we can conclude Bδ(G) �= ∅ without considering the remaining {Ji+1, . . . , Jsupport(G)}.
This is because support(G′) � support(G′ | {J1, . . . , Ji}). The statement (ii) simply follows this
observation.
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Input: Graph set D, minsup, δ
Output: All δ-tolerance closed frequent subgraphs Aδ in D
1: procedure EnumDTolClosed(D, minsup, δ)
2: scan D once to mark all bridges with DFS
3: Aδ ← ∅

4: E ← all possible 1-edge subgraphs in D
5: for G ∈ E in DFS order do
6: LocalSearch(G, DG, minsup, δ, Aδ)
7: end for
8: end procedure

9: procedure LocalSearch(G, DG, minsup, δ, Aδ)
10: Let c is the passing DFS code for G
11: if support(G) < minsup : return � Property 4
12: if c �= min{code(G)} : return � Property 8
13: if NonEmptyFeasibleOM(G, DG) : return � Proposition 2
14: if IsDTolClosed(G, DG, minsup, δ) : Aδ ← Aδ ∪G � Proposition 3
15: for G + e ∈ BR(G) in DFS order do
16: LocalSearch(G + e, DG+e, minsup, δ, Aδ)
17: if G

OM←→ G + e where e is feasible : return � Proposition 1
18: end for
19: end procedure

Figure 9: The δ-tolerance closed subgraph mining algorithm

The lower part of Fig. 10 shows the pseudocode, which implements Lemma 2 and Proposition 4.
One possible, additional remark is the following: When δ = 0, X equals to the intersection of

1-edge extensions of G over all graphs in D. Thus our approach is a way to improve the efficiency
in mining closed frequent subgraphs and has not been implemented so far, meaning that our
efficient procedure includes this case as a special example for δ = 0.

4.3 Proposed Algorithm

Finally, gathering the pieces of work, we now show the pseudocode of our algorithm in Figs. 9
and 10, where DG := {G′ ∈ D | G ⊂ G′}. Note that in the pseudocode, we begin with graphs
having only one edge (instead of graphs having only one node), although starting with graphs with
one node only is possible in principle. At line 2, we first check whether each edge is a bridge or
not. Since we assume input graphs are connected, a trivial way to detect all bridges in a graph is
to repeat removing each edge and listing the number of connected components by DFS. However,
the time complexity of this method for a graph with m edges reaches roughly O(m2). Instead
we use a well-known linear-time algorithm by DFS [19], keeping the computational complexity at
O(m). Since all bridges are marked at line 2, we can check whether each extended edge is feasible
in lines 13 and 17. In local search, we first check the downward closure property (line 11), and the
minimum DFS code (line 12). We can then run the left-blanket pruning (line13), the δ-tolerance
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1: procedure NonEmptyFeasibleOM(G, DG) � Check Bf -OM
L (G) �= ∅

2: X ← ∅; i← 1
3: for each location of G appearing in DG do
4: Yi ← ∅

5: for each of all possible G + e ∈ BL(G) do
6: if e is a back edge or a bridge: Yi ← {G + e} ∩ Yi

7: end for
8: if i = 1 then
9: X ← Y1

10: else
11: X ← X ∩ Yi

12: if X = ∅ : return false
13: end if
14: i← i + 1
15: end for
16: return true
17: end procedure

18: procedure IsDTolClosed(G, DG, minsup, δ) � Check Bδ(G) = ∅

19: X ← ∅

20: θ ← max((1− δ) · support(G),minsup)
21: m← 0 ; i← 1
22: for each graph Di containing G in DG do
23: Yi ← {G + e ∈ B(G) | G + e in Di}
24: X ← X ∪ Yi

25: for G′ ∈ X do
26: supi ← support(G′ | {D1, . . . ,Di})
27: if supi < i− support(G) + θ then X ← X \ {G′} � Lemma 2
28: if supi > m then m← supi

29: end for
30: if X = ∅ and i > support(G) − θ : return true � Proposition 4 (i)
31: if X �= ∅ and m � θ : return false � Proposition 4 (ii)
32: i← i + 1
33: end for
34: end procedure

Figure 10: Pseudocodes of subroutines in Fig. 9

closedness testing (line 14) and the right-blanket pruning (lines 15-17). At lines 5 and 15, ‘in DFS
order’ refers to Property 3. Fig. 10 shows the pseudocodes of subroutines in the part of Fig. 9.
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Table 2: Graph datasets used in our experiments.
Ave. Max. Ave. Max. URL:

Name # graphs # nodes # nodes # edges # edges http://
DrugBank 976 25.3 101 27.1 103 redpoll.pharmacy.ualberta.ca/drugbank/
Mutag 188 17.9 28 19.8 33 chemcpp.sourceforge.net/
PTC 417 14.4 64 14.5 71 www.predictive-toxicology.org/ptc/
CPDB 684 14.1 90 14.6 96 potency.berkeley.edu/cpdb.html
HIV-CA 423 39.6 189 42.3 196 dtp.nci.nih.gov/docs/aids/aids data.html
HIV-CM 1081 31.8 222 34.3 234 dtp.nci.nih.gov/docs/aids/aids data.html
HIV-CI 41185 25.3 214 27.3 251 dtp.nci.nih.gov/docs/aids/aids data.html

5 Experimental Results

5.1 Data

We used seven datasets all of which are libraries of chemical compounds. Table 2 shows the
detail of each dataset and the website from which each dataset can be retrieved. Throughout the
datasets, we deleted nodes labeled by hydrogens and edges extending to hydrogens.

5.2 Implementation

Since we cannot have another implementation for mining δ-tolerance closed frequent subgraphs,
we checked the validity of our implementation in the following manner: We first implemented the
gSpan algorithm by using our idea of reverse search and confirmed the number of outputs of our
implementation was the same as that by the publicly available binary of the gSpan algorithm [23].
We then implemented the naive algorithm or the index extraction part of FG-Index, having the
output of the gSpan algorithm as its input. We then implemented our proposed algorithm on
mining δ-tolerance closed frequent subgraphs and confirmed that the number of our outputs is
totally consistent with that of the naive algorithm. Finally we confirmed that the number of
outputs of our algorithm with δ = 0, i.e. closed frequent subgraphs, was consistent with that of
closed frequent subgraphs outputted by ParMol [18].

5.3 Computation Time

Fig. 11 shows the real computation time of our proposed algorithm, comparing with two other
algorithms for generating δ-tolerance closed frequent subgraphs, for all seven datasets in Table 2,
with changing minsup. The two other competing methods are: 1) Naive: the naive method whose
pseudocode is shown in Fig. 3, i.e. generating frequent subgraphs first (by the gSpan algorithm)
and then running a post-processing regarding δ-tolerance closedness, and 2) CNaive: generating
closed frequent subgraphs first and then running a post-processing part, which is almost1 the
same as the corresponding part2 of the naive method. Thus the difference of these two is that

1The difference in the post-processing parts of Naive and CNaive is caused by the following: for frequent
subgraphs, we just check the δ-tolerance closedness on the children of each node (corresponding to a frequent
subgraph) in the enumeration tree, while for closed frequent subgraphs, a child of a node (corresponding to a
frequent subgraph) might be removed by closedness already and this case we need to check its children further.

2We note that our implementation of the post-processing part for both Naive and CNaive is very fast, since its
most time-consuming part is that for dealing with the subgraph isomorphism problem, which can be however solved
by using minimum DFS codes efficiently. That is, this problem can be solved by checking whether the minimum
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Figure 11: Real computation time for enumerating δ-tolerance closed frequent subgraphs, being
varied by minsup. Each line with white circles shows the real computation time of our proposed
algorithm, while lines with triangles and black circles show that of CNaive and Naive, respectively.
Results are shown for seven datasets in Table 2.

Naive generates frequent subgraphs first while CNaive generates closed frequent subgraphs first.
For all cases, we fixed δ at 0.2 and used a server with 64-bit Linux, dual-core AMD Opteron
processor 2222SE and a memory of 48GBytes. We note that Naive is exactly the index extraction
part of FG-Index [9]. Out of the seven datasets, in Mutag, our proposed algorithm was clearly
much more time-efficient than the other two methods for all cases of minsup. For example, for
the minsup of 10%, our algorithm is around 102 and more than ten times faster than Naive
and CNaive, respectively. In the other six datasets, for higher values of minsup, such as 10 to
20%, the amount of computation time of Naive (CNaive) were comparable with our proposed
algorithm. However, as the minsup was reduced, the computational efficiency of our proposed
algorithm was significantly better than both Naive and CNaive. For example, for DrugBank, all
three methods need around five to ten seconds for the minsup of 10%, while for the minsup of
5%, our method needed less than 100 seconds but Naive (and CNaive) needed around 10,000
seconds, the difference between our method and Naive (or CNaive) reaching approximately 102

DFS code of one of the two inputs corresponds to a node of the enumeration tree of the other, since each node of
an enumeration tree corresponds to a minimum DFS code. We emphasize that in this experiment, both Naive and
CNaive were implemented to run as fast as possible.
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Figure 12: The number of δ-tolerance frequent subgraphs being varied by δ is shown for seven
datasets in Table 2. The four lines of each dataset were obtained when minsup was 5, 10, 15 and
20% from the top to the bottom.

times. In fact, for all seven datasets, for smaller values of minsup the computational efficiency
of our proposed algorithm was more pronounced and more sizable, comparing with both Naive
and CNaive. These results clearly indicates the effectiveness of our method in terms of practical
computation time.

5.4 Output Reduction

Fig. 12 shows the results obtained by examining the number of outputted δ-tolerance closed
frequent patterns with varying δ for all seven datasets shown in Table 2. In Fig. 12, for each
dataset, four lines were obtained when minsup was 5, 10, 15 and 20% from the top to the bottom.
We first note that δ = 0 and 1 are equal to closed and maximal frequent subgraphs, respectively.
We can easily see that a large number of frequent patterns at δ of 0 is smoothly reduced by δ to
a small number at δ of 1. For example, when minsup was 5% for DrugBank, larger than 10,000
frequent patterns at δ of 0 were reduced to around 2,000 at δ of 1. The fact that the number of
frequent subgraphs can be controlled by δ can be seen for all cases in Fig. 12. Another finding
was that the number of subgraphs when δ=0.4 or larger was almost the same as that of maximal
frequent subgraphs in all cases.

5.5 δ-tolerance Closed Frequent Subgraphs

We then checked actual frequent subgraphs, i.e. outputs, of mining methods, sorting them by
their supports. Table 3 shows the top 10 frequent subgraphs obtained from CPDB by the following
four methods: mining frequent subgraphs (or “Freq”), mining closed frequent subgraphs (δ=0 or
“Closed”), mining δ-tolerance closed frequent subgraphs at δ of 0.2 (or “δ20”) and mining maximal
frequent subgraphs (δ=1 or “Maximal”), where minsup is set at 10% for all four methods. We
can easily see that the subgraphs in Freq were all small and very redundant and must be boring to
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Table 3: Top 10 frequent subgraphs from CPDB.
Frequent mining (Freq) δ=0 (Closed) δ=0.2 (δ20) δ=1 (Maximal)

Rank
Support Graph Support Graph Support Graph Support Graph

1 618 618 618 97

2 468 468 401 95

3 456 456 369 92

4 429 429 354 92

5 410 410 309 88

6 401 401 265 87

7 401 401 242 86

8 398 398 205 83

9 369 369 196 83

10 369 369 196 82

experts. These subgraphs were totally the same as those in Closed, implying that mining closed
frequent subgraphs did not work well for reducing redundant subgraphs. On the other hand, this
set was mildly changed to a more attractive one in δ20. For example, in δ20, we could find four
graphs with two edges: C-C-C (ranked 2nd), N-C-C (ranked 3rd), O-C-C (ranked 5th) and O=C-
C (ranked 10th), which were not overlapped with each other. This tendency was true of two three
edge subgraphs, C-C-C-C (ranked 6th) and C-N-C-C (ranked 8th). They are a good summary
of top ten frequent subgraphs (Freq and Closed). The subgraphs in Maximal were drastically
different from each other. These subgraphs might be interesting in some sense, but their supports
were all small and some graphs were very special, e.g. S-C (ranked 5th) and N-N-C (ranked 8th).
From these results, we can say that mining δ-tolerance closed frequent subgraphs allows to flexibly
change the size of outputs, improving the understandability of data mining.

5.6 Discussion

We compared the computation time of our method with that of Naive and CNaive, showing the
results in Fig. 11. This figure showed that although the computation time of the three methods
were comparable under relatively higher values of minsup, say around 20%, our proposd method
became more time-efficient than Naive and CNaive, for lower values of minsup, say 5% of less,
for all seven datasets. Particularly, the computation time of Naive was improved by CNaive
for six out of all seven datasets, and further improved by our proposed method for all seven
cases. The performance improvement depends upon each dataset, since for example if a dataset
contains many similar graphs, the number of its δ-closed frequent subgraphs can be smaller. In
Fig. 11, the advantage of the proposed method over CNaive was rather slight for PTC and HIV-
CA, comparing with other datasets, even for smaller values of minsup (less than 5%). We then
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Figure 13: # of outputs (δ-tolerance closed frequent subgraphs) for δ = 0.2 (+), being accompa-
nied with the case of δ = 0 (∗), corresponding to closed frequent subgraphs when we vary minsup.
Results are shown for seven datasets in Table 2.

checked the number of δ-closed frequent subgraphs for each of the seven datasets. Fig. 13 shows
the number of outputs for δ=0.2, with the number of closed frequent subgraphs (δ = 0.0), showing
approximately a ‘linear’ correlation on the log-log plot between minsup and the number of outputs
(δ-tolerance closed frequent subgraphs of δ=0.2) for all seven datasets. This figure shows that
even for smaller values of minsup, the number of outputs in PTC and HIV-CA was around 4,000
or less, being smaller than that of another dataset. From this result, we can see that for these
small-scale datasets, the amount of real computation for various pruning became not necessarily
small, comparing with other parts, resulting in that the time-efficiency of our method for these
datasets was rather limited. This result implies that the time-efficiency of the proposed method
can be pronounced more for larger-scale datasets. This point can be confirmed by another point
of our results: The size of seven datasets is around 1,000 or less, except HIV-CI which has around
41,000 graphs, and we can see that from Fig. 11, the performance improvement of our method over
Naive and CNaive on HIV-CI was more outstanding than that on other datasets. These results
indicate that our method is more advantages for larger datasets as well as for smaller values of
minsup. This conclusion further imply that our proposed method is useful for real settings more.
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6 Concluding Remarks

We have proposed an efficient algorithm for mining δ-tolerance closed frequent subgraphs by which
the number of outputs can be reasonably reduced and controlled. Our algorithm reformulates the
enumeration of mining frequent subgraphs in the framework of “reverse-search” and further makes
the most of available pruning techniques in mining closed graphs and trees. We emphasize that
our method is the first approach which uses both two types of pruning techniques, i.e. right-
and left-blanket pruning, for mining closed frequent subgraphs, implying that our approach must
be the fastest method of mining closed frequent subgraphs. Experimental results confirmed the
efficiency and the effectiveness of our approach using a variety of real scientific datasets of chemical
compounds.
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