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Abstract 

 

We propose an efficient method for investigating conformational properties of a polymer in 

solvent. The method is a combination of a Monte Carlo (MC) simulation applied to the polymer 

alone and a statistical-thermodynamic approach for incorporating solvent effects. To illustrate it, 

we analyze conformations of a simple polymer chain stabilized in a hard-sphere solvent. The 

generation of polymer conformations is performed using the self-avoiding random walk on a 

cubic lattice. We argue that by introducing the generalized-ensemble techniques to the MC 

simulation part, the method can be applied to studies on protein conformations in aqueous solution 

under any thermodynamic condition. 
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1. Introduction 

 

Analysis on the conformational properties of polymers including biopolymers such as 

proteins is a challenging subject in polymer science, biophysics, and biochemistry. However, a 

difficult point is that solvent has enormous effects on the conformational properties. The most 

important solvent is doubtlessly water or aqueous solution. Though the continuum model has 

frequently been used to incorporate solvent effects, it is not capable of accounting for the 

solvophobisity which is essential in determining the conformational properties. As argued in our 

earlier works [1,2] and in later paragraphs of the present letter, a molecular model is necessitated 

for solvent to elucidate the solvent effects. In usual computer simulations, a polymer and many 

solvent molecules are simultaneously treated. However, the number of solvent molecules required 

becomes progressively larger as the polymer size increases. It is important to carefully check if the 

number is sufficiently large, but such a check is often skipped, which lowers the reliability of the 

results obtained. 

Here we propose an efficient method for incorporating the solvent effects to the full extent 

through the solvation free energy (SFE) of a polymer in a fixed conformation. The SFE is 

calculated using a hybrid of the integral equation theory [3] (a statistical-mechanical theory for 

fluids) and the morphometric approach [4]. Since the integral equation theory is employed, the 

number of solvent molecules considered is infinitely large. In the method, a Monte Carlo (MC) 

simulation applied to the polymer alone is combined with the hybrid. The calculation of the SFE is 

finished quite rapidly even for a large polymer, and most of the time is consumed in generating the 

polymer conformations using the MC algorithm. Hereafter, the method is referred to as 

“combined method”. 

When a polymer takes a more compact conformation in solvent, the excluded volume 

generated by the polymer (i.e., the volume of the space which the centers of solvent molecules 

cannot enter) decreases, leading to increases in the total volume available to the translational 

displacement of the coexisting solvent molecules, in the number of accessible translational 

configurations of the solvent, and in the configurational entropy of the solvent [1,2]. The 

conformational properties of a polymer are largely influenced by this entropic excluded-volume 

effect. In the conventional concept, only the solvent in the close vicinity of a polymer surface is 

considered when the solvent effects are discussed: The solvent near the surface is entropically 

unstable in comparison with the bulk solvent. We remark that the solvent-entropy effect 

emphasized in the present letter has the following characteristics in comparison with the 

conventionally argued one [1,2]: It reaches a far larger length scale; it is much more insensitive to 

the polymer-solvent interaction potential [5]; it is considerably larger [5]; and it can be taken into 
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account only by a molecular model for solvent. (The conventionally argued effect is also 

incorporated in our theoretical treatment as discussed in the later section describing the 

morphometric approach; see Eq. (4).) 

When the entropic excluded-volume effect plays an essential role or the solvation entropy is 

the key quantity, due to its insensitivity to the polymer-solvent interaction potential, a polymer can 

be modeled as a set of fused hard spheres with the result that the morphometric approach [4] 

becomes particularly powerful. In the combined method for analyzing the conformational 

properties of a polymer, any model can be employed for solvent in which a homo- or 

hetero-polymer or a protein is immersed. The solvent can be under any thermodynamic condition. 

We have shown that protein folding [5,6], receptor-ligand binding [7], and heat [8,9], cold [10,11], 

and pressure [12] denaturating of proteins can be elucidated by our theories wherein the entropic 

excluded-volume effect is treated as the dominant factor [4]. 

In the present letter, our combined method is illustrated for a simple polymer chain immersed 

in a hard-sphere solvent. The polymer chain is modeled as connected hard spheres. The 

conformational properties are then determined purely by the competition of the two entropic 

components, the conformational entropy of the polymer chain and the configurational entropy of 

the solvent. The generation of polymer-chain conformations is made using the self-avoiding 

random walk on a cubic lattice. The SFE of the polymer chain with each conformation is 

calculated using a hybrid of the integral equation theory for spherical particles [3] and the 

morphometric approach [4]. 

Even for the simple polymer chain, its conformational properties in solvent are not fully 

understood. This is because the thorough incorporation of solvent effects is a rather difficult task. 

It is physically more insightful to consider somewhat simplified model systems rather than 

realistic systems in which as many factors as possible are incorporated. In such computer 

simulations previously performed, a polymer is constrained within a spherical space and the 

solvent effects are accounted for simply by this constraint [13], or the solvent particles are placed 

on sites of a lattice and allowed to move only discretely [14-16]. With these limitations, the 

entropic excluded-volume effect cannot suitably be taken into account. As described above, the 

computer simulations which explicitly incorporate a sufficiently many solvent particles suffer 

from a large computational burden [17,18]. In the illustration of our combined method, we 

calculate the conformations of the simple polymer chain stabilized and the conformational 

entropies in vacuum and in solvent with low and high densities. 

Last, we argue that by introducing a generalized-ensemble technique [19,20] to the MC 

simulation part, the combined method can be applied to studies on protein conformations in 

aqueous solution under any thermodynamic condition. Heat, cold, and pressure denaturating of 
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proteins and the prediction of the native structure can be investigated using the combined method. 

 

 

2. Method 

 

2.1. Models of polymer chain and solvent 

 

Small hard spheres with diameter dS=2.8 Å form the solvent. Two reduced solvent densities, 

SdS
3 
=0.35 and 0.70 (S is the solvent number density), are tested. The polymer chain is modeled 

as connected hard spheres with diameter dU=2.5dS. Hereafter, the hard spheres are referred to as 

“unit spheres”. The chain has neither branching nor side chains. The chain is immersed in the 

solvent at infinite dilution. Since rigid-body models are employed, all the accessible system 

configurations share the same energy and the system behavior is purely entropic in origin. The 

number of unit spheres L tested is in the range 4-20. The conformations of the chain are generated 

using the self-avoiding random walk on a cubic lattice. 

 

2.2. Incorporation of solvent effects through solvation free energy  

 

We consider a system comprising a polymer and solvent molecules. In the Boltzmann factor, 

exp{E/(kBT)} (kB is the Boltzmann constant and T is the absolute temperature), E is the instant 

value of the potential energy for a system configuration. Mitsutake et al. [19] has shown that E 

can be replaced by EC+ (EC is the intramolecular energy and  is the SFE; these are defined 

for the polymer in a fixed conformation) when the instant value of a quantity which is of interest 

depends on the polymer conformation alone. In our model system, EC=0 (and /(kBT)= S/kB 

where S is the solvation entropy). Therefore, the existing probability of conformation i of the 

polymer, Pi, is expressed by 

 

N 
Pi=exp{i/(kBT)}/  exp{i/(kBT)},                                          (1) 

i=1 

 

where i is the SFE of the polymer with conformation i and N is the total number of accessible 

conformations of the polymer. We note that Eq. (1) is formally exact [19]. 

For L=4-12, we consider all the accessible conformations and Pi is calculated using Eq. (1). 

For L=13-20, however, we make use of an MC simulation where a sufficiently large number of 

accessible conformations are generated: Firstly, a unit sphere is placed on the original point of the 
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cubic lattice; the second unit sphere is randomly placed at an adjacent site; the third unit sphere is 

randomly placed at a vacant, adjacent site. In this manner, the unit spheres are suitably placed one 

after another. Pi for L=13-20 is then given by 

 

     n 
Pi=exp{i/(kBT)}/ [(N/n)  exp{i/(kBT)}],                                    (2) 

i=1 

 

where n is the number of conformations actually sampled (nN). The exact values of N are 

available in literature [21] and in the present study n is set at 10
7
. 

The conformational entropy of the polymer chain, which is denoted by SC, is a measure of the 

number of accessible conformations of the polymer. SC in solvent is obtained from 

 

m       n 
SC/kB=(1/m)  {(N/n)  PilnPi},                                                (3) 

j=1      i=1 

 

where m is the number of trial runs. We employ the following parameter setting: m=1 and n=N for 

L=4-12 and m200 and n=10
7
 for L=13-20. It has been verified that with these values the standard 

error of SC/kB is always smaller than 0.1. 

    The MC simulation is applied to the polymer chain alone for its conformational sampling, 

and the SFE is theoretically calculated as an ensemble-averaged quantity for the solvent 

configurations in equilibrium with the chain in a fixed conformation. With the aid of the 

morphometric approach [4], the calculation of the SFE is finished only in less than 1 millisecond 

on our workstation: Most of the time is consumed in the conformational sampling for the polymer 

chain. The method described above is referred to as “combined method”.    

 

2.3. Calculation of solvation free energy 

 

The solvation free energy (SFE) can be calculated using the three-dimensional integral 

equation theory (3D-IET) [6,7,22-24] coupled with the hypernetted-chain (HNC) approximation 

[3]. However, the calculation requires a large amount of computer memory and a long 

computation time. This problem can be overcome by adopting the morphometric approach [4]. 

The idea of the approach is to express a solvation quantity such as the SFE  by the linear 

combination of only four geometric measures of a solute molecule: 

 

/(kBT)=C1Vex+C2A+C3X+C4Y.                                                (4) 
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Here, Vex is the excluded volume, A is the solvent-accessible surface area, and X and Y are the 

integrated mean and Gaussian curvatures of the accessible surface, respectively. Though in usual 

cases C1Vex is the principal term, the other three terms also influence . In the approach, the 

solute shape enters  only via the four geometric measures. Therefore, the four coefficients 

(C1C4) can be determined in simple geometries. They are calculated from the values of  for 

hard-sphere solutes with various diameters (dB: 0dB15dS) immersed in the model solvent. The 

integral equation theory for spherical particles [3] with the HNC approximation [3] is employed in 

the calculation. The four coefficients are determined by the least square fitting applied to the 

following equation for hard-sphere solutes: 

  

/(kBT)=C1(4R
3
/3)+C2(4R

2
)+C3(4R)+C4(4), R=(dB+dS)/2,                       (5) 

 

where /(kBT) is a function of dB. The fitting is achieved almost perfectly. The four coefficients 

thus determined are C1=0.0392 Å
3

, C2=0.0137 Å
2

, 4C3=0.0512 Å
1

, 4C4=0.0289 for SdS
3 

=0.35; and C1=0.2323 Å
3

, C2=0.1468 Å
2

, 4C3=1.2601 Å
1

, 4C4=0.2930 for SdS
3 
=0.70. 

The method thus constructed is referred to as “a hybrid of the integral equation theory and 

the morphometric approach”. The high reliability of the hybrid method has already been 

demonstrated [1,2,4]: For a model protein immersed in a simple fluid, the results from the 3D-IET 

can be reproduced with sufficient accuracy by the morphometric approach where the four 

coefficients are determined in the manner described above. 

 

2.4. Entropic excluded-volume effect 

 

We explain the entropic excluded-volume effect using the simple polymer chain with 4 unit 

spheres immersed in the hard-sphere solvent (see Fig. 1). A unit sphere generates an excluded 

volume for the solvent particles. The accessible conformations can be characterized by the number 

of overlaps of the excluded volumes generated by nonadjacent unit spheres (for L=1-3, the 

number of overlaps is zero). For example, in Fig. 1(a) there are no overlaps while in Fig. 1(b) 

there is one overlap. Therefore, the total excluded volume in Fig. 1(b) is smaller than that in Fig. 

1(a): The absolute value of the SFE becomes smaller for the polymer conformation in Fig. 1(b). A 

polymer conformation with a smaller total excluded volume is more favored in solvent. (In the 

simple polymer chain we consider, smaller Vex also leads to smaller A.)  
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3. Results and Discussion 

 

3.1. Conformations of polymer chain stabilized in solvent 

 

Figure 2(a) shows the relation between the polymer-chain conformations and their existing 

probabilities for L=20 (L is the number of unit spheres). The accessible conformations are 

characterized by the number of overlaps of the excluded volumes generated by nonadjacent unit 

spheres. The relation is plotted for vacuum and for solvents with the low-density (SdS
3
=0.35) and 

high density (SdS
3
=0.70). As the number of overlaps increases, the corresponding conformations 

become more compact with a smaller total excluded volume. Figures 2(b)-(d) show the 

conformations with the highest existing probability in vacuum and in the low-density and 

high-density solvents, respectively. As observed in the figures, the conformations stabilized in 

solvent are considerably more compact than those in vacuum and the compactness is enhanced as 

the solvent density increases. The solvent effects thus clarified are qualitatively the same as those 

uncovered by computer simulations [17,18].  

 

3.2. Conformational entropy of polymer chain in solvent 

 

Figure 3 shows SC/kB of the simple polymer chains with 4-20 unit spheres in vacuum and in 

the low-density and high-density solvents. L=1-3, for which the number of overlaps of the 

excluded volumes is zero, are not considered. For our model system, SC/kB in vacuum is given by 

lnN where N is the total number of accessible conformations of the polymer. SC/kB in solvent is 

smaller than that in vacuum, and this effect becomes larger as the solvent density increases. The 

same can be said for the slope. Thus, the solvent effects, which are purely entropic in origin, 

become larger as the solvent density or L increases. The number of accessible conformations of a 

polymer chain is reduced by the constraint due to the solvent effects, and the reduction becomes 

larger as the solvent density or L increases. These results are physically reasonable. 

In the plot for the high-density solvent, SC/kB does not always increase as the number of unit 

spheres L increases. For example, the polymer chains with L=8, 12, 16, and 18 possess smaller 

conformational entropies than those with L=7, 11, 15, and 17, respectively. This initially surprising 

behavior can be understood in the following way. When the solvent density is high, the trend that 

a conformation with a larger number of overlaps of the excluded volumes is more favored 

becomes quite strong. In the most compact conformations, the polymer chains with L=8, 12, 16, 

and 18 can gain larger numbers of overlaps than those with L=7, 11, 15, and 17, respectively. For 

instance, the chain with L=8 has five overlaps in the most compact conformations, while that with 
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L=7 has only three overlaps. The chain with L=8 is forced to take the most compact conformations 

more strongly, leading to smaller SC/kB. As observed in Fig. 3, SC/kB notably increases when L=8, 

12, and 18 change to L=9, 13, and 19, respectively. This behavior can also be understood as 

follows. The polymer chains with L=8 and 9, for instance, share the same number of overlaps in 

the most compact conformations. In such a case, the chain with L=9, for which the number of 

possible conformations is larger, is less constrained to take the most compact conformations, 

leading to considerably larger SC/kB. This subtle effect can thus be captured by our combined 

method. 

 

3.3. Beyond self-avoiding random walk on a cubic lattice 

 

    With the self-avoiding random walk, the conformation of the simple polymer chain is varied 

discretely because the centers of unit spheres are placed on cubic-lattice sites. In a realistic model, 

however, the polymer is to change its conformation continuously. The continuous exploration of 

the conformational space is thus necessitated. Such exploration can be performed widely and 

effectively by the generalized-ensemble techniques [19,20]. 

To see whether our combined method can treat the realistic model or not, we consider a 

simple polymer chain with L=4 whose conformation is varied as illustrated in Fig. 4(a): The unit 

sphere drawn in the broken circle continuously moves from the position with θ=0˚ to that with 

θ=90˚. We calculate the SFE of the polymer chain as a function of θ via the two routes: the 

3D-IET [6,7,22-24]; and the hybrid of the integral equation theory for spherical particles [3] and 

the morphometric approach [4]. We compare the two results for the low-density solvent in Fig. 

4(b) and for the high-density solvent in Fig. 4(c). ∆F represents “the SFE at θ=θ˚” minus “the SFE 

at θ=0˚”. As observed in Fig. 4(b), the two results are almost indistinguishable for the low-density 

solvent. When the solvent density is raised (see Fig. 4(c)), a discrepancy can be appreciated 

between the two results. However, they share almost the same qualitative behavior. The agreement 

is satisfactory even in a quantitative sense. In particular, ∆F at θ=90˚ is accurately calculated by 

the hybrid method. Considering that in the hybrid method the computation time required is shorter 

by three to four orders of magnitude, we can conclude that it acts as a powerful tool even for a 

more realistic model of the polymer chain. 
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4. Perspective 

 

4.1. Extension to studies on protein conformations in aqueous solution 

 

In principle, our combined method can be extended to studies on protein conformations in 

aqueous solution under any thermodynamic condition. The energetic components as well as the 

entropic components are to be taken into account. The SFE is expressed as 

 

=ETS,                                                                (6) 

 

where , E, and S are the SFE, solvation energy, and solvation entropy, respectively.  

“EC+” (EC is the protein intramolecular energy) then equals “EC+ETS”. The quantities, , 

E, S, and EC, are defined for a protein in a fixed conformation. EC comprises the torsion energy 

 and Coulomb plus Lennard-Jones (LJ) terms ECLJ. As argued in our earlier work [25], 

“ECLJ+E” can be replaced by the so-called total dehydration penalty (TDP) . Thus, 

 

EC+=+ECLJ+ETS=+TS.                                             (7) 

 

The existing probability of conformation i of the protein, Pi, is then written as 

 

   n 
Pi=exp{(i+iTSi)/(kBT)}/  exp{(i+iTSi)/(kBT)},                           (8) 

i=1 

 

where n is the number of conformations actually sampled and the subscript i represents that the 

value is for conformation i. 

In Ref. [25], the structures are given beforehand and their torsion energies take physically 

reasonable values: The difference between any two structures in terms of the torsion energy can be 

neglected. With the free-energy function, iTSi, we have been exceptionally successful in 

discriminating the native fold from a number of misfolded decoys for significantly many proteins 

[25]: The free-energy function has been shown to be better than any other physics-based or 

knowledge-based potential function in terms of the performance. In the present case, however, the 

structures are generated during the simulation and those with unreasonably high torsion energy 

should be avoided. This is why the torsion energy is explicitly incorporated in Eq. (8).   

The solvation entropy Si is calculated using a hybrid of the angle-dependent integral 

equation theory for molecular fluids [26-30] applied to a multipolar model of water [26,27] and 
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the morphometric approach [4]. The protein can be modeled as a set of fused hard spheres in 

calculating Si. The TDP is judiciously calculated in the following simple manner [25]. A fully 

extended structure possesses the maximum number of hydrogen bonds with water molecules and 

no intramolecular hydrogen bonds. “ECLJ+E”, when the fully extended structure is chosen as the 

standard one, corresponds to the TDP occurring upon the transition to a more compact structure. 

Compared to the fully extended structure with =0, in a more compact structure some donors and 

acceptors (e.g., N and O, respectively) are buried in the interior after the break of hydrogen bonds 

with water molecules (e.g., NHW, COW; W denotes a water molecule). There is no problem if 

the intramolecular hydrogen bonds (COHN, etc.) are formed. However, such hydrogen bonds 

are not always formed, leading to the dehydration penalty. When a donor and an acceptor are 

buried in the interior after the break of hydrogen bonds with water molecules, if they form an 

intramolecular hydrogen bond, we impose no penalty. On the other hand, when a donor or an 

acceptor is buried with no intramolecular hydrogen bonds formed, we impose an energetic penalty. 

We note that i takes a positive value. More details are described in our earlier publication [25]. 

It is crucially important to widely explore the conformational space of a protein lest the 

simulation should be trapped in a state with a local minimum of the function. The wide 

exploration can effectively be achieved by employing the generalized-ensemble techniques such 

as the replica-exchange MC algorithm [19,20]. In any case, the number of conformations for 

which Si and i are calculated can be huge, but the calculation of these quantities is finished only 

in 0.1 sec per conformation on our workstation. 

  

4.2. Analyses on heat-, cold-, and pressure-denatured structures of proteins 

 

    In our earlier studies on heat [8,9], cold [10,11], and pressure [12] denaturating of a protein, a 

denatured state (i.e., a set of unfolded structures) was constructed as the input data on the basis of 

experimentally available information, and the free energy of the protein-aqueous solution system 

was analyzed for the two cases where the protein takes the denatured state and the native structure, 

respectively. The free-energy change upon structural transition from one of the two cases to the 

other comprised the changes in the conformational entropy, intramolecular protein energy, and 

SFE. Thus, the number of accessible protein conformations and the water effects were separately 

treated though they are strongly coupled in a real system. Significantly many original results were 

successfully obtained, but a more complete analysis can efficiently be performed in the following 

way: By combining the hybrid of the angle-dependent integral equation theory [26-30] and the 

morphometric approach [4] with a generalized-ensemble technique [19,20], the set of denatured 

structures stabilized in aqueous solution at a low or high temperature or at an elevated pressure is 
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obtained as the output data by accounting for the strong coupling of the number of accessible 

protein conformations and the water effects. 

 

4.3. Prediction of the native structure of a protein 

 

Prediction of the native structure of a protein from its amino-acid sequence is one of the most 

challenging problems in modern science. In a standard method for predicting the native structure 

of a protein, the all-atom Lennard-Jones and Coulomb potentials are employed for the whole 

system comprising a protein and water molecules. However, such a full-scale computer simulation 

suffers unacceptably heavy computational burden. What is worse, the results obtained are strongly 

dependent on the force parameters used [31]. It is experimentally known that most of the proteins 

are not foldable in pure water. This is due to the strong water-protein electrostatic attractive 

interactions. With salts such as NaCl added at sufficiently high concentrations, such interactions 

are screened and protein folding is facilitated. Nevertheless, in the standard method, the 

simulations of protein folding are usually performed in pure water. In the light of such a status, we 

should make an effort to develop another method based on a completely different viewpoint. Our 

combined method is expected to provide such a method. 

The structures of a protein stabilized in aqueous solution under the physiological condition 

can be specified in our combined method. The problem of uncertain force-field parameters 

mentioned above is prudently avoided in our methods for calculating Si and i. The salt effects 

are implicitly taken into consideration through the evaluation of i (i.e., with the reduced TDP 

[25]). It is worthwhile to test our combined method for predicting the native structure of a protein. 

As discussed above, the full-scale computer simulation is not always superior to a method using 

logically simplified models. 

 

 

5. Concluding Remarks 

 

We have proposed an efficient method for investigating conformational properties of 

polymers including biopolymers such as proteins in solvent. The method is a combination of a 

Monte Carlo (MC) simulation applied to the polymer alone and a hybrid of the integral equation 

theory [3] and the morphometric approach [4] for incorporating solvent effects through the 

solvation free energy (SFE). The calculation of the SFE is finished quite rapidly even for a large 

polymer, and most of the time is consumed in generating the polymer conformations using the 

MC algorithm. To illustrate the combined method, we have analyzed conformations of a simple 
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polymer chain stabilized in a hard-sphere solvent. The generation of polymer conformations is 

made using the self-avoiding random walk on a cubic lattice. The entropic excluded-volume effect 

has been shown to be crucially important. This result is consistent with the previous suggestions 

based on the improvement of the reference interaction site model (RISM) theories [32,33].    

A most interesting target of the combined method is an analysis on protein conformations in 

aqueous solution under any thermodynamic condition. Since the solvent is water, the integral 

equation theory used is the angle-dependent version [26-30] applied to a multipolar model of 

water [26,27]. Solvent effects are theoretically incorporated through the solvation entropy and 

total dehydration penalty (TDP) (see Eq. (8)). The generalized-ensemble technique such as the 

replica-exchange MC algorithm [19,20] is employed for exploring the conformational space 

widely and effectively. There is no need to apply the MC algorithm to the solvent. The calculation 

of the solvation entropy and TDP can be finished only in 0.1 sec on our workstation. Another 

great advantage is that the number of replicas required is largely decreased in the combined 

method [19]. Thus, the computational burden is expected to be reduced to a drastic extent. We 

intend to revisit heat, cold, and pressure denaturations of proteins after establishing the method of 

estimating the TDP under any thermodynamic condition. Further, it is worthwhile to test our 

combined method for predicting the native structure of a protein. Works in these directions are in 

progress in our group. 
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Figure Captions 

 

 

Fig. 1. A polymer chain with 4 unit spheres immersed in solvent. Open circles: solvent particles. 

Closed circles: unit spheres of the polymer chain. White line: backbone. Space drawn in black and 

gray: Excluded space which the centers of the solvent particles cannot enter.  

 

 

Fig. 2. (a) Relation between polymer-chain conformations and their existing probabilities. The 

simple polymer chain with 20 unit spheres is treated. The conformations are characterized by the 

number of overlaps of the excluded volumes generated by nonadjacent unit spheres. The relation 

is plotted for vacuum (open circles) and for solvents with the low-density (SdS
3
=0.35; closed 

triangles) and high density (SdS
3
=0.70; closed circles). (b)-(d) Conformations with the highest 

existing probability in vacuum (b) and in the low-density (c) and high-density (d) solvents. 

 

 

Fig. 3. Conformational entropy normalized by the Boltzmann constant, SC/kB, plotted against the 

number of unit spheres L. The simple polymer chains with 4-20 unit spheres in vacuum (open 

circles) and in the low-density (SdS
3
=0.35; closed triangles) and high-density (SdS

3
=0.70; closed 

circles) solvents are considered. 

 

 

Fig. 4. (a) Illustration of conformational variation of a simple polymer chain with 4 unit spheres. 

The unit sphere drawn in the broken circle continuously moves from the position with θ=0˚ to that 

with θ=90˚. (b), (c) Solvation free energy (SFE) of the polymer chain as a function of θ. ∆F 

represents “SFE at θ=θ˚” minus “SFE at θ=0˚”. The calculation is made using the 

three-dimensional integral equation theory (closed circles) or the hybrid of the integral equation 

theory for spherical particles and the morphometric approach (solid curves). The solvent density 

SdS
3
 is 0.35 in (b) and 0.70 in (c). 
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