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Abstract 

In many clinical and epidemiological studies, the prior knowledge or 
belief regarding treatment effect is clearly directional, i.e., pointing to 
protective effects or to harmful effects. Although recent developments in 
Bayesian computations such as the Markov Chain Monte Carlo methods 
have enabled to implement flexible modeling and inference, they involve 
complicated techniques and require additional special softwares. In this 
article, we develop exact Bayesian methods that can be conducted by 
simple concepts and computations. We consider a simple normal-
approximated likelihood model and some class of skewed prior 
distributions. We introduce a generalized χ-distribution, which constructs 
a conjugate family for the normal likelihood model, and show that it can 
be interpreted as a generalized model of the commonly-used normal prior 
model. We also show that the generalized χ-distribution is derived as a 
posterior distribution by a gamma-prior model. In addition, we present 
simple exact computational methods for Bayesian inference based on the 
generalized χ and gamma prior models. An application to an 
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epidemiological study on the association of residential wire codes and 
magnetic fields with childhood leukemia is provided. 

1. Introduction 

Recent developments of Bayesian methodology have enabled flexible modeling 
involving nonconjugate models for various problems in clinical and epidemiologic 
researches (Carlin and Louis [5], Rothman et al. [12], Spiegelhalter et al. [15]). Most 
of these methodologies have been based on the recent advances in Bayesian 
computational techniques, such as the Markov Chain Monte Carlo (MCMC) 
(Gamerman and Lopes [6]). In many clinical and epidemiological studies, often the 
prior information is directional, i.e., the prior knowledge or belief is clearly pointing 
to protective effects or to harmful effects. In Section 2, we introduce an 
epidemiological study for investigating the association of residential wire codes and 
magnetic fields with childhood leukemia (Savitz et al. [13]) as a motivating example. 
In such cases, asymmetric priors are appropriate for expressing the prior knowledge 
adequately, and it would be sometimes essential for subjective Bayesians (Greenland 
[7, 8]). In most cases, expressing the directional information on priors cannot be 
treated within classical conjugate model families. The MCMC methods enable to 
implement them without any restrictions on prior models, however, they require 
highly technical computational knowledge to the practitioners of data analysis. 

Recently, simple alternative practical methodologies for these settings have been 
developed. Greenland [7] developed approximate Bayesian methods for risk and 
survival regression analyses under nonconjugate prior models using data augmented 
priors (Bedrick et al. [3, 4]). Also, Greenland [8] proposed the data augmented prior 
methods for 22 ×  tables and stratified analyses using a flexible log-F prior. The 
data augmented prior methods do not need special softwares, only require standard 
frequentist packages. In addition, owing to the simplicity of the computations, the 
data augmented prior methods can be a useful tool for checking simulation validity 
of the MCMC methods (Greenland [7]). 

In this article, we consider another simple approach for the same purpose. We 
adopt the classical asymptotic normal approximation for the likelihood model, and 
construct priors using a flexible parametric class of continuous distributions. We 
introduce a generalized χ-distribution, which constructs a conjugate class of the 
commonly-used normal likelihood model, and show that the exact computation of 
the distribution summaries can be simply implemented. Also, it can be interpreted as 
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a generalized class of the well-known conjugate normal prior model of the normal 
likelihood model. Furthermore, we reveal that the generalized χ-distribution is 
derived from a gamma-prior model for the normal likelihood model, and exact 
Bayesian inference by the gamma-normal model can be conducted with the simple 
exact computations. In addition to the technical and computational simplicities, the 
proposed methods have advantages that exact expressions of distribution summaries 
and graphical displays can be obtained simply and explicitly. These merits are 
especially important for prior elicitations and intuitive interpretations of the results. 

2. The Motivating Example: Residential Magnetic Fields and 
Childhood Leukemia 

Rothman et al. [12] (Chapter 18) illustrated Bayesian methods for 
epidemiological data analyses through a case-control study of residential wire codes 
and childhood leukemia. Table 1 shows the case-control data from Savitz et al. [13], 
which was the first widely published work to report an association between 
household wiring and leukemia, where the cases with the disease were linked with 
higher levels of magnetic fields. 3 cases and 5 controls had estimated average fields 
above a 3 milligause (mG) cutpoint, and 33 cases and 193 controls had those below 
3 mG. The estimated odds-ratio (OR) between the two exposure levels is 3 ( ) 5193  

( ) ,51.333 =  and the estimated variance of log OR is ( )19315133131 +++  

.569.0=  The Wald-type approximate 95% confidence limits are [ ( ) ±51.3logexp  

( ) ] .4.15,80.0569.096.1 21 =  

Table 1. Case-control data on residential magnetic fields and childhood leukemia 
(Savitz et al. [13]) 

 Case Control  

> 3mG 3 5  

≤ 3mG 33 193 51.3ratio-Odds =  

Total 36 198  

( ) 26.151.3logratio-oddslog ===y  

569.0varianceestimated2 ==σ  

95% Wald confidence limits { ( ) } 4.15,80.0569.096.126.1exp 21 =±=  
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After this study, several epidemiologic researches also investigated the 
relationships between household wiring and leukemia. However, these results are 
not consistent; some of these studies replicated the positive associations, but others 
reported non-positive results (Greenland et al. [9]). In addition, the laboratory 
evidence and the mechanistic evidence failed to support a relationship between the 
low-level magnetic fields and changes in biological function or disease status (World 
Health Organization [16]). Thus, the evidence on the association between household 
wiring and leukemia is not strong enough to be considered causal. Based on the 
current knowledge, reasonable prior distributions for OR would be those supporting 
no association ( )1OR =  or some harmful effects of household wiring ( ).1OR >  

For the log-transformed OR, a normal-normal model is widely adopted, in 
which normal priors are employed for the mean of normally distributed estimators of 
the log-transformed OR (e.g., Ashby et al. [2]). For the dataset in Table 1, Rothman 
et al. [12] also considered a conjugate normal prior, which might represent a 
skeptical prior that supports no association. However, this symmetric prior would be 
inappropriate, because the current knowledge clearly suggests one particular 
direction for the effect of interest; harmful effects are more supportive than 
preventive effects for household wiring on the disease, suggesting asymmetric 
priors. Greenland [7] also discussed the practical limitation of the normal prior and 
relevance of introducing skewness to the prior for a similar study. 

3. A Generalized χ-distribution and Bayesian Analysis 

3.1. Definition 

In the first, we define a parametric family of skewed probability distributions 
that generalize the χ-distribution: 

( )
( )

( ),0,2exp
22

1 2
1

120 >θ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ θ−θ
Γ

=|θ −
−

k
k k

kg  

where k is the shape parameter ( )...,2,1=k  and ( )zΓ  is the gamma function, 

( ) ∫
∞

−−=Γ
0

1 .dtetz tz  

The χ-distribution is a continuous distribution of the square root of 2χ -random 
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variables. Also, it becomes the half-normal distribution when .1=k  Here, we 
introduce three parameters μ, τ, and ( ),,0, ∞<λ<∞−>τ∞<μ<∞−λ  which 

change the shape, location, and scale of the distribution, and generalize it. 

Definition (A generalized χ-distribution). We define a family of probability 
distributions as a generalized χ-distribution whose density functions are expressed 
as 
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where ( )λτμ ,,,kC  is the standardizing constant, 

( ) ( ) ( )∫
∞

λ

− ν⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

τ

μ−ν−λ−ν
πτ

=λτμ .
2

exp
2

1,,, 2

2
1

2
dkC k  



HISASHI NOMA 232 

 

Figure 1. Some illustrative examples of the generalized χ-distribution (1). For all 
examples, λ is set to 0. In each panel, the combinations of μ and τ are fixed, and k is 
varied 1 to 4. 

In Figure 1, we illustrated some examples of the generalized χ-distribution. For 
all panels, λ is set to 0, and combinations of μ and τ is unvaried. Each panel 
corresponds to ,3,2,1=k  and 4, respectively. The black curve of each panel is the 

standard χ-distribution with shape parameter ( ).1,0 =τ=λ=μk  When ,1=k  

the distribution corresponds to a truncated normal distribution of ( ),, 2τμN  

truncated at λ. As ,2≥k  the distribution becomes a right-skewed unimodal 

distribution with support on ( )., ∞λ  On the whole, the location of the distribution 

shifts to right, the dispersion gets larger, and the skewness is milder when k becomes 
larger under the other parameters are fixed. This trend accords to that of the standard 
χ-distribution. Also, under a fixed k, ,λ  and τ, the shape of the distribution gets to 

sharp as μ becomes smaller (especially when .)λ<μ  The shape also becomes sharp 

as τ gets to smaller under the other parameters unvaried. 
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The term “generalized χ-distribution” has also been used in Arnold and Lin [1]. 
Although there are some similarities between the distribution derived in Arnold and 
Lin [1] and (1), we discuss here from a substantially different viewpoint, the 
following conjugate property and computational utilities in Bayesian analysis. 
Besides, in this article, we consider the right-skewed version of the generalized 
χ-distribution consistently, but a transformation to a left-skewed version is 
straightforward and the same results of the following sections are also hold. 

3.2. Conjugate property for the normal likelihood model 

Let θ be the parameter of interest and Y be its consistent and asymptotic normal 
estimator, such as the maximum likelihood estimator. Consider the normal likelihood 
model for Bayesian analysis, often constructed by the Wald-type asymptotic 

approximation of the estimator ( ),,~ 2σθθ| NY  for example, in the case-control 

example in Section 2, θ corresponds to the log-transformed OR and Y corresponds to 

the unconditional maximum likelihood estimate of it. Here, 2σ  is assumed to be 
known and set to be its valid estimate. The likelihood model is a quite simplified but 
reasonable model in many practical situations, and has been widely adopted in 
medical studies (e.g., Spiegelhalter et al. [15]). 

When we consider the generalized χ-distribution as the prior distribution for θ, 
the following result is derived. 

Proposition 1. Consider the normal likelihood model ( ),,~ 2σθNY  and the 

prior distribution of θ as the generalized χ-distribution (1). The probability density 
function of the posterior distribution is obtained as 

( ) ( ) ( ) ( ) ( ),,~2
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Note that the posterior distribution belongs to the same family of the prior 
distribution. Therefore, the generalized χ-distribution (1) is a conjugate parametric 
family of the normal likelihood model. 
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The proposition is derived naturally, because the kernel of the generalized                
χ-distribution involves the kernel of the normal likelihood function. Therefore, the 
normal kernel part of the posterior distribution becomes the same as the well-known 
normal-normal model. As a special case, when 1=k  and ,−∞=λ  the prior 

distribution corresponds to a non-truncated normal distribution ( )., 2τμN  Thus, the 

generalized χ-prior model includes the commonly used normal-prior model. 

3.3. Computations 

3.3.1. Standardizing constant 

The integration ( )λτμ ,,,kC  can be solved by a simple algorithm. First, a 

tractable expression for ( )λτμ ,,,kC  can be obtained by substituting ( ) ,τμ−−=η v  

( ) { ( )} ( )∫
∞ − ηηφμ−λ−ητ=λτμ
a

k dkC ,,,, 1  

where ( ) τμ−λ−=a  and ( )zφ  the density function of ( ).1,0N  Thus, the integration 

can be regarded as an expectation of the integrated function by the truncated 
standard normal distribution (truncated on )).,[ ∞a  This yields the following 

formula by the binomial expansion (Jawitz [10]): 
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∞

=ηηφη=
a

r
r rdR ....,2,1,0,  (3) 

Since rR  is the rth moment of the truncated standard normal distribution, =0R  

( )aΦ−1  and ( ),1 aR φ=  where ( )zΦ  is the cumulative distribution function of 

( ).1,0N  Also, using integration by parts, a recursive rule of rR  is obtained as: 

 ( ) ( ) .1 2
1

−
− −+φ= r

r
r RraaR  (4) 

Then, for any k of a positive integer, 110 ...,,, −kRRR  can be computed using the 

recursive expression (4). Using the calculated ( )λτμ ,,,, kCsRr  can be directly 

calculated via (2). 
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3.3.2. Moments 

The sth moment of the generalized χ-distribution ( )...,2,1=s  is expressed as 
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As the computation in Section 3.3.1, this form can be arranged by the binomial 
expansion: 

[ ] ( ) ( )∑
−

=
+

−−λ−⎟
⎠
⎞

⎜
⎝
⎛ −

λτμ
=θ

1

0

1 ,1
,,,

1
k

u
us

uks J
u

k
kCE  

where 

( )∫
∞

λ

+
+ θ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

τ

μ−θ−θ
πτ

= .
2

exp
2

1
2

2

2
dJ us

us  

Using integration by parts, usJ +  is expressed as a function of rR  of (3), 
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Since ( )...,2,1=rRr  can be obtained by the recursive rule (4), the posterior 

moment is computed via these formulae. 

3.3.3. Mode 

The mode can be obtained as the zero-point of the derivative of log-transformed 
the probability density function or λ if it is smaller than the edge point when .1=k  
This is analytically obtained as 

{ ( ) ( )} .142
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3.3.4. Cumulative distribution function and quantiles 

The cumulative distribution function is expressed as 
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The integration is identical to that of ( )λτμ ,,,kC  except for the region to be 

integrated. Thus, the method presented in Section 3.3.1 can be applied to the 
computation with small modifications. The quantiles are also explored by using the 
cumulative probabilities of some candidates. In Bayesian analysis, interval estimates 
for θ can be obtained using this result. 

3.4. Derivation from the gamma-prior model 

As another point of view, the generalized χ-distribution is derived as a posterior 
distribution of the normal likelihood model with gamma-prior distribution. Consider 
a three-parameter gamma distribution for the prior distribution of θ, whose density 
function is given by 

 ( ) ( ) ( ) ( ) ( ),,,, 1 ω≥θω−θ
κΓ

ξ=ξωκ|θ ω−θξ−−κ
κ

eh  (5) 

where κ is the shape parameter, that is assumed to be a positive integer as the 
χ-distribution (1). Also, ω is the location parameter and ξ is the scale parameter 
( ).0, >ξ∞<ω<∞−  The gamma distribution is a well-investigated skewed 

continuous probability distribution, which can express the direction prior 
information flexibly. For the details of its properties, see for example, Johnson et al. 
[11]. 

Using the Bayes’ theorem, the posterior density function is given by 
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Note the functional form of the posterior density function is consistent to the 
generalized χ-distribution (1), i.e., the following results are derived. 

Proposition 2. Consider the normal likelihood model ( ),,~ 2σθNY  and the 

prior distribution of θ as the gamma distribution (5). The posterior distribution is 

the generalized χ-distribution, whose parameters are ,κ=k  ,2ξσ−=μ y  ,σ=τ  

and .ω=λ  

The result implies that an exact expression of the posterior distribution for the 
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gamma-normal model can be obtained via the simple computations presented in 
Section 3.3. Generalization to the left-skewed gamma-distribution is also 
straightforward. In practical uses, a gamma distribution can express various shapes 
flexibly, and has an advantage for simplicity to be elicited as a prior because the 
three parameters κ, ω, and ξ control its skewness, location, and scale, independently. 
However, the restriction of κ to be a positive integer is sometimes inflexible. As 
noted above, skewness of a gamma distribution is completely determined by the 
shape parameter κ. Within the restriction, the representability of the gamma 
distribution is somewhat limited. However, if the limitation is not a serious matter in 
practice, the gamma prior model can also be a useful tool for simple exact Bayesian 
analysis. In addition, the posterior distribution of the gamma-normal model can be 
easily applied to another normal likelihood model with simple computations, 
because the posterior distribution is a conjugate model for the normal likelihood. 

4. Applications 

We revisit the case-control study in Section 2 (Savitz et al. [13]). As described 
in Section 2, we adopt a prior distribution for the OR, that express asymmetric prior 
belief with mode of 1 and ( ) ( ) .2:11ORPr:1ORPr =><  We here consider three-

variations for the prior of the 95% probability interval for comparative purposes: (a) 
[0.81, 1.93], (b) [0.69, 3.25], and (c) [0.62, 4.55], here we denote a 95% probability 
interval as an interval between 2.5th and 97.5th percentiles of a probability 
distribution. The prior (a) is the same with the adopted prior under a similar situation 
of Greenland [7]. For each setting, we consider three priors for the log-transformed 
OR by the generalized χ-distribution, the gamma distribution, and the normal 
distribution, respectively. 

(χ-a) A generalized χ-distribution with ,2=k  ,69.0−=μ  ,43.0=τ  and 

.27.0−=λ  

(Γ-a) A gamma distribution with ,3=κ  ,25.0−=ω  and .95.7=ξ  

(N-a) A normal distribution with mean 0 and variance .22.0 2  

(χ-b) A generalized χ-distribution with ,2=k  ,27.1−=μ  ,78.0=τ  and 

.48.0−=λ  

(Γ-b) A gamma distribution with ,3=κ  ,45.0−=ω  and .43.4=ξ  



HISASHI NOMA 238 

(N-b) A normal distribution with mean 0 and variance .40.0 2  

(χ-c) A generalized χ-distribution with ,2=k  ,62.1−=μ  ,00.1=τ  and 

.62.0−=λ  

(Γ-c) A gamma distribution with ,3=κ  ,59.0−=ω  and .41.3=ξ  

(N-c) A normal distribution with mean 0 and variance .52.0 2  

Table 2. Summary for the prior distributions of the nine settings for the Bayesian 
analyses of the leukemia study† 

      Percentiles 

 Mode Mean SD Skewness Pr(OR >1) 2.5th 97.5th 

(χ-a) 1.00 1.13 0.23 0.84 0.66 0.81 1.93 

(Γ-a) 1.00 1.13 0.22 1.16 0.68 0.84 1.93 

(N-a) 1.00 1.00 0.13 0.00 0.50 0.65 1.54 

(χ-b) 1.00 1.25 0.41 0.84 0.66 0.69 3.25 

(Γ-b) 1.00 1.25 0.39 1.16 0.68 0.73 3.25 

(N-b) 1.00 1.00 0.40 0.00 0.50 0.46 2.17 

(χ-c) 1.00 1.33 0.53 0.84 0.66 0.62 4.55 

(Γ-c) 1.00 1.34 0.51 1.16 0.68 0.67 4.64 

(N-c) 1.00 1.00 0.51 0.00 0.50 0.37 2.71 

†The mode, mean, and percentiles are transformed to OR scale. The SD and skewness are 
presented in log OR scale. 

Note the means of the normal priors are set to 0, and the variances are set to 
those have 95% probability intervals with same widths to the settings (a), (b), and 
(c). Table 2 presents the summaries of the above prior distributions. The generalized 
χ-priors represent the considered features precisely. Although the gamma priors 
have small differences from the settings, they also give roughly good approximations 
of the prior beliefs. Also, Figure 2 presents graphical displays for demonstrating 
relative heights of the prior (dashed lines), likelihood (dot-dashed lines), and 
posterior density functions (solid lines) for the nine examples. The height of 
likelihood function is scaled to have area 1 under the curve. 
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Figure 2. Graphical displays of relative heights for prior density (dashed lines), 
likelihood (dot-dashed lines), and posterior density functions (solid lines) for the 
nine examples. The height of likelihood function is scaled to have area 1 under the 
curve. 

Table 3 provides summaries of the posterior distributions. In addition, as a 
current standard method of Bayesian analyses, we considered the logistic regression 
model: 

 ( )( ) ,1Prlogit 10 xxU β+β=|=  (6) 

where U denotes the response binary variable and x, exposure indicator. Since the 
binomial likelihood model (6) does not involve the asymptotic approximation, this 
model is exact for the case-control sampling model. We compared the results of the 
proposed methods with those of the binomial likelihood model assuming the same 
priors, for evaluating the operational characteristics of the two methods. Therefore, 
we adopted the nine priors in Table 2 for ,1β  which is interpreted as the log-
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transformed OR, and a non-informative proper prior ( )1010,0N  for .0β  Based on 

500,000 draws after burn-in via the Metropolis-Hasting algorithm (Gamerman and 
Lopes [6]), approximate summaries of posterior distributions for 1β  are presented in 

Table 3. 

Table 3. Posterior summaries of the nine prior models for the leukemia case-control 
study† 

      Percentiles 

 Mode Mean SD Skewness Pr(OR > 1) 2.5th 97.5th 

  Exact posterior summaries by the normal likelihood model 

(χ-a) 1.15 1.25 0.25 0.59 0.80 0.84 2.20 

(Γ-a) 1.09 1.25 0.25 0.94 0.80 0.86 2.27 

(N-a) 1.11 1.11 0.21 0.00 0.68 0.73 1.68 

(χ-b) 1.46 1.60 0.42 0.41 0.86 0.77 3.93 

(Γ-b) 1.33 1.56 0.42 0.65 0.86 0.80 4.01 

(N-b) 1.31 1.31 0.35 0.00 0.78 0.66 2.60 

(χ-c) 1.70 1.83 0.50 0.31 0.89 0.75 5.19 

(Γ-c) 1.54 1.78 0.50 0.51 0.88 0.77 5.25 

(N-c) 1.50 1.50 0.43 0.00 0.83 0.65 3.46 

  Posterior summaries under the logistic model (6) computed by MCMC 

(χ-a) 1.17 1.23 0.25 0.63 0.78 0.83 2.18 

(Γ-a) 1.07 1.23 0.25 0.98 0.78 0.86 2.23 

(N-a) 1.09 1.09 0.22 0.01 0.65 0.71 1.66 

(χ-b) 1.39 1.55 0.43 0.43 0.84 0.75 3.90 

(Γ-b) 1.34 1.51 0.42 0.68 0.83 0.78 3.94 

(N-b) 1.23 1.26 0.37 –0.03 0.74 0.61 2.57 

(χ-c) 1.60 1.76 0.51 0.32 0.86 0.71 5.12 

(Γ-c) 1.48 1.72 0.51 0.53 0.86 0.75 5.19 

(N-c) 1.43 1.45 0.45 –0.04 0.79 0.58 3.41 

†The mode, mean, and percentiles are transformed to OR scale. The SD and skewness are 
presented in log OR scale. 
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The obtained posterior distributions for the generalized χ-prior and gamma-
prior models are clearly indicate directional briefs after observed the result. In 
comparison, skewness of the gamma prior models are greater than those of the 
generalized χ-prior models, because the approximation errors of the gamma-priors 
caused by the restriction of κ. Also, due to the same reason, widths of the 95% 
probability intervals of the gamma-priors are slightly greater. Besides, the posterior 
distributions of the normal prior models have narrower credible intervals, regardless 
of the same widths of the prior probability intervals. Furthermore, the 95% credible 
interval of the generalized χ-prior and gamma-prior models are wider than those of 
the priors, and the posterior variances are larger than those of the priors for settings 
(b) and (c). This result cannot occur for the normal-prior model. Also, the prior 
precisions are properly reflected in the posterior distributions, compared with the        
(a) ~ (c) prior models. 

Lastly, the exact posterior summaries and those of the logistic model (b) are 
nearly accorded, although a bit differences are remained. There is a consistent trend 
for the differences of the locations of modes, means, and 95% credible intervals. 
Also, the skewness of the proposed methods is a bit milder than that of the latter 
results. However, the magnitudes are quite small. As a whole, the differences of the 
two results are so small that cannot influence the conclusions seriously. 

5. Discussion 

In this article, we provide an exact Bayesian analysis using a generalized 
χ-priors and gamma priors for the normal likelihood models, which can be easily 
implemented using standard softwares. The two families of parametric probability 
distributions can represent a broad class of continuous probability distributions with 
skewness. Our method is to allow the adaptation or elicitation of flexible asymmetric 
prior distributions with ease of computation. As such, it is especially useful for the 
common situations where one would like to elicit skewed priors, such as the example 
in Section 2. 

Although the normal likelihood model is founded on the simplified assumption 

for 2σ  to be known, and asymptotic normality of Y, they would not raise serious 
problems for approximations, owing to the results of the comparisons with the 
MCMC results presented in Section 4. The differences would be caused by two 
reasons: the numerical error of the Monte Carlo integrations and the differences of 
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the likelihood models. Since the number of samples of the MCMC is sufficiently 
large, magnitudes of the former numerical errors cannot be so large. Therefore, most 
of the differences would be come from the latter reason, but the magnitudes of the 
differences are quite small. The differences would not also influence the conclusions 
seriously under such practical situations. 
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