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A REDUCTION OF THE TARGET
OF THE JOHNSON HOMOMORPHISMS
OF THE AUTOMORPHISM GROUP OF A FREE GROUP

TAKAO SATOH

ABSTRACT. Let Fj, be a free group of rank n and FTILV the quotient group of
F,, by a subgroup [I'n(3),I'n(3)][[I'n(2),T'n(2)],'n(2)], where I'y (k) denotes
the k-th subgroup of the lower central series of the free group Fj,. In this
paper, we determine the group structure of the graded quotients of the lower
central series of the group Ffl\’ by using a generalized Chen’s integration in
free groups. Then we apply it to the study of the Johnson homomorphisms
of the automorphism group of Fj. In particular, under taking a reduction
of the target of the Johnson homomorphism induced from a quotient map
Fn, — FTILV, we see that there appear only two irreducible components, the
Morita obstruction SkHQ and the Schur-Weyl module of type H([g—2,12]’ in
the cokernel of the rational Johnson homomorphism 7"::‘ Q= 7, ®idq for k > 5
and n > k + 2.

1. INTRODUCTION

Let F,, be a free group of rank n > 2, and let Aut F, be the automorphism group
of F,. Let p: Aut F,, — Aut H denote the natural homomorphism induced from
the abelianization F,, — H of F;,. The kernel of p is called the TA-automorphism
group of F),, denoted by IA,. The group IA, reflects much of the richness and
complexity of the structure of Aut F,, and plays important roles on various studies
of Aut F,.

Although the study of the IA-automorphism group has a long history, the com-
binatorial group structure of IA,, is still quite complicated. In 1935, Magnus [14]
obtained finitely many generators of IA,,. Nielsen [2I] showed that IAs coincides
with the inner automorphism group of Fy; hence, it is isomorphic to F5. In general,
however, any presentation for IA,, is not known. Krsti¢ and McCool [13] showed
that A3 is not finitely presentable. For n > 4, it is also not known whether TA,, is
finitely presentable or not.

The purpose of our research is to clarify the group structure of IA,,. In particular,
we are interested in determining the graded quotients of the Johnson filtration of
Aut F,,. The Johnson filtration is a descending central series

1A, = A, (1) DA, (2) D
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consisting of normal subgroups of Aut F},. Then a homomorphism
Trt An(k) > H @z L (kE+1)

is defined by 71(0) = (x — 27 129) for each k > 1. The map 7} induces a homo-
morphism

T grk(.An) — H* ®z L(k+1)

from the k-th graded quotient of the Johnson filtration. Both 7 and 73 are called
the k-th Johnson homomorphisms of the automorphism group of a free group. In
particular, 7 is a GL(n, Z)-equivariant injective homomorphism. (For the details,
see Subsection 25]) The study of the Johnson homomorphisms was originally
begun in 1980 by D. Johnson [10] who determined the abelianization of the Torelli
subgroup of a mapping class group of a surface in [II]. Recently, the study of
the Johnson filtration and the Johnson homomorphisms of Aut F}, achieved good
progress through the work of many authors, for example, [7], [12], [18], [19], [20],
[24] and [26].

Through the images of the Johnson homomorphisms, we can study IA,, using
infinitely many pieces of a free abelian group of finite rank. They are regarded
as one-by-one approximations of IA,,, and to clarify the structure of them plays
an important role in various studies of IA,. In this paper, we are interested in
determining the GL(n, Z)-module structure of the cokernel of the rational Johnson
homomorphisms 7,,q = 7% ® idg. Now, for 1 < k < 3, the cokernel of 73 q is
completely determined. (See [1], [24] and [26] for £ = 1, 2 and 3, respectively.)
Recently, Morita [19], 20] showed that for each k > 2, there appears the symmet-
ric tensor product SkHQ of Hg := Hz ® Q in the irreducible decomposition of
Coker(7x,q) using trace maps. The modules S¥Hq are the first obstructions for
the surjectivity of the Johnson homomorphisms, discovered by Morita. We call
them the Morita obstructions. In general, however, it is quite a hard problem to
determine Coker(7,q). Even its Q-dimension is not calculated for £ > 4. One
reason for the difficulty is that we cannot study the image of the Johnson homo-
morphisms directly since there is little information for generators of the graded
quotients gr¥(A,,).

To avoid this difficulty, we consider the lower central series A/, (1) = IA,,, A} (2),

. of TA,,. Since the Johnson filtration is central, A, (k) C Ay (k) for k > 1. Tt
was conjectured that A/, (k) = A, (k) for each k > 1 by Andreadakis, who showed
that A4(k) = As(k) for each £ > 1 and A5(3) = A3(3) in [I]. Now, we have
Al (2) = An(2) due to Cohen-Pakianathan [3, 4], Farb [5] and Kawazumi [12]. (See
@) below.) Furthermore, A/, (3) has at most a finite index in A, (3) due to Pettet
[24]. Tt is, however, also difficult to determine whether A/, (k) coincides with A, (k)
or not.

For each k > 1, set gr®(A,) := Al (k)/ A, (k+1). We can also define the Johnson
homomorphisms

o grf(AL) = H* @z Lo (k+1)

by an argument similar to that in the definition of 7. In general, we can con-
sider Coker(7y,q) as a GL(n, Z)-equivariant submodule in Coker(7;, o). Namely, by
studying the structure of Coker(T,’c)Q)7 we obtain an upper bound on Coker(7x.q).
Furthermore the most important thing is that since IA,, is finitely generated by
the Magnus generators, each gr®(A’) is also finitely generated by commutators
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of weight k£ among them. Therefore, it is more accessible to study the coker-
nel of 7 than that of 74. Now, it is known that Coker(r; q) = Coker(7y,q) for
1 <k < 3. In our previous paper [28], we determined the GL(n,Z)-module struc-
ture of Coker(7; o) for n > 6. However, to determine the structure of Coker(7; q)
is still complicated in general.

One of the main purposes of the paper is to consider a reduction of the target
of the Johnson homomorphism 7;,. More precisely, let FN be the quotient group
of F, by the subgroup [[',(3), T, (3)][[['(2),Tn(2)],T(2)]. If we let TV (k) be the
lower central series of FV and set £ (k) := TN (k)/TN (k + 1), we have a natural
map

H* ®z Ly(k+1) = H* @z LY (k + 1).
In this paper, we consider the composition
TAN cgrt(AL) = H* @z LY (k +1)

of 7;, and the natural projection above. The map TAN is a GL(n, Z)-equivariant
homomorphism. Then we show

Theorem 1 (= Theorem 53). For k> 5 and n > k+ 2,

Coker((T,:;’N)Q) = SkHQ o) ngfuﬂ,

where H([;];*ZIQ] denotes the Schur-Weyl module of Hg corresponding to the parti-
tion [k —2,1%] of k.

This shows that Hg —2,17] also appears in the irreducible decomposition of
Coker(T,;Q) for n > k + 2. This work is an analogue and a certain extension
of our previous work [27] in which we were concerned with the Johnson homomor-
phisms of the automorphism group of a free metabelian group. In particular, we
showed that there appears only the Morita obstruction in the cokernel of it.

The reason why we consider the quotient group F is that the structure of the
graded quotients LY (k) of the lower central series of FVV is easier to handle than
that of the other quotient group of F,,, for example F,, /[I",,(3), T, (3)], except for a
free metabelian group. In general, although to give an irreducible decomposition of
Coker(T,Q’Q) is difficult, considering such a reduction of the target of the Johnson
homomorphism 7}, we can find a new obstruction for the surjectivity of T,’€7Q.

Before showing Theorem [II we have to determine the group structure of each
LN (k) for k > 6. The other purpose of the paper is to show

Theorem 2 (= Theorem E1] and Corollary B)). For n > 6, each of LY (k) is a
free abelian group with

k;+n—2>

rankz (LY (k)) = (k — 1)( L + ln(n —1)(k - 3)(

n+k—4
5 .

k—2

In general, it is easy to show that each LY (k) is a finitely generated abelian
group. Hence the difficult part is to show that £Y (k) is free and to determine its
rank. To do this, we introduce a certain integration

L(fowsias, .. an) = / F(t)dt
lw(alauwan)
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in Section[3l This is a generalization of Chen’s integration in free groups introduced
by K. T. Chen who determined the group structure of the graded quotients of the
lower central series of a free metabelian group in [2].

This paper consists of six sections. In Section 2] we recall the associated Lie
algebra of a group, the IA-automorphism group and the Johnson homomorphisms.
In Section Bl we introduce a generalization of Chen’s integration in free groups,
and study some properties. In Section [ we determine the group structure of the
graded quotient £ (k) of the lower central series of FV. Finally, in Section [5 we
determine the cokernel of (74 y)q-

2. PRELIMINARIES

In this section, we recall the definition and some properties of the associated Lie
algebra of a group G, the TA-automorphism group of a free group and the Johnson
homomorphisms of Aut Fj,.

2.1. Notation and conventions. Throughout the paper, we use the following
notation and conventions. Let G be a group and N a normal subgroup of G.

e The abelianization of G is denoted by G?P.

e The group Aut G of G acts on G from the right. For any 0 € AutG and
x € G, the action of o on x is denoted by x°.

e For an element g € G, we also denote the coset class of g by g € G/N if
there is no confusion.

e For any Z-module M, we denote by M ®z Q the symbol obtained by
attaching a subscript Q to M, such as Mq or M Q. Similarly, for any Z-
linear map f : A — B, the induced Q-linear map Aq — Bq is denoted by
fq or fQ.

e For each k > 1, and any partition A of k, we denote by H* the Schur-
Weyl module of H corresponding to the partition A of k. For example, the
modules H* and H") are the symmetric product S¥H and the exterior
product A¥H, respectively. (For details, see [6].)

e For elements = and y of G, the commutator bracket [z,y] of 2 and y is
defined to be [x,y] := zyz~ty~ L.

2.2. Associated Lie algebra of a group. Let G be a group, and let ' (k) be
the k-th term of the lower central series of G defined by

I'¢(1) =G, Tgk):=[Talk-1),G], k>2.
For each k > 1, set Lg(k) :=Tg(k)/T'¢(k+ 1) and

Lo =P Lak).
E>1

Then L has a graded Lie algebra structure induced from the commutator bracket
on G. We call L5 the associated Lie algebra of a group G. Clearly, the corre-
spondence from G to Lg is a covariant functor from the category of groups to
that of graded Lie algebras. In particular, if f : G; — G5 is a surjective group
homomorphism, the induced homomorphism f, : L5, = Lg, is also surjective.

For any ¢1,...,9r € G, a commutator of weight & among the components
g1, .., gk of the type

[[ o [[91’92}793]7 o ']agk]
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with all of its brackets to the left of all the elements occurring is called a simple
k-fold commutator, denoted by [g1,9ga,-..,gk]. In general, if G is generated by
J1s---,0n, then for each k > 1, Ls(k) is generated by (the coset classes of) the
simple k-fold commutators

[gi15gi27"')gik]’ ije{la'”an}'

For details, see [15] for example.

Next we consider the case where G is a free group F,, on x1,...,2z,. For sim-
plicity, we write I',,(k), L, (k) and L, for T'¢(k), L (k) and Lg, respectively. The
associated Lie algebra £, is called the free Lie algebra generated by H. (See [25] for
basic materials concerning the free Lie algebra.) It is classically well known due to
Witt [29] that for each k > 1, the graded quotient £, (k) is a GL(n, Z)-equivariant
free abelian group of rank

1) rak) 1= 7 3 pldjnf,
dlk
where p is the Mobius function.

Now, we denote by FM the quotient group of F), by a subgroup [[',(2), ', (2)].
The group FM is called a free metabelian group of rank n. For simplicity, we write
DM (k), LM (k) and L) for T par (k), Lpam (k) and L g, respectively. The associated
Lie algebra £M is called the free metabelian algebra generated by H, or the Chen
Lie algebra. By a remarkable work by Chen [2], it is known that for each k > 1 the
graded quotient LM (k) is a GL(n, Z)-equivariant free abelian group of rank

2 = e (")

with basis
{{@iy, Tig, -5 i) |61 > dp <ig < - < g}
Let FV be the quotient group of F}, by the subgroup [I',,(3), T, (3)][[T'(2), [ (2)],
[',(2)]. For simplicity, we write T (k), £ (k) and LY for T'pn (k), Lp~ (k) and
L, respectively. In Section ] we determine the rank of Ly (kqj for each k > 1.

2.3. Hall basis. Here, we recall the Hall basis of £, (k) for each & > 1. In [§],
P. Hall introduced basic commutators of F;, and showed that those of weight k
form a basis of £, (k). Now, it is called the Hall basis of £, (k). (For details for the
basic commutators, see [9] and [25] for example.) In this paper, we consider a fixed
sequence of basic commutators of F), beginning with

T < Ty < - < By < [wo, 1] < [23,21] < [X3,20) < -0 < [T, Tp1] <y

where the ordering among [z;, ;] is defined by the lexicographic ordering.

Let ¢;1 < -+ < ¢1,m, be the basic commutators of weight [. If w is a product of
basic commutators of weight > [, and if we apply the Hall’s correcting process to
w, then for each k > [, w is rewritten as a form

_ € €l,m; ekl €k,my 7
W=C1 " Crmy " Ck1 Ckomy, W
where w’ is a product of commutators [u1, ug, ..., u,] in 'y (k+1) and each element

u; of the component is in I',(1). (For details for the correcting process, see [9].)
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In particular, from the above we see that for each k > 1, any element w € F,, is
uniquely written as a form

— 1,1 €1,n €k,1 €k,my
w:CLl "'cl,n ...Ck:,l '.'ck,Mk (mOd Fn(k;“rl))

for some e; ,,, € Z. We call it the mod-T',,(k + 1) normal form of w.
For any k > 2, the basic commutators which do not belong to [T',(2),T',(2)] are
[xl-l,xh,...,xik] for i1 > 9 < i3 < - < 1.

2.4. IA-automorphism group. Let p : Aut F,, — Aut H be the natural homo-
morphism induced from the abelianization F,, — H of F},. In this paper we identify
Aut H with the general linear group GL(n,Z) by fixing the basis of H as a free
abelian group induced from the basis z1, ..., z, of F,,. The kernel TA,, of p is called
the TA-automorphism group of F,,. Magnus [14] showed that for any n > 3, TA,, is
finitely generated by automorphisms

xr; J)j_ll‘i.l?j,
Ki' : i
Ty Xy (t#1)

for distinct ¢, j € {1,2,...,n} and

K xr; xixjxlxj_lxl_l,
ijl ¢ .
I Ty Xy (t#1)

for distinet ¢, j, 1 € {1,2,...,n} such that j > [.

Recently, Cohen-Pakianathan [3, 4], Farb [5] and Kawazumi [12] independently
showed that the abelianization of IA,, is a free abelian group, and the Magnus
generators above induce a basis of it. More precisely, they showed

(3) A" = H* @4 A’H
as a GL(n, Z)-module where H* := Homgz(H, Z) denotes the dual group of H.

2.5. Johnson homomorphisms. In this subsection, we recall the Johnson homo-
morphisms of the automorphism group of a free group. To begin with, we recall a
descending filtration of Aut F;, called the Johnson filtration. For k£ > 0, the action
of Aut F, on each nilpotent quotient F,, /T, (k+ 1) of F,, induces a homomorphism

Aut F, — Aut(F, /T (k + 1)).

We denote the kernel of it by A, (k). Then the groups A, (k) define a descending
central filtration

AwF, = A,(0) D A, (1) DA (2) D -

of Aut F,,, with A, (1) =TIA,,. (See [1] for details.) It is called the Johnson filtration
of Aut F},. For each k > 1, the group Aut F,, acts on A, (k) by conjugation, and
it naturally induces an action of GL(n,Z) on gr®(A,) := A, (k)/A.(k +1). The
graded sum gr(A,) := @, gr¥(A,) has a graded Lie algebra structure induced
from the commutator bracket on IA,,.

In order to study the GL(n, Z)-module structure of gr*(A,,) for each k > 1, we
consider the Johnson homomorphisms of Aut F;, as follows. For each k > 1, define
a homomorphism 7, : A, (k) — Homz(H, L,,(k + 1)) by

o (r—a'2%), zecH.
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Then the kernel of 7 is just A, (k+1). Hence it induces an injective homomorphism
7 gt¥(Ap) = Homg (H, L, (k+ 1)) = H* @z L, (k+ 1).

The homomorphisms 7, and 7, are called the k-th Johnson homomorphisms of
Aut F,,. Tt is easily seen that each 73 is a GL(n, Z)-equivariant injective homomor-
phism. For the Magnus generators of [A,,, their images by 71 are given by

(4) T (Kij) = o] @ [x4, 5], T1(Kij) = 2] @ [25,21].

Furthermore, we remark that 7 (= 71) is just the abelianization of IA,. (See
3, @, 5, 12].)

Let Der (£,,) be the graded Lie algebra of derivations of £,,. The degree k part
of Der (£,,) is considered as H*®zL,,(k + 1), and we identify them in this paper.
Then the sum of the Johnson homomorphisms

T = @Tk :gr(Ay) — Der (L)

k>1

is a graded Lie algebra homomorphism. In fact, if we denote by 9¢ the element of
Der (£,,) corresponding to an element £ € H*®zL,,, and write the action of ¢ on
X € L,, as X%, then we have

or(o’) Oty (o)

(o, 0']) = (o) —7(0")

for any o € A, (k) and o’ € A, (l). This formula is very useful for calculating the
image of the Johnson homomorphism inductively.

For 1 < k < 4, the irreducible decomposition of the cokernel of the rational
Johnson homomorphism 74 q and the rank of gr*(A,,) are obtained as follows:

k | Coker(x,qQ) rankz (gr*(A,))

110 n?(n —1)/2 Andreadakis [T]
2 | S?Hq n(n+1)(2n® — 2n — 3)/6 | Pettet [24]

3| S3Hq ® A®Hq | n(3n* —7n? — 8)/12 Satoh [26]

In general, however, to determine the structure of the image and the cokernel of
Tk is quite difficult.

Let Al (k) be the lower central series of TA, with A/ (1) = TA,. Since the
Johnson filtration is central, A, (k) C A,(k) for each k > 1. Set gr¥(A!) :=
Al (k)AL (k + 1) and gr(AL) = @,~, gr"(A,). Then gr(A,) is also a graded
Lie algebra induced from the commutator bracket on IA,,, and GL(n, Z) naturally
acts on each of gr®(A!). Moreover, since IA,, is finitely generated by the Magnus
generators K;; and K;;;, each gr¥(A/)) is also finitely generated by the simple k-fold
commutators among the components K;; and Kjj;.

A restriction of 7y to A, (k) induces a GL(n, Z)-equivariant homomorphism

gt (AL) = H* @z Ln(k+1),

and the sum

7= 697','C :gr(A;,) — Der (L,,)

k>1
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is also a graded Lie algebra homomorphism. Furthermore, we have
’TIQJFI([U, O'/D = 7—]/6(0)67'1(0/) _ TlI(JI)BTk(G)

for any o € A, (k) and o’ € A/ (). Using this formula recursively, we can easily
compute 7,(c0) for any o € A} (k) from ). We should remark that, in general, it
is not known whether 7, is injective or not. In this paper, we study the cokernel of
the rational Johnson homomorphism 7; o = 74 ® idq.

3. A GENERALIZATION OF CHEN’S INTEGRATION IN FREE GROUPS

In this section, we introduce a generalization of Chen’s integration in free groups
which is used to determine the structure of the graded quotients £Y (k) in Section
ik

Given the free group F, generated by z1,...,x,, denote by E the vector space
over the real field R with basis z1, ..., z, and [z;,z;] for 1 < j < i <n. A Euclidean
metric is introduced into E by taking x4, ..., z, and [z;, ;] as an orthonormal basis.
Then E is a Euclidean n(n+1)/2-space. The orthonormal basis induces a Cartesian
coordinate system in E. We call the coordinates corresponding to x; and [x;, x;]
the t;-coordinates and the t; j-coordinates, respectively.

Let €, be the set of words among the letters x1,...,x,. A quotient set of Q,, by
an equivalence relation induced from afxz; © = 1 for e = £1 forms the free group F,,.

For any word w = xj'2{? ---x{" with e; = £1, and any integers ay,...,a, € Z,
we define points Ps; € E for 0 < s < m by
Po = 07
P,=P,_1+ esti, + Z {(aj + Z el)estj,is}
i5<j 1<i<s—1
=g

for 1 < s < m. Let PsP;11 be the path from P; to P,;; defined by a seg-
ment, and let l,(a1,...,a,) be the polygonal path whose successive vertices are
Py, Py,...,P,.

Lemma 3.1. As in the notation above, the vertex P,, depends only on the integers
ai,...,a, and the equivalence class of w in §2y,.

— €,
Proof. For w = axfx; °b, where a,b € Q,, and e = +1, set a = x> - -z, . If
1 ’ ’ n ’ 11 Vig [
e = 1, we have

Pm’+1:Pm’ —|—tz—|—2{(a]—|— Z el)tm},

i<j 1<i<m/’
=j
Pm’+2 = Pm’+1 - tz —+ Z { (a] + Z 61) . (—1)tj’l} = Pm/,
1<y 1<I<m/’
=j

P,=P, 5, s>m'+3.
By an argument similar to the above, we obtain the required result for e = —1. [

We denote P, above by P (ay,...,ay) for w € F,. In particular, Py (a1, ..., a,)

= 0. It is clear that if w = z]"zy? -z in Hy(F,,Z) then the ¢;-coordinate of
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Py(ay,...,an) is w; for 1 < i < n. If w € T',(2), Py(al,...,a,) also does not
depend on ag,...,a,. More precisely, we have

Lemma 3.2. As in the notation above, if w € T',(2) and

w = [Ig’il]wQ’l N [In7xn_1]’wn,n—1 c Ln(2),
then the t; ;j-coordinate of Py (a1, ..., an) is w; ;.
Proof. Set w = z{'x;?---xi™, and take points F,..., P, as above. For each

1 < s <'m, since the ?; j-coordinate increase

0ji, (ai + E er)es
1<r<s—1
i

as a point moves from P,_; to P, where J denotes the Kronecker delta, the ¢; ;-
coordinate of P, is

Z §j’is(aies+ Z eres)

1<s<m 1<r<s-—1
=1
= a; E 5]'77;565 —+ E 5]'71‘5 E €r€s.
1<s<m 1<s<m 1§r§s—1

=1

The first term is equal to zero since w € I',(2). By considering rewriting w as
the mod-T',,(3) normal form using the correcting process, we verify that the second
term is nothing but w; ;. This completes the proof of Lemma [3.21 O

Corollary 3.1. Ifw € T',(3), Py(a1,...,a,) =0.
For any P € E, the translation function on E defined by
t—t+P
is denoted by Tp. By the definition of 1,,(aq,...,a,), we see

Lemma 3.3. For u,v € Qy, a1,...,an, € Z and u = z{'x5? - - - a2l in H{(F,,Z),

Zuv(al, ey an) = lu(al, ey an) . TPu(al,..‘,an)(lv(al + Uy, ..., 0n + un))

Next, for any w € Q,, a1,...,a, € Z and a continuous real-valued function
f: E — R, we define integrations by

ILi(f,w;ai,...,a,) :—/( )f(t)dtj.
lw(al,...,an

Observing the proof of Lemma [B.I] we see that the integration I;(f, w;a1,...,an)
depends only on f, ai,...,a, and the equivalence class of w in €,,. Hence, from
now on, we always consider I;(f,w;a1,...,a,) for w € F,. We remark that if
f : E = R does not depend on the coordinates ¢; ; for any 1 < j < i < n, then the
integration I;(f,w;ai,...,a,) coincides with Chen’s original integration I;(f,w)
for each 1 < j < n, where f is the restriction of f to the subspace E’ of E generated
by the basis z1,...,z,. In the following, if there is no confusion, we always write
f for f for simplicity.
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Here we recall a few properties of Chen’s integration. For any continuous real-
valued function f,¢g: E — R, and u,v,w € F,, we have

I;(1,w) =w; where w=a{"---zy" € Hi(F,,Z),
Li(af + Bg,w) = od;(f,w) + BL;(g,w), o, f€R,
Li(f,w) = Ii(f,u) + Ii(f o T, v),
Li(fu™) = =Li(f o Thory ).
Here T, denotes the translation function on E’ defined by
=t turty + ot ugty, uw=a{t - alr € Hy(F,,Z).
(See [2] for basic materials concerning Chen’s integration.)

Now, we consider some properties of the integration I;(f,w;a1,...,a,). By the
linearity of the integration, we have

Li(af + Bg,w;a1,...,a,) = al;j(fyw;a1,...,a,) + BI;(g, w;a1,...,an)
for any «a, 8 € R.
Lemma 3.4. For u,v € Fy,, a1,...,an € Z, if u=a{'x5? -zl in H (F,,Z),
Li(f,uvsai,. .. an)
=1i(f,usa,...,a0) + Li(f o Tp,(ay,...an)s Vs 01 + UL, - . oy G+ Up).
Proof. From Lemma 3.3l we see that

Li(f,uviaq, ..., an)
-/ Ftydt;
lyuv(@r,...,an)

/lu(al ----- an)‘TPu(al ,,,,, an)(l'u(al‘i’ul 11111 antun))

-/ ftde;+ [ F(tyd;.
lyu(ay,...,an) Tp an) (lo(artus,....an+un))

In the second term, if we consider the transformation of variables from ¢ to ¢t —
P,(a1,...,a,), we have

oyt = [ 0 Ty ().
(Iy(artur,...,an+un)) ly(ar+ut,...,an+uy)

f(t)dt;

w(ay,...,an)

Li(f,uviaq, ..., an)
= I](f?“? 0’17 M an) + I](f o TPu(al,...,a")a U; al + ula M) an + un)
This completes the proof of Lemma [3.4] O

As a corollary, we obtain

Corollary 3.2. For any ai,...,a, € Z, u € F,, such that u = x{*z3?---zlin €
Hy(F,,Z), and a real-valued function f on E, we have:

(1) Ij(f71;a17"'7a/n) =0.

(2) Ij(fv u_l; az,... 7an) = _Ij(f o TPu,l(al,.‘.,an)vu; a1 —UL,---,0an — un)
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(3) Furthermore, if v € F, and v = x]'x5?---al» € H{(F,,Z),

Li(f.Ju,v)san,. .. an)
=Ii(fiusar, .. an) + 1i(f 0 Th,(ar,.pan) Vi 01 + ULy -y G+ Un)
B Ij(f O TP‘Ur'UU,

- I](f o TP[uyv](ah...,a,,L)v v;ay,y ... 7an)-

—1(a1,eyan)y W Q1 + v, 00 F Un)

Let R[t] be the commutative polynomial ring over R among indeterminates ¢;
for 1 <i<mnandt,;; for 1 <j<i<n. Each element of R[t] is regarded as a real-
valued function on E in a usual way. We consider the polynomial ring Rlty, ..., ¢,]
as a subring of R[t]. For any f € RJ[t], we denote by deg(f) the degree of f.

Here we give some examples of calculations of the integrations. Clearly, for any
we F,, I;(1,w;a1,...,a,) = I;(1,w) is the sum of the exponents of those x; which
occur in w.

Lemma 3.5. (1) For anyp > q,

5jq7 Z:pa
Ii(ts, [xp, mgls an, ..oy an) = —0jp, i=q,
0, L7 Dy

(2) For any x € T',(3), Li(t;, z;a1,...,a,) = 0.

Proof. For part (1), let us consider the case where i = p. From (3) of Corollary B.2]
we have

Ij(tiv[xiaxq];ala cee aan)
=1I(ti,zi5a1,...,an) + Li(ti+ L xga1,...,a, +1,...,a,)
—Li(ti,zisar,...,aq+ 1, . an) — Li(t, xg;a1, ..., an)

= Ij(ti, wi) + I; (6 + 1, 0q) — I (i, i) — I (ti, zq)
= 1;(1,24) = 6jq-
By an argument similar to the above, we obtain the other cases. The calculations
are left to the reader for exercises.
For part (2), let us consider an element [y, z] € T',,(3) for y € ',(2) and z € F),
such that z = 23* - - - a2 € H{(F,,Z). Then, from (3) of Corollary B.2] we see that
Ij(tza[y’ Z]v Aty ..., an)
=ILi(ti,ysa1, ... an) — Li(ti + zisy501 + 21, .., G + 25)
= Li(ti,y) — Li(ti + zi,y) = —zid;(1,y)
=0.

Since I',,(3) is generated by those elements [y, z], we obtain the required result from
Lemma [3:4l This completes the proof of Lemma O

The following theorem is essentially due to Chen [2].

Theorem 3.1 (Chen [2]). Let k > 2 and f € R[t1,..., 1]
(1) Ifw e [['(2),T0(2)], then Ii(f,w;a1,...,a,) =0.
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(2) If w= 2, Tip,...,2;,) and deg(f) < k—1, then
( 1) 1 j:ila
Ij(f7w;a17'-'7an) = ( 1) a9, j =19,
O’ j#ilaiQ,
where
k—1 k—1
a1 = L’ Qg = L
Ot;,0t;, - - O, Oty Oty - - - O,

Next, we consider a certain modification of (2) of the theorem above.

Lemma 3.6. Let k > 5 and w = @iy, .-, Tip_ys Tip_v> i ], the1 > ik, and let
f € Rt] such that

f =g+ 92,1t2,1 +-- 4+ gn,n—ltn,n—l
for some g,9; ; € Rlt1,...,tn]. Then

0
Ij(f7w;a/17" '7an) = _Ij<—f7w/;a17' .o 7an)7
atik—hik
where w' = [Tiy, ..., Tip_,]-
Proof. Using (3) of Corollary B2l we obtain
Ij(g?w;ala' "aan)
= Ij(ngl; Ay, ... ,an) + Ij(g © TPw/(al,.A.,an) [xzk 13*’”%] ag, ... ,an)
_Ij(goTP i . ,,1(a1,...,an);w/;ala"'aan)
wileg, i v
- I](g o TPw(al,...,an) [:I:’Lk 17x’bk] ai,..., an)-

Since w' and w € T',,(3), we have
Py (ai,...,an) = Py(ay,...,a,) =0
and
Pw’[:cri,g,lxik]w’*l (at,...,ap) = Pla;, 21 (a1,-..,an).
Since g € Rfty,...,t,], we see that

9°Tp, (ar,an) =9°Tp, —1(aryenan) =9° TP, (a1,a0) = 9

[2g)_q @i Jw

Hence, I;(g, w;a1,...,a,) = 0.
By an argument similar to the above, for any p > ¢, we see that
Ii(gpatp,q,wiar, ..., an)
= Ij(gp.alpas Wi a1, an) + Li(gpatp.g: [Tip 1 wiian, .. an)

= 1 (9p.a(tp.g + 0(p,a), (i1, W5 a1, - - )
— 1 (gpyqtlhqv [xik—l ) xik]; at,...,0n)
= _5(PVQ)7(ik717ik)Ij (gpvq’ w/5 ag, .., an)'

This completes the proof of Lemma O
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From Theorem [3.I] and Lemma [3.6] we obtain

Proposition 3.1. Let k > 5 and w = [Ti,, ..., Tip_s, [Tig_1s Tigl]s k-1 > ik, and
let f € R[t] such that deg(f) <k —2 and

f =49 + 92,1t2,1 + -+ gn,nfltn,nfl
for some g,9; ; € Rlt1,...,tn]. Then

(_1)k_1ﬁ17 .7 :ib

Ij(fvw;alv"',an): (_1)k527 j:i27
07 j 7& ilv i27
where
ak72f ak72f
/81 = ) /82 =
atik—hik 6ti2 atis T 6tik—2 6tik—l7ik atilatis T atik—’z

Corollary 3.3. Using the same notation as that in Proposition 3.1, we have:
(1) If deg(f) <k-3and f = g+92,1t2,1 +e +gn,n—1tn,n—1 fOT some ¢, gij €
Rlt1,...,tn], then ;(f,w;a1,...,a,) =0.
(2) Ii(tjtj, - -tj stpg,wiai,...,an) # 0 if and only if
(1) (p7Q) = (ikfl-ik);
(11) Ljy ol _gty = Ly - tiy s,
(111) ] = il OT‘j = ig.
4. THE STRUCTURE OF THE GRADED QUOTIENTS LY (k)

In this section, we determine the group structure of the graded quotient £ (k)
of the lower central series of FV. Set K = [[,(3), [ (3)][[[n(2), [ (2)],Tn(2)]. If
k <5, we have LY (k) = £,,(k). Hence there is nothing to do anymore in this case.
Consider a surjective homomorphism

e LN (k) = LM (k)

of abelian groups induced from a natural map F — FM. Since LM (k) is a free
abelian group due to Chen [2], if we denote by K, (k) the kernel of ¢j, we have

LN (k) = K, (k) @ LM (k).

Hence it suffices to determine the group structure of IC,, (k) for k > 6.
First, we have the natural isomorphisms

LN (k) = Fn(k)K/Fn(k: +1)K,
£ (K) = Ty (K) [T (2), Tn(2)] /Tl + 1)[0a(2), T (2)]

In general, for a group F and its normal subgroups G, H' and K’ such that H' is
a subgroup of G, we have a natural isomorphism

(5) GK'/H'K' = G/H’(G nK').
Using (@), we see that
L5 (k) 2 Ta(k) /To(k + (T (k) N K),

£ (K) = Ty (k) /T (k + D)(Tu(k) 0T (2), Ta(2)]).
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Under these isomorphisms above, we verify that
(k) 2 T + 1) () 1 [ (2), T(2)]) /T + 1) (T () 1 K)

= (k) N [Ta(2), Fn(2)]/(Fn(k) NK)(Cak+1) N [Tn(2), Tn(2)])
= (D (k) N [T (2), Ta@DK /(D + 1) 1 [ (2), Ta(2)) K

by using (B)).
To determine the structure of IC,,(k), we prepare a descending series of subgroups
of F,. For k > 3, denote by 0,,(k) the subset of F,, which consists of elements w
such that
Li(f,w;ai,...,an) =0, 1<j5<n

for any ay,...,a, € Z and any f € RJt] such that

(6) deg(f) <k—=3, f=g+gaito1+ "+ gnn-1tnn1
for some g, g; ; € R[t1,...,t,]. Then we have
0,.(3)26,4)20,(5)D
Since I;(1,w;az1,...,a,) = I;(1,w) is the sum of the exponents of those z; which

occur in w, we see that ©,(3) = I',(2). By Lemma B4 and (2) of Corollary B2
©,(k) is a subgroup of F,, for each k > 3. Furthermore, by (3) of Corollary 3.2
each of ©,,(k) contains [I',,(3),T(3)]. Here we show that each of ©, (k) is a normal
subgroup of F,,. First, we consider

Lemma 4.1. ©,(4) C I',(3).

Proof. For any w € ©,(4), since w € T',(2), considering the mod-I';,(3) normal
form of w, we have

w = [zg, 21 ]V2 - [Tp, T ]V Ly

for some w; ; € Z and v € I',(3). For any 1 < j < i < n, from Lemmas 3.4 and
B3 we see that

Ij(t’b7w7 a1,.-., an) = Ij(th [',L‘Qwrl]wz’l e [xn7xn71}w"””71;a17 sy an)

+I’(ti7’7§a17---7an)
—Zwrs 7,7 CET,.’L'S] alu-"uan)

r>s
=w;; = 0.
This shows w = v € I',(3). This completes the proof of Lemma 1] O
For any w € ©,(k), u € F,, and f € RJt] satisfying (@), we have
Ij(f,uwufl; Aty ..., 0n)
=ILi(fusa1,...,an) + Li(f o Tp (ar,...an) Wi A1 + UL, ..., Gy + Up)
—I(f oTp  (arsan) Ui Q1 ,Gp)
=0

since uwu~! € I',,(3). Therefore ©,(k) is a normal subgroup of F,,.

Lemma 4.2. For k>3, [[[',(2),I',(2)],Tx(2)] C ©,(k).
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Proof. Since [[T',(2),T,(2)],T,,(2)] is normally generated by
{lz,y,2] |2, y, 2 € Tn(2)}

in F,, and since 0, (k) is a normal subgroup of F,,, it suffices to show that [z, y, z] €
©,(k) for z,y,z € T',(2). For any f € R[t] satisfying (@), using (3) of Corollary
B2 we have

Li(f, [y, 2)a1,...,ay)
=1i(f, [z, ylsar, . an) + Li(f o Tp, i(ar,an)r 2501, - - -5 Gn)
—Li(foTp, .pywi(ar,an)s [T 4501, s an)
—ILi(foTp, , j(ar,...an) Z 01, -, Qn)
=Li(f=foTr, .1y a(aran): [T Y a1, an).
On the other hand, if
z = [w, x1]" - [T, X1t € L(3)
for z; ; € Z, we have

Poyleya) (@1, ooy an) = 201t + -+ Znn—1tnn—1.
Hence if we set
9:=F=FoTr, pyaaran)
=221921 + + Znn—19nn—1 € Rlt1,..., 1],
then I;(g, [z,y]; a1, ...,an) = I;(g, [x,y]) = 0 since Chen’s integration I;(g,-) van-
ishes on [I',(2),T',(2)] in general. This completes the proof of Lemma O
Lemma 4.3. For k> 5, [['h(k—2),T,(2)] C O,(k).

Proof. The group [I'y(k — 2),T,(2)] is generated by [u,v] for u € T, (k — 2) and
v € T',(2). For any f € RJt] satisfying (@), by an argument similar to that in
Lemma [£2] we see that

Ij(fu [u,?}};al,...,an) = Ij(g7u;a17-~-7an) = Ij(g>u)
<

for some g € Rlty,...,t,] and deg(g) < k — 4. On the other hand, from Chen’s
result, we see that I;(g,u) = 0 since u € I',(k — 2). (See pages 150-151 in [2].)
This completes the proof of Lemma O

Lemma 4.4. For any k > 5 and w € [I',(2),T,,(2)], there exists some r > 1 and
€1,...,e. € Z such that

w= 0‘131 ool (mod [Fn(k - 2)3 Fn(2)])ﬂ

T

where ¢1 < --- < ¢, are the basic commutators of F,, which belong to [I',(2),T,,(2)].

Proof. In general, for any y,z € T',(2), there exist some y', 2" € T',(k — 2), and
dij,d; . €Zfor2<i<k—1and1l<j<m,;such that

i,
!’
_ da; di—1,my_q _ d/2,1 Ahtmp_y
Y=Ca " Cam ¥ A1 Cam F
Hence,
di—1my_; dj, G/

da1
[9,2] = [ - et ] (mod [l — 2), Ta(2)).
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Since [I',,(2),T',(2)] is generated by [y, z] for y,z € T',(2), we see that any w €
[['(2), T, (2)] can be written as

w= 5?1 o (mod [I'y(k —2),T'n(2)]),

where the ¢; are the basic commutators in I',,(2).

Then if we apply Hall’s correcting process to w' := Eill -~-E§; to obtain the
mod-I',,(2k — 4) normal form, we have

/I el (A
W =cpc G,

where all the ¢; belong to [[',(2),T',(2)], and 7 is a product of the commutators

[ur, ug,...,ut] € I'y(2k — 4) and each element w; of the component is in I',(2).
Since such commutators belong to [I'y, (kK —2),T',(2)], so does . This completes the
proof of Lemma (441 O

Lemma 4.5. Fork >5, T, (k)N [T,(2),T,(2)] C [Tk —2),T.,(2)][I'n(3), T (3)].
Proof. For any w € T',,(k) N [[',(2), ' (2)], we see
w=cft-crr (mod [Ty (k —2),T,(2)])

for basic commutators ¢; < --- < ¢ of F,, which belong to [I',(2),I',(2)] from
Lemma B4 Since w € T',(k), we may assume the weight of ¢; is greater than
k —1 for each 1 < i < r. On the other hand, such basic commutators belong to
[Cn(k —2),T,(2)] or [I',(3),I',(3)]. This completes the proof of Lemma O

From Lemmas .3 and [£.5] we see that for each k& > 5,
I.(k)N[.(2), 0 (2)] € ©,(k).
Using this, we can determine the group structure of IC,, (k). Set
E={[miy, - Tip_y, [Ty @iy )] |11 > i2 <ig < - <lp_a, Gg—1 > g
Theorem 4.1. For k > 6, K, (k) is a free abelian group with basis €.
Proof. For any x € T',,(k) N [T'1(2),Tx(2)], we have
r=cit - cora

for some basic commutators ¢; < --- < ¢, of weight k, and z’ € T',,(k + 1). Since
x € [[,(2),T,(2)], observing the image of = by the natural map £, (k) — LM (k),
we may assume that ¢; € [[',(2),T,(2)] for 1 < i < r. Hence 2’ € [[',(2),I',(2)]
and each of the ¢; belongs to [I[',(3),T'»(3)], [[['n(2),Tn(2)],I'n(2)] or € since k > 6
This shows that & generates ICp, (k). Set

Y= H H [wilv sy iy _gs [xikflvxik]]bil’m’ik € Fn(k) N [Fn(2)7rn(2)]

11>02 < S ik —1>1k

)

for b;, ... i, € Z, and suppose y = 1 € K,,(k).
Now, for any j; > jo < j3 < --- < jg_o and jx_1 > ji, consider
g =tj i oti g € R[t]
Since deg(g) =k — 2 and =z € O,,(k + 1), for any ay,...,a,, we have

3 3’6*3(15. ety )
0= Ijl (g,ZE; ai, ... 70%) = (_l)k 1bj17-~7jk atp J2 ot -

Jk—2



THE JOHNSON HOMOMORPHISMS 1647

from Proposition Bl Since
k—
0 S(tjz e tjkfz)

#0,

at]é T atjkfz
we obtain b;, . ;. = 0. This shows that € is linearly independent. This completes
the proof of Theorem [£.1] O
Corollary 4.1. For k > 6,

1 n+k—4
rankz (K, (k)) = gn(n —1)(k - 3)( b9 )

and

k —2 1 —4

rankz (LY (k)) = (k — 1)( +Z ) + 5n(n— 1)(k—3)<”']gfz )

5. AN APPLICATION TO THE STUDY OF THE JOHNSON HOMOMORPHISMS

In this section, we consider a reduction of the target of the Johnson homomor-
phism 7 to H* @z LY (k +1). Let

T,QVN cgrf(A) = H* @7 LY (K +1)

be the composition of 7}, and the natural projection H* ®z L,(k + 1) — H* Qg
LN (k +1). It is easily seen that 7. 18 @ GL(n, Z)-equivariant homomorphism.
In the following we study the cokernel of (77, x)q for n > k+2. In particular, we

2
show that there is an obstruction H, g‘_m ]

also appears in Coker((7;, y)q). Finally, we conclude that the GL(n, Z)-irreducible

for the surjectivity of 7 o, and that it

decomposition of Coker((7;, y)q) is S*Hq @ H([;];*ZIQ] for n >k + 2.

5.1. The image of 7. In the next subsection, we detect Y2 gy Coker(; q)
using trace maps. To do this, we prepare a finitely generated submodule of H* ®z
L, (k + 1) which contains Im(7},). Let V,,(k) be a submodule of H* ®z L,,(k + 1)
generated by

(Al): z7 ®[A, B,

(A2): zf ®[A, B,C],

(A3): ‘T: ® [wi1>xi27xi37"'7xik+1]a

(A4): J)f ® [xiaxizv .- 'axik+1] - x;k oY [J?j,l‘iS, s 7$ik+1,$i2],

(A5): o] @ [T4, Tig, -+, Tipyy | — XF @ T4y Ty o ooy Ty )5 T

(AG): (E:‘ ® [xi1’$i27xi7xi4a s 7xik+1] - .’E: & [xil,l'ig,l'iaxis cee ,xik+17xi4],

(A7): z; ® [$il,$i2,$i,$i4,l‘i5,xi6,...,.’[,‘ik+1]
_x;'k ® [wiuxizvxiaxisaxuaxigv~-~axik+1]7

(AB): @] ® [Ti, Tiy, Tiy Tiyy s Tig g | — T] @ [T, Tigy Tiy Ty -5 Tig 4]
_I;-(®[Ii,Ii27l‘j,Ii47...,Iik+1],

where A, B, C' and the indices 1 < i, 7,4; < n satisfy the conditions
(A1): wt(A), wt(B) > 3 and wt(A) + wt(B) = k + 1,
(A2): wt(A), wt(B), wt(C) > 2 and wt(A4) + wt(B) + wt(C) =k + 1,
(A3): ) 7é il, i27i3,
(A4): ) 7& ig,’ig,j andj 75 i37i4,
(AS): i 7£ i25 7;371'4’
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(AG), (A7) 7 7é il,ig,
(A8): i+ j,iy and j # is,
respectively. We do not consider (A1) and (A2) for k£ < 5. In this subsection, we

use = for the equality in the quotient module of H* ®z L, (k + 1) by V,,(k). Then
we show

Theorem 5.1. For k> 1 and n > 6, Im(7;,) C V, (k).
Before showing Theorem [5.1] we prepare

Lemma 5.1. For any n > 3, we have:
(1) For any i # i1, 1a,
Ii®[‘rl1aI22aIZafEZ47~-~;Izk+1]
¥ *
= 2] @ [T, Tiy, Tiy s Ty oo Tip g | — Tf @ [, Tiyy Tigy Ty oo vy Ty |-

(2) For anyi,j #i1,i2 and 0 € Gp_4,

Tp ® [Tiy, Tiy, Tiy Ty ooy Tjp ] = a:; ® [331173312,1"]'7330(3‘1) .. ,Io(jkiz)].
(3) Ifn > 6, fOT' any Z?] 7& i,13,14 and i #.77
T @ [T, Tiyy s Ty ] = TF R [Ty Tigs - o5 Tig s |-

Proof of Lemma Bl Part (1) is immediately obtained from the Jacobi identity
['/Eil ) miz ) xl] = [l‘i, miz ) xil] - ['/Eia '/Eil ) miz]'

For part (2), if j = 4, it is obtained from (A6) and (AT). If not, we have

*
Ii®[‘ri1ﬁzi2’xi’xj1""’Ijkfz]
(_1) * *
=z;® [xivximxiuxiw' . 'ﬂxik+l] —r; ® [xivxilvxizvxiu e 'vxik+1]
(A4) x
= 7;® [T, Tiy s Ty oo vy Ty s Tig) — TP ® [T, Tigs Ty oo Tigyy > Ty
(A5) .
=25 @[Ty Tiys Tiyy Tigy -+ Tigyy] — Tf @ [Ty Tiyy Ty, Tigy - Ty |
1)«
= Ty ® [xilﬂxiQ)xjﬂleﬂ"'3xjk72:|'

Hence we obtain part (2).
For part (3), we can take some 1 < k < n such that k # i, j, io,43,74. Then we
see that

T;OT4, Tigy oy Tigy | = T @ [Ty Tigy o+ oy Ty Tig] = x;‘ ® [T, Tigy oy Tigyy ]
by (A4). This completes of the proof of Lemma 511 O

Proof of Theorem [5.1l We prove this theorem by induction on k. For k = 1, since
grt(A4,) = IAflb is generated by K;; and K,j;, it is clear from (@)). Assume k > 1.
Since
7= @T{C :gr(Al) — Der(L,,)
E>1

is a Lie algebra homomorphism, it suffices to show that [(A1), 71 (K], -, [(A8),
71(Kpq)] and [(A1), 71 (Kpgr)]s - - -, [(A8), 71 (Kpgr)] belong to V,,(k+1) for any p, g
and r. We show this by direct computation. Here we give some examples of it.
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Step I. [(A1),71(K,q)]
Observe
[z @ [A, B], 71(Kpq)]
=2} ® [A?"Krd) Bl + a7 @ [A, BO"Krd)] — 5, )27 @ [[A, B], 2]
= 0iqTp @ [zp, [A, B]].
By the Jacobi identity, we have
[[A, B], 7q] = =[[B, x4}, Al = [[xq, A], B],  [p, [A, Bl] = —[A, [B, x]] — [B, [xp, A]].
Hence [(A1), 71 (Kpq)] € Vi(k + 1). Similarly, we see [(A1), 7 (Kpgr)] € Vi (k+1).
Step II. [(A2),71(Kp,)].
Observe
(27 @ [A, B, C], 71(Kpg)]
=g} @ [A9 e B C) + aF @ [A, BO1Erd) C) 4 1F ® [A, B, 097 (Kra)]
—0ipT), @ [[4,B,Cl,zq| — i Ty @ [xp, [A, B, C]].
By the Jacobi identity, we have
[[A; B, Cl, 4] = —[[C, 24, [A, B]] — [l [A, B], C]
=[A, B,[C,z,]] + [A, [B, 24|, C] + [B, [z4, 4], C],
[zp, [4, B, C]] = =[A, B, [C, zp]] — [A,[B, 2], C] = [B, [xp, A], C].
Hence [(A2), 71 (Kpq)] € Vi (k + 1). Similarly, we see [(A2), 71 (Kpqr)] € Vi (k4 1).

Step IIL. [(A3),71(K,,)].

In
[(A3), 71 (Kpq)]
- 6i1,px;‘k (24 [xilaxq, LijgyLijgye-- 7xik+1] + 51'2,171': Y [xi1’ [xifzv xq]v Ligy o 7xik+1]
+ 61‘3710‘%': ® [xiwxizu [.’L‘i3, .’L'q], Ligyen- 7$ik+1]
k+1
+ Z(sizmx: ® [$i1;$i2;$i37$i47 sy Tig_q, [xil7xq]7xil+1) cee axik+1] T
=4 O
- 5i,pr ® [Iil y Ligy Ligsy e ooy Ligpqs l‘q]® - aiﬂlxz ® [‘T;Dv [Iil y Ligy Ligy -y Iik+1”?

@ =0 by (A3). On the other hand, using the Jacobi identity
(7) [X7 [:Eauxb]] = [X,il?a,.’l/'b] - [Xaxlnxa]u

we see @ = 0 by (A3). If g # 4, we see [(A3),71(K,q)] = 0 since all terms other
than @ and ) in the equation above are of type (A3). Hence, consider the case
where ¢ = i.
Suppose p = iy. If i3 # i1, we have
[(A3),71(Kpq)]

_ * * _
= 2] @[B4, Tiy s Tig, Tigy o, iy y | + 25, @ [T, Tiy, Ty oo, Ty, T4y ] =0
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by (A4). If i3 = i1, using (A5), (A6) and (A8), we have
[(A3), 71 (Kpg)]
= =] @[B4, Tiy s Ty, Tig, Tigy - -5 Tigyy | — Tf @ [Tiy, Tig, Ty Tig, Ty - - o Ty |
+ 27 @ [Tiy s Ty, Tiy s Tigy ooy Tigyy > Ty |
= =27 @ T4, Tig, Tigy Tigy o, Tiyy> Tiy | — T @ [Tiyy Tigy Ty Tigy - ooy Tigy » Ty
+ 27, @ [Ty Ty Tiyy Tigy oy Tigyy s Ty |
= 0.

Similarly, we see [(A3), 1 (Kpq)] = 0 for p =iy. Suppose p = i3 and p # i1,42. By
(A6), we have

[(A3), 71(Kpqg)]
= _:I;r ® [xi17xi27xi7xi37xi47 .. 7xik+1] + ‘T;kg ® [xi17xi27xi37xi47 .. ,$ik+1,$i3]

=0.

Therefore we have [(A3),71(Kpq)] € Vi(k + 1) for any cases. Similarly, we obtain
[(A3)7T1(qur)] S Vn(k + 1)

Step IV. [(A6), 7 (Kp,)].

In
[(A6), 71 (Fpq)]
= 0y p(TF @ [Tiy s Tqy Tig, Tiy Tig,y - - Ty — T ® [Ty, Tq, Tiy, Tiy Tig,y o ooy Tigyy, Tiyg))
+ 8iy p (T ® [Tiy, [Tig, Tql, Tiy Tig, - - - ,a:ikﬂ}—ac;k ® [@iy, [Tiy, Tqly Tiy Tig, -+, Tigyq 5 Tig))
+ 00 p (2] ® [Tiy, Tin, [T, Tgl, Tigs -, Tigyy | —T7 @ [Ty, Tiy, [T4, Tg ], T, - - -,%Hl,fﬂzﬂ@)
+ iy (@7 @ [Tig, Tig, iy [Tig, Tyls o ooy Tig gy | —F7 @ [Tig, Tig, Tiy Tigy -+, Tigy [xi4,xq]]®)
k+1

"
+ E :éiz,P(xi ® [xiuxizvxivxiw"‘vxizfu[xiwxq]?xiulv‘“vxikﬂ]
=5

—z; ® [Tiy, Tig, T4, Tig, - - o Lig_qs [xilvainlJrU" "xik+17xi4]©)

* *
— 0ip (27 ® [@iy, Tig, Tiy Tig, -+, Tigyy s Tg) =T @ [Tiy, Tig, Tiy Tig, - - - ,mikﬂ,xiwmq]@)

- (51"(1(15; & [$P7 [xil,iti273:'i,37i4, .. 7$ik+1”_m; ® [xpv [$i17xi27xi7xi57 e 7x‘ik+17xi4]])7

wesee ) =--- =@ =0 by [@) and (2) of Lemma [EIl Furthermore, if ¢ # 1,
[(A6), 71 (Kpq)] = 0 since all terms other than (@, ...,® are of type (A3). Hence,
we consider the case where ¢ = 4. In this case, p # i.

If p # 41,140, it is clear [(A6),T1(K}q)] = 0 by (A3). Suppose p =41. Then,

[(A6),71(Kpg)]
= —7; @ [Ti, Tiy, Tiy, Tiy Ty - - - vxik+1] + 27 ® [Ti, Ty Tiy, Ty Ligy ooy Ligprs iy
+ x;'kl & [xilyxizu Ly Liygenns xik+17xi1] _x;'kl &® [xil y Loy Ljy Lijgy oo 7x7ﬁk+17xi47 :Eil]
=0
by (A4). Similarly, we see [(A6),71(K,)] = 0 for p = ip. Furthermore, by an

argument similar to the above, we verify that [(A6), 71 (Kpqr)], [(AT), 71 (K p,)] and
(A7), 71 (Kpgr)] € Va(k +1).
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Step V. [(A5), 71 (Kp)]-

In

[(A5), 71 (Kpg)]

= 0ip(x] ® (24,2, Tiy, - - - 7$ik+1]@ -z} Q[mi, xq, Tig, - - - ,xikﬂ,xiz}@)

+ 6i27p($;< ® [xia [xizﬁxq]’xiw s ’xik+l] - l‘: ® [l‘i,l‘iS, s Ly [wizvxq”)
+ 6i3,p($; Y [xia L, [:Eisaxq]axi4a cee axik+1]
— 7 @ [T4, [Tiy, Tgls Tiyy oo oy Tigy ) Tin))
+ 6i47p(x2< ® [:L'i, xi2,$i37 [‘/L.i47 :Eq]u MR xik+1]
- l‘: ® [wivxien [l‘iwxq]vxis? s 7xik+1?xi2])
k+1
+ Z 5iz,p(l‘: ® [xia Ligy -y Liy_qy [wiqu]vxiprla e 7xik+1]@
=5

—xf 9] [IEZ‘,.IZ‘S, sy Tg_q [‘ril’xq]’x’iwrl?' cy :Eik+17‘riz})®
+ 6i7p(_$;< ® [xia Ligy -y xik+17xq]® + x: ® [xivxisﬁ s 7xik+17xi27xq}@)
+ 6i7Q(_‘T; ® [xpv [xivxizv s 7xik+1“ + ‘T; ® [xpv [:Ei7$i37 s 7xik+17xi2]])7

O =® =@ =0by (@ and (A5). Furthermore, if ¢ # ¢, we see [(A5), 71 (Kpq)] =
0 similarly. Hence it suffices to consider the case where ¢ = 4. In this case, p # 1.
Then using (@) and (A5), we see

[(A5), 7 (qu)]

j— * *
= 6i2,p(x1j & [:I;iu xiguxiu xi37 sy xik+1] - xi ® [xiaxi37 e 7xik+17xi27xi]

*
+ T; &® [xiaxiga e axik+17xi7xi2])
13,D xi xzax12;$237x17x147~'~7x11€+1 7 Zaxlzaxlaxlsazuw"azzk+1
*
-z ® [xiaximxia Ligy o xik+17x’i2})
* *
- 6i4,p(x1j ®[:I;i7 $i27x7;37xi7xi4, e 7xik+1]_x1j ®[$i7xi37xi7xi4,xi5, e ,$ik+1,$i2])

* *
F Ty @ [Ty Ty, Ty Tp] = Ty @ [Ty Ty Ty Tig s Tp)-

Since n > 6, there exist some 1 < j < n such that j # i, is,43,14. We fix it.
Case I. i5,13 and i4 are distinct.

If 49,45 and i4 are distinct, using (A3), we have

[(A5)77'1(qu)]
= 62'27,)(1;-“ ® [Ii, Loy Ly Lijgy ey J?ikJrl} — :Ef: ® [IEZ‘,IEZ‘S, L. ,:EikJrl,ajiz,in]
+ x;k & [xi’xisa e 'axik+1’xi’xi2] + 1’?2 ® [xi’xiwxisa s 7xik+1’xi2])
+ 04y p(2] @ [T, iy, Tig, Tiy Ty o+, Tig ] — ] @ [Ty Tiy, Tiy Ty Tigy - -, Ti |
— T} @ [Ty Ty Ty Tigy -+ oy Tig oy T F Ty @ [y Ty Tigy Ty o5 Ti 1 5 T
=5, @[T, Wiy, Tiyy ooy Tig oy s Tigy Tig))
- 5i4,p($f®[$u Ligs Ligy Ly Ligy -« "TikJrl] - $f®[$z‘a Ligy Lis Ligy Ligy - - ’xik+1’xi2]

*
+ xi4 & [xi7x’i37x’i47 .. '7xik+17xi27xi4})'
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Then from (A8) and (3) of Lemma [5.1] the §;, ,-part is equal to

* *
T @ [T, Ty Ty Tigy o Tig ] + TF @ [Ty Tiyy Tjy Ty - -+, Ty ]
* *
_xj & [xj,l'is,...,l'ikJrl,.’Eiz,(Ei] +.’Ej & [xj,:cis,...,:cikﬂ,xi,xh]
*
- xj ® [xj7xi7xi37 ) 7xik+17xi2]'

Hence, by (A5), we obtain that the §;, ,-part is equal to zero modulo V,,(k + 1).
Similarly, we see that the d;, ,-part and the ¢;, ,-part of the equation above are
equal to zero modulo V,,(k + 1). Therefore we obtain [(A5), 11 (K}q)] = 0.

Case II. iy = i3 # iy.

If i = i3 = m and i4 # m, using (A3), we have

[(A5), 7y (qu)}

_ * *
- 6m,p(xi ® [x'hxmu T, xmyxuu .. '7xik+1]@ - xqj &® [xiyxmaxi47 o 7xik+17$m7xi]
* *
+ xz; & [xi; Tmy Ligy- - 'ax’ik+17xi7xm] + €; & [xi; Ty Ty Liy Ligy oo - 7xik+1]
* *
—Z; & [xiyxm7xi7xmu Ligyeeey xi;ﬁ_J@ —X; &® [xiu Ty Liy Liyy - 7xik+17x’m]
* *
=Ty, @ [xm’xi’xma Ligs oo xik+17xm] =Ty @ [xivxm’xiu s ’xik+1axm7xm])
* *
- 61‘4,;0(:1;1; & [xiyxmaxmu Ly Liygenns xik+1] —Z; & [$i,$m7$i7xi4, cee 7$ik+l,$m]
*
+ xi4 ® [xi,xm,$i4, cee 7xik+1axm7xi4])-

In the d,, p-part, @ = 0. From (A8) and (3) of Lemma 5.1}, the other terms are
equal to

—Z; ® [Ty Tns Tigs - -+ s Tigyys Ty Ti] + T @ [:cj,xm,xi4,...,xik+l,xi,xm]@
+1’;—< & [xj’xmaxmvxivxim cee 7xik+1]® —(E;—t ® [xjaxmvxivxim cee 7xik+1axm}@
= Z5 ® [Tiy Tony Ty Tigy - - Tigyy s Trn] —T; @ [T, Tity Tony Ty - - - ,xiHl,xm}@
= T5 ® [Tns Tiy Tjy Tigy o o Tigyy s Trn] FTF @ [T, Ty Ty oo ,xikﬂ,xm,xm}@

modulo V,,(k + 1). Then ® = 0 by (A5), and

_ * *
@ = _‘T_] & [Ij,LEm,.IZ‘,.Im,Iu, .. 'axik+1} + 'Ij ® [.Ij,Ii,Im,iEm,Iu, cee a‘rik+1]

= x;k Y [xmvxivxja Ty Liyy - - 'vxik+1]
by (A5) and (1) of Lemma [l Similarly,
@ =2 @ [Ti, Ty Tjy Tiyy -+, Tigy g Tn]-

Hence, using (2) of Lemma 5.1l we see that the d,, ,-part = 0. Similarly, we can
show the d;, ,-part = 0, and hence,

[(A5), 71(Kpq)] = 0.

By an argument similar to the above, we show [(A5), 71 (K,q)] = 0 for the other
cases iy = 44 # i3, i3 = 44 F# i2 and ip = i3 = i4. Furthermore we obtain
[(A5),71(Kpgr)],  [(A4),71(Kpq)],  [(A4),71(Kpgr)],  [(AB),71(Kp)]  and
[(A8), 71 (Kpgr)] € Vi(k+1). We leave it to the reader for exercises. This completes
the proof of Theorem [G.1] O
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5.2. Contractions and trace maps. The main purpose of this subsection is to

2
detect the module S*Hgq and Hg_2’l J'in the cokernel (T%..n)q using trace maps.

For k> 1and 1 <1 <k+1,let pf : H*@zH®* D — H®* he the contraction
map defined by

* *
€Ty ®xj1 ® "'®xjk,+1 =T (sz) * Ly ® "'®sz—1 ®le+1 ® "'®xjk+1'

For the natural embedding «**1 : £, (k + 1) — H®* D we obtain a GL(n, Z)-

n
equivariant homomorphism

Bf = @f o (idy- ® 5™) : H*@zLa(k + 1) — HE*.
We also call @f a contraction map.
For any =} @ [2;,,...,%,,] € H* ®z H®* and 1 <m < k+1, let
@ﬁm(x;“ ® [Tiy, v Tiy 1 ])

denote the element obtained by the contraction of =} with the only element x;, ..
For example,

q’?a(ﬁ ® [Tiy s Tigs Tis))
= q’i’,z(f’?; ® (Tiy @ Tiy @ Ty — Tiy @ Xy @ Ty — Tig @ Ty @ Ty,
+ Ty @ Tiy ® Ti,))
= —04i, Ti, @ Ty,
OF (4] @ [Wiy, Tiy, iy ]) = =iy @iy @ Tiy + biiy Ty ® T,
Then we have

k+1
(I)f(x: ® [xilv v 7xik+1D = Z (I);C,m(x;k ® [Ii17' . 'axik+1D'
m=1

Here we make sure that H* ®z LY (k) is written as a quotient module of H* ®z
L, (k), which is used to define the trace maps later. For each k > 5, if we set

Qn(k) = (Tn(k)Nn KT, (k + 1)/Fn(k + 1), we have an exact sequence
0= Qn(k) = Ln(k) = LY (k) —0
of GL(n, Z)-equivariant free abelian groups. This induces an exact sequence
0= H* @z Qn(k) = H* @z L, (k) — H* @z LY (k) — 0.

Therefore we can regard H* ®z LY (k) as a quotient module of H* ®z L, (k) by
H* ®z Qn(k). Since the basic commutators of types

[xh R xlk] and [xiu REREL P [mik—lﬂxik]]
form a basis of the free abelian group £ (k) by Theorem (1] those of type
[c1,c2] for wt(cq), wt(ca) >3

and
[c1,ca,c3] for wt(er), wt(ca), wt(es) > 2

form a basis of @, (k).
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5.2.1. The Morita trace. Here we recall the Morita trace map. Let

Trpy : H*®zL,(k+1) — SFH
be the composition map of the contraction ®¥ and the natural projection Jik]
H®F — S*H defined by

fie) (@i, @ - @ xiy) = @iy -+ Ty
The Morita trace was introduced with remarkable pioneer works by Shigeyuki
Morita who showed that Trf is surjective and vanishes on the image of the John-
son homomorphism 73, for n > 3 and k& > 2. This shows that SkHQ appears in the
irreducible decomposition of Coker(74,q) and Coker(r;, o) as a GL(n, Z)-module.

We call S*Hgq the Morita obstruction.
Let ¢ = [c1,¢2] € T'n(k + 1) be a basic commutator of weight k& + 1 such that
wt(c1), wt(cz) > 2. Then for any 1 < i < n,

i @c) =0 (2l ®ec1) @cg — BN (2] ®cp) @ ¢y € HEF,

Hence Try(zf ® ¢) = 0. This shows that Try factors through H* @z LY (k).
Therefore we see that the Morita obstruction S kHQ also appears in Coker((77, x)q)-

5.2.2. Trace map for H#~21"], Next we detect H([S_Zﬂ in the cokernel (77, y)q-
Let pu: H®* — A3H ®4 S*3H be a homomorphism defined by

Tiy @ @xyy, = (Tiy Ny NTiy) @ iy -+ T4, -
Since H*=21"] ig considered as a quotient module of A3H ®z S¥=3H (see [6]), we
have a natural projection v : A>H @z S*3H — HE=22"] Tet
Trpg 912 0 H*@zLo(k + 1) — HF217]
be the composition of ®§ and f{;_s 12 := v o . The map Tr;_s 12] is a GL(n, Z)-

[k—2,1%]

equivariant homomorphism. We call it the trace map for H . In the following,

we show

Theorem 5.2. Forn >3 and k > 3,
(1) Tr[Qk_z)p] is surjective,
(2) TI'[]C_Q)lQ] o T]; =0.

To show part (2) of the theorem above, it suffices to show that Tr(;_5 12] vanishes
on (A1), ..., (A8) in Theorem [E1]

Lemma 5.2. For k > 5,

(1) Trges,iz)(a @ [4, B]) = 0 for wi(A), wi(B) > 3

(2) Trp_z12)(a} © [4,B,C)) = 0 for wi(A), wi(B), wi(C) > 2.
Proof. For part (1), we may assume wt(A) > wt(B). If wt(B) = 4, we have

¥ (v; @ [A,B]) = ¥ (2; ® A) ® B — (2] ® B) ® A.
If wt(A) > 4 and wt(B) = 3,
k(2 ®[A,B)) =®k(2; ® A)®@ B— B &/ 3(2} ® A).
If wt(A) = wt(B) = 3,
O (2} ® [A,B]) = A© &) (¢} ©@ B) - B® ) *(2} © A).
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Hence, we obtain Trj,_s12(z; ® [A, B]) = 0 for any case. Similarly, we see part
(2). This completes the proof of Lemma O

From this lemma, we verify that Try,_5 12) vanishes on (A1) and (A2).
Lemma 5.3. Fork>3 and4<m<k+1,
f[k72,12] o ¢§,m($f ® [‘rh yLigy e e 7$ik+1]) =0.

Proof. Since the element [2;,, %;,, . . ., @;,,,] in H®¥ is written as a sum of elements
of types

A® [Tiyy oy, |®x;, ® B or A®ux; & [Ti,...,zi, _,|® B,
‘I’E,m(ﬂﬁf ® [Ty, iy, - - - Tiy,,)) is a sum of elements of types
5ii4 ["’Eil y Ligs xig] ® B

or
8ii, A® (w4, x5, |®B for Aec H®,

Considering the image of fj;_3 12), we obtain the required result. This completes
the proof of Lemma [5.3] O

Corollary 5.1. For k > 3,
Trp—212)(2] @ T4, Tiy, ..oy 24,,,]) =0
if i # i1,12,13. That is, Tr_o 12 vanishes on (A3).
Proof. Since
Trip 2,12 (@} ® [@iys @iy, - - - 7xik+1])
k+1
= Z f[k72,12] e} q)i,m(x: X [xil,xi2, . ’xik+1])7

m=1

we immediately obtain the required result from Lemma (5.3 (I

Lemma 5.4. For k > 3, and i # io, 13,

*
Tr[k—2,12](xi ® [xia Ligy Ligsy - -+ ’xik+1D
= — E (xill /\:Eilg Axil3)®xi2...xi13...wilz...will "'xik+1'
2<ls<la<l1 <k+1

Here § means removing y in the product.

Proof. From Lemma [5.3] and i # 45, i3, we see
Trig_2,12) (2] @ [24, Tig, Tigy -+, Tiy 4 ])
= f[k—2,12] o (I)Izz,l(x: ® [Tis Tigs Tigs - - - ’xik+1D'
On the other hand, in general, if we write [z;,,2j,,%j,,...,2;,,,] € H®* as a

sum of elements zj; ®- - Q. the sum of the elements such that jj = j; is given
by

- E : szl®xj12®xj13®xj1®"'$jz3"'xj12"'lel”'®xjk+1'
2<lz<la <l <k+1

Hence we obtain the required result. This completes the proof of Lemma 54l O
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This lemma induces

Corollary 5.2. For k > 3, we have:
(1) Fori#ig,i3, j# i3,i4 andi# j,

Trip—o,12)(%] @ [Tiy Tiy, Tigy - - s Tiyyy] — T @ [T, Tig, Ty oo o5 Tiyyy, Tiy]) = 0.
(2) For 1 }é i27i37i4,
Trip—2,12) (%] @ (@4, Tig, Tigy -+, Tiy o] — T @ [Tiy Wiy, iy o+ o5 Tiyyy Tiy]) = 0.

Hence we verify that Trj;_o ;2] vanishes on (A4) and (A5).

Lemma 5.5. For k>3 and i # iy,12,

X
Trip_o12) (2] @ [@4,, iy, Tiy Tigy -+, Ty ])
k+1
=— E 2(wi; Ny, NTgy) @ g, - Tiy oo Ty, -
=4

Proof. From Lemma [5.3] and i # i1, i3, we see

*
Trig_2,12) (2] @ [@4), iy, Tiy Tigy -+, iy ])
_ k *
= f[k—2,12] o q’4,3($i ® [Tiy, Tiy, Tiy Tigs - - - ,fiHl])-
In general, an element [z ,2j,,%j;,...,%j,,] € H®*+1 is written as a sum of

elements of types
A®xj3®[xj17xj2]®3 or A®[xj17xj2]®xj3®3'
Hence ®F (x} @ [@4,, %4y, T3y Ty, - - -, Tiyy,]) I8 & written as a sum of
A® [z, 2] @ B
for wt(A) = 3, or
Iij ® [l‘il ) .IZ‘Z} ® B
for 4 <j <k+1. Then fj_912)(A® [z, 24,] ® B) = 0 for wt(A) = 3.
On the other hand, in [z, , zj,, Zj,, ..., %), ,,] € H®F+1 the sum of the elements
of type z;, ® [z;,,2,,] ® B is given by
k+1
_Z‘sz ® [‘Tju‘rjz] @ Tj, @y @ Ty
1=4
From this, we obtain Lemma O
Lemma [54] induces
Corollary 5.3. For k>3 and any v € Gy_o,
Trje—o,12)(¥] @ [Tiy s Tiy, Tiy Ty ooy Tjy | =27 @[Tiy, Tigs Ty Ty )5+, T gy ]) = 0.
That is, Trj_z,12) vanishes on (A6) and (AT).
Furthermore, by an argument similar to that in Lemmas 5.4 and 55 we obtain

Lemma 5.6. Fori,j # iy and i # j,
* *
Tr[k—2,12](zi & [Iia Lijogs Ly Ljyy - 7xik+1] - ‘T_] & [Ijvxizax’iaxua cee 7$ik+1]
*
— T Y [xiaxizvxjvxiu cee 7xik+1]) =0.

Proof. We leave the calculations to the reader for exercises. (]
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Therefore Try;_5 12 vanishes on (A8). Finally, we consider the surjectivity of

e

f—2,12]" Since n > 3, we can choose distinct 1 < ¢,7,] < n. Then from Lemma

’ITE%_MQ] (] @ [xj, @1, @5, Ty, 25]) = =2(k = 2) (2 Azj Awy) @@y -+ - a4,
#0

2 2
in H([:/;—Zl ). Since Hg_Q’l lis irreducible, we see that Tr[Qkf2 12] is surjective. This

completes the proof of Theorem As a corollary, we obtain
Corollary 5.4. Forn >3 and k > 3,

(1) Hgd’ﬁ] C Coker(7;, q),

(2) HE ") ¢ Coker((} y)q)-
Proof. Part (1) is clear. Part (2) follows from the fact that Tr;_s ;2] factors through
H* @z LY (k) since Try_s 12] vanishes on (A1) and (A2). O
5.3. An upper bound on Coker((7; y)q). In this subsection, we show that

Coker((7;, x)q) is a direct sum of S*Hgq and Hg_Q’IQ] as a GL(n,Z)-module for
n >k + 2. To show this, it suffices to show that Coker((7;, y)q) is generated by

(n+Z—1)+(k—2)2(k—1)(n+:—3)

elements for n > k+2 since we have already shown that Coker((7;, x)q) D SkHq o
plk—2.1

Q .

In general, H* ®z LY (k + 1) is generated by

& = {x] @ [z, iy, ..., iy, )| 1 <405 < n}
Hence Coker(7y, ) is also generated by these elements.
Lemma 5.7. Forn>3 and k > 1,
T} @ [Tiy, Tiy, - -+ Tiyy, | = 0 € Coker(ry, y)
ifip£i forl <I<k+1.

Proof. We show the lemma by induction on k. For k = 1, we have T{,N(Kiiliz) =

xf @ [x4,,%4,). Assume k > 2. By the inductive hypothesis, there exists a certain
o € Al (k—1) such that

TI/C—I,N(U) = I:( ® [Iil ) Ligs e -+ 7xik]'
On the other hand, we have 71 y(Kii,,,) = =} ® [zi, i, |- Then
TIIC,N([Kiik+1 ) UD = {E: ® [xh y Ligy e 7xik+1]'
This completes the proof of Lemma 5.7 O
Let § be a set consisting of elements x; ® [z;,, %i,, . . ., ¥, ,,] of & such that i; =i

for some 1 <[ < n, and 4, # i for m # [.

Lemma 5.8. Forn>k+1, Coker(T,’%N) is generated by §.
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Proof. Take any x} ® [x;,,%i,, ..., %i,,,] € & such that i, = 4;, = i for distinct
l1,15. Since n > k + 1, there exists a certain j € {1,2,...,n} such that j # 4,4; for
1<1<k+1. Set
. {Kijik“, i % pt1,
K, i =gl
Then
T n(0) = 27 @ [z, Ty, |-
On the other hand, from Lemma (7] there exists a certain o’ € A/ (k — 1) such
that

T n(0') = 25 ® [x4,, iy - T, )
Then we obtain
Ten(lo,0']) = 2} @ [wiy, iy, - oo, T ]
k
— Z(s”l.’[; & [.’bil, ey xilfl, [xj,xik+1],xil+l,. ey Tk
=1

Observing the Jacobi identity
[Za [Xv Y” = HZv X],Y] - [[Zv Y]vX]

in the graded Lie algebra gr(A]), we see that the right-hand side of the equation
above is equal to

* *
Ii ® [Ii17l‘i2, e 7l‘ik+1} —|— 51‘1‘1%’ ® [Ij,xik+17l‘iz, e 7l‘ik]
k
*
_ E dii, <3:j @ [Ty e vy Tiy Ty Tiy s Ty ys -+ - Tk
1=2
* . . . . .
- ® [Ty s By iy 1> Ty Ty -+ Tk ) -
This completes the proof of Lemma O

Lemma 5.9. Forn >3 and k > 2,
T} @ [T, Ty, ..o, Ty, ;] = 0 € Coker(ry, )
ifiy £ for 1 <1 <k.
Proof. We show the lemma by induction on k. For k = 2, we have
o (Kiiy, Kiiy]) = 27 @ [23, Tig, 00, ] — 7 ® [, @4, T3, ] = 2] @ [, Ty, 4]
Assume k > 3. By the inductive hypothesis, there exists a certain o € A, (k — 1)
such that
Tllf—l,N(U) = :E: ® [Iil 3 Ligy e evs Iik—l"ri}'
On the other hand, we have 7{ y(Ki;,) = 2] ® [i,ix]. Then, by the Jacobi identity,

TIQ,N([Kiin]) = 371* ® [$i17xi27 sy Ly Ty xzk]—fﬂf ® [$i17xi27 sy gy _qs [x“xlk“
= ‘/Er ® [mi17xi27 R 7xik7xi]~
This completes the proof of Lemma O

Lemma 5.10. Fork>5,n>k+2and4<I<k-1,
TF @ [Tiy, Tigs ooy Ty Tis Tig g5 Ty ] =0 € Coker(Tlg,N)

if iy # 1 for m #£ 1.
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Proof. Since n > k + 2, there exists a certain j € {1,2,...,n} such that j # 4,4,
for 1 <m <k+1and m # . From Lemma [5.7] there exist o € A/ (k—1+ 1) and
7€ Al (I — 1) such that

/ *
Tk—H—LN(U) =Z; & [l‘], xiz+17 D) xikJFJv
*
7-l—l,]\/'()T) = I] oy [Iim' .. 7xil,1ax’i]'
Then we have
/ *
Tka([U, T]) =r; ® [:Ei17xi2’ sy Ly Ly Ty gy e e 7xik+1]'
This completes the proof of Lemma 510 O
Lemma 5.11. For k > 2,
* * !
T; ® [Ii’xiw s "Tik+1] =y Y [Ij7$ik+17xi27 R Ilk] € COker(Tk,N)

7,fZ,] #i27"'7ik}+1 G/ﬂdl?é]
Proof. From Lemma [5.7] there exists a certain o € A/ (k — 1) such that

7—];71’]\](0') - -’L‘; & [xi7xi2, e 7.’1/'1‘19].
Then,
T,Q7N([Kijik+1,a]) =2 @ [T, Tiy, . s Tiy ) — T; ® [T, Tip sy Tigs oo iy
This completes the proof of Lemma [B.11] O

Lemma 5.12. Forn >k + 2,
T @ [T, Tiy,y - Tiy ] = T @ [T, Ty, -, Ty Tiy) € Coker(7y, )
ifi#i27"'7ik+1~

Proof. Since n > k+ 2, there exists a certain j € {1,2,...,n} such that j # ¢,4; for
3 <1<k+1. From Lemma[5.I]] there exists a certain o € A/ (k — 1) such that

T N(0) = 27 @ [Tiy Tig, oo iy, | — @F @ [, @iy s Tigy -5 Ty ]
Then,
TIQ,N([O'a K”'z]) = .’E: & [xiaxiza e 'vxik+1] - $>: ® [$i’$i37 ce "TikJrl’xiQ]
= 0jin®y @ [T, Tiy s Tigy oy Tiy, T

Hence from Lemma 5.9, we obtain the required result. This completes the proof of
Lemma [5.12] O

Next, we consider the case where k = 3.

Lemma 5.13. Forn >4, if i # i1,12,14, then
(1) @} @ [wi), Tig, T, Tiy] = TF @ (T4, Tiy, Tig, Tiy) — T @ [T4, Tiy, Tiy, Ty,
(2) ‘/Er ® [‘Til’xi27xi7xi4] = '/Er ® [-’131'2,1‘1‘471)7;,3}7;1]

in Coker(73 y).

Proof. From Lemma [5.9] there exists a certain o € A/, (2) such that

73(0) = a7 ® [wiy, Tig, 24].
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Then, we obtain
T3 N ([Kiis, 0]) = @] @ [, iy, i, iy ] — 7 @ [Ty, Ty, [0, 04,
=] @ @iy, Tiy, Tiy Tiy) + F @ (4, Tiy, [Tiy, Tiy ]
=2 @ [Tiys i, Tiy Tiy) — T) @ [Tiy Tiyy Tiny Tiy | + T @ [Tiy Tiyy Tiy s Tig)-
Hence we have part (1). For part (2), from part (1), we have
T @ [Ty, Tig, Tiy Tiy| = 7 @ [4, iy, Tg, Tiy | — 7 @ [, iy, Ty, T
T @ [Tigy Tigy Tiy Tiy| = Tf @ [Tiy Tiyy Tigs Tip) — T) @ [Tiy Tiy, Tig,y Tiy)

in Coker(r3 ). Then from Lemma B.12] we obtain the required result. This com-
pletes the proof of Lemma [5.13] O

Lemma 5.14. For k> 5 andn > k + 2,
Ty @ [Tiy s Tigs ooy Tip_y 5 T4y Ty, | = 0 € Coker(T,;N)
if iy £ forl #£k.

Proof. Since n > k + 2, there exists some j € {1,...,n} such that j # 4,4 for
1<m <k+1and m# k. From Lemmas[5.I3 and [5.7] there exist some o € A/ (3)
and 7 € A, (k — 3) such that

Té,N(U) = .I;k ® [I], Lig_15Lis xikJrl} - 'I;k & [xik,I y Ligy15Lis I]L
TIQ—B,N(T) = ‘I;k (29 [‘T’ha e axikfz];
respectively. Then,
TI/C,N([U’ T]) = ‘T’T & [‘T’h yLigy e ooy Tig_qy Ly xik+1]-
This completes the proof of Lemma [5.14] O
Lemma 5.15. For k > 2,
I;(®[‘T’i1 y Liny Ly Ly o+ 7xik+1}
— :c;" @ [T, Tigs oy Tigyy > Tigy Ty — xj @ [T, Tigy ooy Tigyy > Tiy s Ty
€ Coker(ry, ) if i, # i for L # 3, and i # j.
Proof. From Lemmas and 0.7 there exist some o € Al (k—2) and 7 € A,(2)
such that
Ty N(0) = 2] @ [T, @iy Ty ]
TIQ—2,N(T) = ‘r;k & [‘rh y Lig s Ii]v

respectively. Then, by the Jacobi identity,

TN ([0, 7)) = @) @ (@i, Tiy, Tiy Tig - - -5 Tig 4]
_x;®[‘Ti17xi27[:Ej7xi47"'7xik+1”
=27 @ [Tiy, Ty, Tiy Ty - - oy Tip |
FTIR[Tf, Tigy ooy Tig s Tiy s Tig] — T3 Q[T Tigs + v vy Tig oy s Tigs Ty -
This completes the proof of Lemma [5.15] O
Lemma 5.16. For k > 5,
TF @[Ty s iy Tiy Tigy -+ o5 iy )] = Tf @ [Ty, Ty, Tjy Ty -+ - Ty, 5 Ty € Coker(7y, y)

ifi,j # 4 forl #3, and i # j.



THE JOHNSON HOMOMORPHISMS 1661

Proof. From Lemma [5.7] there exists some o € A, (k — 1) such that
/ _ * . X . . .
Tk*l,N(O’) - xi ® [x7417x127xj7x7457 e 7xzk+1]~
Then,
/ _ * . . . . . .
Tk,N([Uv KJ7«42]) =Z; & [.’[“ y Ligy [.’[14, xl]v Ligy v s 7x7,k+1]
E3
+ :Ej ® [xilaxi27xj7xi57 cee 7xik+17x’i4]
*
= ‘/Ei ® [‘xil’xi27xi47xi7xi57 st 7xik+1]
*
- Ii ® [xi17$7;2,$i,$i4,xi5, e axik+1]
*
+ ij ® [xil,:ci2,:cj,xi5, N ,l’ikJrl,.’Eu].

Hence from Lemma [B.10, we obtain the required result. This completes the proof
of Lemma [£.16] O

In the following, we consider the case where n > k + 2. From Lemmas [5.9]
and [5.14] we see that COkeT(T];,N) is generated by elements x} ® [z, iy, . . ., T4y, ]
and x} @ [z, Tiy, Ti, Tiy, - - -, Ty, ) Of § such that 1 < 4,4 <n and i # i;. Further-
more, if we set

§'(iy 0y .y ipg1) = X @ (@4, Tig,y oo Ty, ] € Coker(TAN)

for 4; # 4, then from Lemmas [5.11] and 512] we see that s'(i, 42, . ..,ig+1) does not
depend on the choice of i such that i # 4; for 2 <1 < k 4+ 1. Hence we can set

S(ig, ey ik+1) = S/(i,ig, ey ik+1)
and have
S(ig, . 7ik+1) = S(ig, . 7ik+1,i2) == S(ik+1,i2, .. .,ik)

in Coker(7;, ).
Next, set

I i i . X /
(i, 02,0,04, . .., lgt1) 1= T ® [Tiy, Tiy, Tiy Tiy, - - - 7$z‘k+1] € COker(Tk,N)
for ¢; # 1. From Lemma .15 we verify that
u (2177/27@77/47 .- -7@k+1) = 8(14, .- -ylk+1712721) - 8(14, .- -,lk+1721722)

and it also does not depend on the choice of i such that i # ¢; for [ # 3. Hence we
can set

u(il, ig, i4, e ,ik+1) = u’(z’l, ig,i, i4, e ,ik+1).
Here we consider some relations among the (i1, 42,44, ..., ix+1)s. First, using
U(i17i27i4, . ,ik+1) = S(il, i4, . 7ik+1,i2) — S(i17i27i4, . ,’L'k+1)7
we obtain
(8)  uld,dns a2y -5 Jk) +ulds g2, - oy iy J1) + -+ wlds Jis J1s - - -5 Jr—1) = 0.
From Lemma [5.16] we see

9) w(i1,92, %4, . -, tt1) = (i1, 92,95, . . ., tkt1, 44).
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In general, for k > 5,
0= x;k & [xilvxiza [xivxm}’ [xisaxie]vxim s vxik+1]
=T @ T4, Ty, Tiy iy [Tig, Tigls Tigs -+ Tiyyy )
- l‘f ® [miwxizvxiw‘xiv [xisnxia]axiw .. 'axik+1]
= 35? ® [‘Th’xiz’xi’xiw [mis’xi6]7xi7""7xik+l]
= x;k & [xilaxizaxiaxiwl'is’xie.vxim"~7xik+1]
— T} @ [Tiy, Tiy, Tiy Tigy Tigy Tigy Tigy - -+ > Tiy |

in Coker(7;, ). This shows

(10) u(i17i27 Z.472’57/6.67 Z.77 s 7ik+1) = u(i17i27 Z.47/L.(i7i5)7i'77 s 7ik+1)‘

Observing the fact that for any [, the symmetric group &; of degree [ is generated
by a cyclic permutation of length [ and a transposition, we verify that

(11) u(iv, do, 1, o, -+ Je—2) = (i1, 82, Jy(1)s Jy(2)s - - Jy(k—2))

for any v € &;_o by @) and (I0).

In order to reduce the generators more, we consider the rational case. By the
same argument as above, we see that Coker((7; y)q) is also generated by the
s(i2y .., ig+1)s and u(iy, 42,44 ..., ik4+1)S as a Q-vector space for n > k+ 2. Denote
by W the subspace of Coker((7;, ;')q) generated by elements u(iy, iz, 13, ..., i) for
i1 > ig > i3 < iy < --- < 1g. Then we have

Lemma 5.17. Fork>5,n>k+2, and any 1 < j1,...,5k < n,
u(j17j2aj3a"'ajk:) ew.

Proof. By [), we may assume that j; > jo and j3 < -+ < jgy1. Suppose jo < js.
If jo < js, by (8), we obtain

u(j17j27j37 e 7jk) = _u(j17j37j27j47 cee 7]k) - u(j17j47j27j37j57‘ .. 7.7k)
- u(jlvjk7j27j37 cee 7jk—1) eW.
If jo = js, there exists some [ such that 3 <[ < k and
=== <Ji+1 = < Jk-
Then, by (), we see
(Z - 1)u(j17j27j37 ) 7]k) = _u(jlajl+17j27 s 7jl7jl+17 e Jk:)
_"'_u(j17jk7j27"'7jk—1)-

Therefore, we obtain the required result. This completes the proof of Lemma

EI7 O
Now, if we set V' := Coker((7;, x)q)/W, we have

S(j17j27j37 e 7jk?) = S(j27j17j37 e 7jk3) eV
This shows

S(jlaj?aj?n s ajk) = S(j’y(l)aj’y@)ajv(?))v cee 7.j’y(k:)) eV
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for any v € 6. In particular, V is generated by s(j1,jo,Js,-..,Jx) such that
1 <71 <+ < jg < n. Therefore we conclude that

Proposition 5.1. For k >5 and n >k + 2, Coker((1; y)q) is generated by
{s(i1;i27i3a"'7ik)|]— S Z‘1 S S Zk S TL}

and
{U(il,ig,ig,...,ik) |Zl > ig > ig < i4 <...< Zk}
as a Q-vector space. In particular, the number of the generators above is

<n+:—1)+(k—2)2(k—1)<n—|—:—3>.

Therefore we conclude that
Theorem 5.3. Forn > k+ 2,
Coker((7, x)q) = S*Hq @ HE ",
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