1	Digesta passage time, digestibility and total gut fill in captive Japanese
2	macaques: the effects of food type and food intake level
3	
4	AKIKO SAWADA ¹ , EI SAKAGUCHI ² AND GORO HANYA ¹
5	
6	¹ Primate Research Institute, Kyoto University
7	² Graduate School of Natural Science and Technology, Okayama University
8	
9	
10	
11	
12	
13	*Correspondence to: Akiko SAWADA, Primate Research Institute, Kyoto
14	University, Inuyama, Aichi, 484-8506, Japan. Telephone: +81-568-63-0545,
15	facsimile: +81-568-63-0564, e-mail: a_sawada@pri.kyoto-u.ac.jp
16	
17	
18	

19 Abstract

20	Digestion is an important process in understanding the feeding ecology
21	of animals. We examined digesta passage time, digestibility, and total gut fill in
22	Japanese macaques ($n = 4$) under four diet conditions representing the seasonal
23	and regional variations in the diets of wild populations to determine the effects of
24	food type and food intake on these digestive features. Food type was
25	associated with mean retention time (MRT), digestibility, and total gut fill. Dry
26	matter intake (DMI) of food was positively correlated with total gut fill but not with
27	MRT or digestibility. Indigestible DMI, on the other hand, affected MRT
28	negatively. Thus, when Japanese macaques consume high-fiber foods, MRT
29	becomes shorter and digestibility is lower than eating low-fiber foods.
30	Moreover, macaques experience increases in total gut fill when they consume
31	high-fiber diets or a large amount of food. Japanese macaques may excrete
32	difficult-to-digest food components quickly: they nevertheless buffer an increase
33	in food intake by an increase in gut fill. Our study offers new insight into the
34	relationship between feeding ecology and nutritional physiology in primates by
35	simultaneously examining the effects of food type and intake level on MRT and
36	digestibility.

38 Key words: digesta passage time; mean retention time; digestibility; total gut

39 fill; Macaca fuscata

41 Introduction

43	Animals must absorb nutrients and energy from the foods they ingest
44	and digest (Robbins 1983). Since the amount of food they need to eat highly
45	depends on how efficiently they can digest food, digestibility must be taken into
46	account to understand energy balance. Plant foods are rich in hard-to-digest
47	structural carbohydrates such as cellulose and hemicellulose. The relatively
48	large and/or sometimes compartmentalized gastrointestinal tracts and symbiotic
49	gut microbes of herbivores enable them to retain such fibrous foods for a longer
50	time period and to carry out adequate bacterial fermentation. In herbivores,
51	digestion is a time-dependent process (Clauss et al. 2007), and the longer the
52	ingesta is retained in the tract, the better digestibility becomes (Stevens and
53	Hume 1998). Mean retention time (MRT) is the most reliable single measure to
54	evaluate the digesta passage time. Digestibility becomes higher with an
55	increase in MRT values in ungulates (Illius and Gordon 1992; Clauss et al. 2007).
56	A recent review by Clauss et al. (2008) also found the same positive relationship
57	between MRT and apparent digestibility of neutral detergent fiber (NDF; largely
58	consisting of hemicellulose, cellulose and lignin) among primates, such as

lemurs (Edwards and Ullrey 1999a; Campbell *et al.* 2004), howler monkeys, and
colobus monkeys (Edwards and Ullrey 1999b).

There are two types of digestive systems in primates; caeco-colic and 61 62forestomach fermentations (Lambert 1998). Most primate species, including Japanese macaques, are caeco-colic fermenters with a relatively large colon 63 and/or enlarged caecum for extended microbial fermentation. The colobines, 64 like nonruminant herbivorous species such as hippos, tree kangaroos and sloths, 65on the other hand, are forestomach fermenters having an enlarged, sacculated 66 67 forestomach, which enables the animals to carry out extended microbial fermentation (Chivers 1994; Chivers and Langer 1994; Stevens and Hume 1998). 68 In general, caeco-colic fermenting animals feed on foods with relatively 69 70digestible components, whereas forestomach fermenting animals rely on foods with high-fiber contents (Lambert 1998). 71Wild primates feed on various kinds of foods, reflecting seasonal and 72regional differences. Japanese macaques in different regions adopt different 73feeding strategies, and diet composition, activity budget, and home range size 7475are affected by the differences in food availability (Nakagawa 1997; Hanya 2004; Tsuji and Takatsuki 2004). For example, Japanese macaques in both 76

 $\mathbf{5}$

77	warm-temperate evergreen forests and cool-temperate deciduous forests
78	confront difficulties in meeting caloric and nutritional requirements during winter
79	(Nakagawa et al. 1996). In the evergreen forest of Koshima Island, for example,
80	the major food resource for macaques during winter is mature leaves. These
81	leaves contain high levels of fiber and low levels of easily digestible
82	carbohydrates (Iwamoto 1982), but nevertheless food intake is high enough to
83	compensate for the low diet quality. In the deciduous forest of Kinkazan Island,
84	on the other hand, macaques feed mainly on winter buds and tree barks, which
85	also have a relatively low nutritional quality. These food items are so small that
86	the macaques fail to increase food intake enough to offset the low diet quality.
87	Based on observations of feeding behavior and nutritional analysis of their foods,
88	Nakagawa (1989) revealed that energy intake of Japanese macaques during
89	winter was not enough to cover maintenance energy requirements. In addition
90	to consumption of fat accumulated during autumn (Wada et al. 1975), Japanese
91	macaques may have physiological adaptations that enable them to meet
92	nutritional and caloric needs when they confront such bad food conditions. If
93	macaques are capable of increasing retention time to prolong time for bacterial
94	fermentation under a food shortage, for example, they might need less food and

thus could save time and energy searching for foods. Alternatively, they might 95be able to improve digestive activity by increasing total gut fill in response to 96 changes in food conditions, as in some rodent species (EI-Harith et al. 1976; Owl 9798and Batzli 1998; Nava et al. 2005). In this study, we simulated variable food environments that wild 99 100 populations would face using captive Japanese macaques to determine the 101 effects of food type and food intake level on mean retention time (MRT), digestibility and total gut fill as an index of gut intake capacity. We predict that 102 103 MRT becomes longer in response to an increase in indigestible material intake level to have enough time for fiber digestion and prevent a decrease in 104 digestibility. We also examined the prediction that total gut fill increases when 105106 the macaques consume more indigestible materials as reported in rodents. 107 This study offers new insight into the relationship between feeding ecology and 108 nutritional physiology in primates by simultaneously examining the effects of food type and intake level on MRT and digestibility. 109 110

111 Materials and methods

113 Study Subjects

115	We conducted this study on four individually housed adult male
116	Japanese macaques (mean 13.6 kg body weight; 10.5 years old) at the
117	Research Resource Station of the Primate Research Institute, Kyoto University
118	(Table I). All of the animals were born and raised in captivity. Their usual diets
119	consist of artificial pellets with moderate-level fibers, along with some fruits and
120	vegetables such as apples and sweet potatoes. We also give them a piece of
121	wood so that they can nibble the tree bark. The animals did not have any of
122	these additional food items during each experiment. We carried out the
123	experiments from January 21, 2008 to March 29, 2008.
124	
125	Experimental Diets
126	
127	To investigate the effect of NDF content of food on MRT and digestibility,
128	we used high-fiber (NDF 37.5%; Oriental Yeast Co., Ltd.) and low-fiber diets
129	(NDF 13.6%, PMI Nutrition International) (Table II). During the first experiment,
130	we gave the animals a small amount (166 g/day in dry matter (DM), or180 g/day

131	as fed) of high-fiber pellets to study the effects on MRT and digestibility (Table III).
132	In the next experiment, we fed them a large amount (230 g DM, 250 g as-fed) of
133	the same high-fiber pellets. In the following two experiments, we gave the
134	animals low-fiber pellets in the same amounts (Small: 169 g DM, 180 g as-fed;
135	Large: 235 g DM, 250 g as-fed). Thus, we set four feeding conditions:
136	High-Small, High-Large, Low-Small and Low-Large. Low-Large represents the
137	situation where high-quality food is abundant, whereas High-Small reflects the
138	worst case scenario that macaques in deciduous forests would face during
139	winter. Daily dry matter intake (DMI) of High-Small was 166 g and the daily
140	energy intake was 531 kcal (physiological fuel value; provided by the
141	manufacturer).
142	
143	Feeding Trials
144	
145	Each time before we started feeding the animals a new type of food, we
146	set a 3-day introduction period and a 5-day adaptation period. The first 3 days
147	were to gradually change their diets from the original to the experimental ones.
148	During the next 5 days, the animals consumed only experimental diets so that

149	we could exclude possible effects of the original diets they had previously had,
150	although gut microbes may take more than 8 days to adapt to the experimental
151	diet. We fed the animals twice a day, at 10:00h and at 15:00h, and quantified
152	the amount of food at the individual level. The animals consumed all of the
153	food given and water was available ad libitum. We checked body weight of the
154	animals before and after each experiment to maintain their good health (Table
155	IV).
156	
157	Measurement of Digesta Passage
158	
159	We used chromium mordanted onto cell-wall constituents (Cr-CWC;
160	0.08 g/BW kg) prepared from alfalfa (Medicago sativa) as the particle Cr marker
161	and Cobalt-ethylene diaminetetraacetic acid (Co-EDTA; 0.04 g/BW kg) as the
162	fluid Co marker (Udén et al. 1980; Caton et al. 1999). We mixed the marker
163	dose into a piece of pancake and gave it to the animals at 8:00 on Day 1 of each
164	trial before their morning meals.
165	We set a wire-mesh sheet on four legs under each cage so that we could
166	easily separate feces from urine. After marker dosing at 8:00h, we monitored

167	the animals every 2 hours for the first 12 hours, then every 4 hours for the next
168	12 hours (Day 1 - Day 2). We observed the animals every 6 hours for the next
169	24 hours (Day 2 – Day 3) and every 8 hours for the last 72 hours (Day 3 – Day 6)
170	(Sakaguchi et al. 1991). After collecting samples, we deep-froze them
171	immediately at -30 $^{\circ}$ C, and then vacuum-dried them at 60 $^{\circ}$ C until reaching a
172	constant weight. Next, we ground dried samples and stored them in plastic
173	tubes. For determination of chromium (Cr) and cobalt (Co), we ashed each
174	fecal sample at 550 °C for 6 hours in a muffle furnace. Then we dissolved the
175	ashed samples in 0.1 N hydrochloric acid solution. We determined Cr and Co
176	concentration in the treated sample by atomic absorption spectroscopy (Atomic
177	absorption spectrophotometer AA-660, Shimadzu, Kyoto).
178	
179	Measurement of Digestibility
180	
181	We determined apparent digestibility of DM (aD DM) and NDF (aD NDF)
182	in each trial. To carry out nutritional analysis for each feeding trial, we pooled
183	all the feces of the last 96 hours, from 8:00h on Day 2 to 8:00h on Day 6, for
184	each animal (Table III). We did not use feces collected prior to this period as an

186

suggested that complete marker excretion may take over 100 hours.

precaution in addition to the 5-day adaptation period since the marker analysis

- To estimate aD DM, we also needed to determine food intake during the same period. Since we finished the experiment before AM meal on Day 6, we considered the total food intake of each trial as the sum of food given from Day 2 to Day 5. We determined aD NDF in duplicate from 0.5 g samples using the methods of Van Soest *et al.* (1991). After removing crude fat from samples by
- the Soxhlet method with a diethyl-ether extract, we boiled them in an NDF
- 193 solution for 1 hour. We dried the NDF residues and then calculated NDF by
- 194 subtracting the ashed residues from them.
- 195

196 Data Analysis

197

We calculated the particle Cr and fluid Co MRT of each animal according
to the formula of Blaxter et al. (1956):

200 $MRT(h) = \frac{\sum_{i=1}^{N} MiTi}{\sum_{i=1}^{N} Mi}$ 201

where M_i is the amount of the marker excreted in the *i*th defecation and *n* is the

203	total number of defecations. We regarded T_i as the middle of the sampling
204	interval so that the calculated MRT would become a better indication of the true
205	MRT without frequent sampling (Van Weyenberg et al. 2006).
206	We used the following formula for apparent digestibility (Robbins 1983):
207	
208	$aD(\%) = \frac{\text{Amount consumed - Fecal excretion}}{\text{Amount Consumed}} \times 100$
209	
210	,based on an average daily food intake and excretion over 4 days.
211	We estimated the amount of Indigestible DMI (g/kg ^{0.75} /d) using the
212	following formula:
213	Indigestible $DMI = DMI - (DMI \cdot A)$
214	where A is the fractional digestibility of the diet.
215	We calculated total gut fill of the animals as follows (Holleman and White
216	1989):
217	$V = V_N + \frac{V_N \cdot A}{2(1-A)}$
218	
219	where V_N is the indigestible material fill. Of the two formulae provided by
220	Holleman and White (1989), we chose the equation based on the assumption

221	that absorption of ingested food would occur linearly with time. We did not take
222	the fluid Co marker MRT into account since the marker used in this calculation
223	must be representative of solid ingesta (Holleman and White 1989).
224	We analyzed MRT values and digestibility using a generalized linear
225	model (GLM), where food type and intake level were independent variables
226	(food type: High = 0, Low = 1; food intake level: Large = 0, Small = 1), in R for
227	Windows version 2.9.2 (2009 The R Foundation for Statistical Computing). We
228	selected the function with the minimum Akaike Information Criterion (AIC) as the
229	best-fitted model for each feeding trial. We also analyzed the relationship
230	between MRT and digestibility as well as that between indigestible DMI and
231	MRT.
232	
233	Results
234	
235	Digesta Passage
236	
237	MRT of both the particle Cr and fluid Co markers became shorter under
238	high-fiber diets (Fig. 1). The best-fit model selected for the particle Cr included

239	only food type (Cr MRT = 12.425 * food type + 35.125, AIC = 110.37, df = 15, F =
240	13.553, $P = 0.002$). Although the best-fit model for the fluid Co included both
241	food type and food intake level (Co MRT = 16.038 * food type + 5.613 * food
242	intake level + 26.456, AIC = 114.77, df = 15, F = 10.131, P = 0.002), a model
243	including only food type also had a small AIC (Co MRT = 16.038 * food type +
244	29.262, AIC = 115.28, df = 15, F = 16.614, P = 0.001), suggesting that food type
245	had a stronger effect on the MRT of the fluid Co markers. The differences in
246	MRT for the two diet types were 12 hours for the particle Cr marker (high-fiber:
247	35.1 \pm 1.9 h, low-fiber: 47.5 \pm 9.3 h; mean \pm SD) and 16 hours in the fluid Co
248	marker (high-fiber: 29.3 \pm 3.3 h, low-fiber: 45.3 \pm 10.6 h). The amount of food
249	intake level had no effect on MRT of the both markers.
250	The amount of indigestible material in the four diets was largest in
251	High-Large, then High-Small, Low-Large, and Low-Small (Fig. 2, Table IV).
252	MRT of both markers became shorter with increasing indigestible DMI
253	(Pearson's correlation, Cr: <i>r</i> = -0.748, df = 14, <i>P</i> < 0.001, Co: <i>r</i> = -0.819, df = 14,
254	P < 0.001, Fig. 3), although this relation was not very clear in the high-fiber diets,
255	where the animals consumed a relatively large amount of indigestible materials.
256	

257 Digestibility

258	Both aD DM and aD NDF measured in the high-fiber diets were lower
259	than those of low-fiber diets. The best-fit model selected for aD DM included
260	only food type (aD DM = 26.297 * food type + 56.897, AIC = 72.50, df = 15, F =
261	640.73, $P < 0.0001$). Both food type and food intake level showed effects on
262	aD NDF (aD NDF = 11.469 * food type – 4.601 * food intake level + 54.746, AIC
263	= 100.38, df = 15, F = 13.199, $P < 0.001$), although food type appeared to be
264	more influential than food intake level (aD NDF = 11.469 * food type + 54.746,
265	AIC = 102.34, df =15, F = 19.234, P < 0.001; aD NDF = -4.601 * food intake level
266	+ 60.48, AIC = 114.56, df = 15, F = 1.4065, P = 0.255). High-fiber diets had
267	more than 25% lower aD DM compared to low-fiber diets (56.9 \pm 1.9% and 83.2
268	\pm 2.3%, mean \pm SD, respectively), and aD NDF of high-fiber diets was also lower
269	than that of low-fiber diets (53.6 \pm 4.4% and 62.9 \pm 9.0%, respectively; Table IV).
270	MRT and aD DM were correlated with each other in the trials with
271	low-fiber diets, but not in those with high-fiber diets (Fig. 4). Since food intake
272	did not have an influence on MRT values, we pooled all data from the four trials
273	and then divided them into two groups based on food type. As a result, we
274	found a significant correlation between the particle Cr MRT and aD DM in the

275	low-fiber diet trials (Pearson's correlation, Cr: $r = 0.722$, df = 6, $P = 0.043$),
276	although the slope of the regression was not steep. There was no such
277	significant correlation between the fluid Co MRT and aD DM (Co: $r = 0.695$, df =
278	6, $P = 0.056$). MRT was not correlated with either aD DM of high-fiber diets
279	(Pearson's correlation, Cr: $r = -0.124$, df = 6, $P = 0.769$, Co: $r = 0.432$, df = 6, $P =$
280	0.286) or aD NDF of both high-fiber (Cr: $r = 0.285$, df = 6, $P = 0.494$, Co: $r =$
281	0.385, df = 6, P = 0.346) and low-fiber (Cr: r = - 0.036, df = 6, P = 0.933, Co: r = -
282	0.084, df= 6, P = 0.843) diets.
283	
284	Total Gut Fill
285	
286	Total gut fill was associated with both food type and intake level. The
287	best-fit model for total gut fill included both food type and intake level (Total gut
287 288	best-fit model for total gut fill included both food type and intake level (Total gut fill = $-67.309 *$ food type $-28.031 *$ food intake level + 142.044, AIC = 128.30, df
287 288 289	best-fit model for total gut fill included both food type and intake level (Total gut fill = - 67.309 * food type – 28.031 * food intake level + 142.044, AIC = 128.30, df = 15, F = 80.111, $P < 0.0001$). Total gut fill became greater when the animal fed
287 288 289 290	best-fit model for total gut fill included both food type and intake level (Total gut fill = $-67.309 * food type - 28.031 * food intake level + 142.044$, AIC = 128.30, df = 15, F = 80.111, <i>P</i> < 0.0001). Total gut fill became greater when the animal fed the diets with either larger amounts or higher fiber levels (Fig. 5).

Discussion

294	Two limitations of our study may influence our results. First, we used					
295	NDF rather than acid detergent fiber (ADF) as a parameter of fiber content.					
296	ADF permits more precise comparisons because NDF contains partially					
297	digestible hemicellulose. When two diets given to gorillas contained similar					
298	levels of NDF, the one with high ADF content showed a low digestibility (Remis					
299	and Dierenfeld 2004). However, the high-fiber pellets are also likely to be high					
300	in ADF due to the large difference in NDF levels of the two diets we used (37.5%					
301	in high-fiber; 13.6% in low-fiber, respectively). Second, we had no information					
302	on NDF composition. Hemicellulose is more digestible and lignin is less					
303	digestible, so the higher aD NDF of the low-fiber diet might suggest a high					
304	hemicellulose content, whereas the high-fiber diet contains more lignin. Such					
305	differences in NDF composition may affect aD DM of the two diets. However,					
306	even if that was the case, our result would not be very different because of					
307	distinct differences in both the NDF content and aD DM of the two diets.					
308						
309	Effects of Food Type					

311	This study shows that MRT measured in both particle and fluid markers
312	become much shorter when the Japanese macaques feed in the high-fiber diets.
313	This tendency has been reported for other primate species including langurs
314	(Nijboer et al. 2007) and chimpanzees (Milton and Demment 1988), and is likely
315	to e because high-fiber diets contain more indigestible materials, which push the
316	digesta out to the gut, and thus shorten the MRT.
317	Both the apparent digestibility of dry matter and NDF (aD DM, aD NDF,
318	respectively) depended on food type. A higher aD DM in the low-fiber diets is
319	consistent with the previous studies on lemurs (Edwards and Ullrey 1999a),
320	gorillas (Remis and Dierenfeld 2004), orangutans (Schmidt et al. 2009), and
321	howler and colobus monkeys (Edwards and Ullrey 1999b), and the same
322	negative correlation exists between aD NDF and fiber contents of diets (Schmidt
323	et al. 2009). Since high-fiber foods contain more indigestible material that
324	inhibits absorption of nutrients, it is reasonable to find a lower aD DM and aD
325	NDF.
326	Food type also affects total gut fill of Japanese macaques. Greater
327	total gut fill in the High-Small diet compared to the Low-Large diet implies a more
328	significant effect of food type than food intake. The differences in total gut fill

329	among the four diets may indicate the feeding strategy of Japanese macaques in
330	different food environments. When food contains a lot of fiber, the macaques
331	can meet their energy requirement either by increasing food intake level or
332	decreasing MRT down to a point where digestibility might be compromised (Fig.
333	3). Once their MRT bottoms out due to high indigestible DMI, the macaques
334	can react by increasing total gut fill in order to prevent further drops in MRT.
335	
336	Effect of Food Intake Level
337	
338	DMI had little effect on both MRT and digestibility in Japanese macaques.
339	This result differs from previous studies on herbivores, where MRT became
340	shorter as DMI increased (Fryxell et al. 1994; Clauss et al. 2004; Clauss et al.
341	2007), and primates, where a review of studies on 19 species found a significant
342	negative correlation between MRT and DMI (Clauss et al. 2008). This
343	difference in results may be due to a difference in the range of food intake levels,
344	which is expressed as relative DMI (g/kg ^{0.75} /d). Relative DMI in this study is
345	10.2 - 21.0 g/kg ^{0.75} /d (Table IV), which is smaller than the 11 - 118 g/kg ^{0.75} /d
346	range of the previous study (Clauss <i>et al.</i> 2008). However, the food intake level

of wild Japanese macaques usually does not range that wide, and the relatively
small range in food intake level (190 - 299 DM g/d over a 6-month period) among
macaques in the evergreen forest of Koshima (Iwamoto 1982) suggests that the
food intake level in our experiment was reasonable.

Indigestible DMI affected the particle Cr marker MRT while food intake 351level had little effect on MRT. The more the animals ingested indigestible 352353materials, the shorter the particle Cr MRT became, although this tendency was very weak in high-fiber diets since MRT becomes more or less constant once 354indigestible DMI reaches a certain level (5 g/kg^{0.75}/d, approximately) (Fig. 3). 355The variation in the particle Cr MRT among the four diets (High-Large, 356High-Small, Low-Large, and Low-Small) does not seem to be as great as that 357found in indigestible DMI, since there is little difference in MRT between 358High-Large and High-Small diets (Fig. 1). This may indicate that the amount 359360 of indigestible material in High-Small is high enough to bring MRT close to the minimum level, where additional indigestible material in High-Large would no 361longer affect MRT. 362363 DMI was associated with total gut fill of Japanese macaques.

High-Large diet showed greater total gut intake than High-Small diet, and

365	Low-Large diet showd greater total gut intake than Low-Small diet (Fig. 5).
366	Japanese macaques may be capable of increasing DMI by increasing total gut
367	fill when they need to consume a large amount of food. Based on the
368	combined effects of both food type and intake level on total gut fill, we conclude
369	that Japanese macaques have a flexible digestive tract that enables them to
370	deal with different food conditions.
371	
372	The Digestive Strategy of Japanese Macaques
373	
374	The results of this study indicate that aD DM measured in the low-fiber
375	diets become higher when MRT is longer. However, the correlation was small
376	since the range of aD DM (79.4 – 85.6%) was much smaller than that of MRT
377	(Cr: 34.9 - 60.2 h: Co: 31.6 - 59.9 h) Thus we could not firmly conclude that
	(01.34.9 - 00.2 h, 00.31.0 - 39.9 h). Thus, we could not himly conclude that
378	aD DM was improved by increased MRT. Compared to low-fiber diets,
378 379	aD DM was improved by increased MRT. Compared to low-fiber diets, high-fiber diets showed a much smaller range of MRT (Cr: 32.6 – 38.6 h; Co:
378 379 380	aD DM was improved by increased MRT. Compared to low-fiber diets, high-fiber diets showed a much smaller range of MRT (Cr: $32.6 - 38.6$ h; Co: 24.6 - 34.2 h), so we could not examine the influence of MRT on aD DM in the
378 379 380 381	aD DM was improved by increased MRT. Compared to low-fiber diets, high-fiber diets showed a much smaller range of MRT (Cr: 32.6 – 38.6 h; Co: 24.6 – 34.2 h), so we could not examine the influence of MRT on aD DM in the high-fiber diets.

A longer MRT is one way to deal with a high-fiber diet because microbial 382

383	fermentation of structural carbohydrates requires time. This is true for
384	leaf-eating primates such as the colobines (Edwards and Ullrey 1999b; Nijboer
385	et al. 2007), but not for Japanese macaque since they have a shorter MRT and
386	lower aD DM in the high-fiber diets. Our results indicate that the macaques
387	have a flexible digestive system that allows them to deal with various food
388	conditions and that there seems to be a gut capacity threshold around 5 g
389	indigestible DMI/kg ^{0.75} /d. Below this threshold, the more indigestible materials
390	the macaques ingest, the shorter MRT becomes. Once they reach the
391	threshold by consuming high-fiber foods or a relatively large amount of low-fiber
392	foods, their gut simply expands. These findings suggest that Japanese
393	macaques ensure MRT never becomes too short; not less than 30 h for particles.
394	Some rodent species are also known to have a flexible digestive strategy to
395	meet their energy requirements, increasing the size of the digestive tract in
396	response to temperature (Naya et al. 2005) or diet types (El-Harith et al. 1976;
397	Owl and Batzli 1998; Naya et al. 2005), suggesting better digestion due to
398	increased fermentative activity.
399	

400 Implications for the Feeding Ecology of Wild Japanese Macaques

402	Our results indicate that Japanese macaques use different food
403	processing strategies in different food environments. When low-fiber food is
404	available and indigestible DMI range is low, macaques excrete difficult-to-digest
405	foods quickly so that they can increase their food intake level. When food
406	contains a lot of fiber, they can meet their energy requirement either by
407	increasing food intake level or developing a greater total gut fill.
408	During winter, macaques in evergreen forests can live on mature leaves,
409	which are low in energy content (Iwamoto 1982). However, since leaves are
410	large in size, they can stuff themselves with such food in a short feeding time.
411	In such a food environment, the macaques may meet their energy requirements
412	by increasing food intake level and/or by developing a greater gut fill. In winter
413	deciduous forests, on the other hand, few mature leaves are available and
414	macaques eat mainly winter buds and tree barks, which reduce intake rate and
415	are difficult to digest (Nakagawa 1989). These animals must therefore survive
416	even severer food conditions. Macaques in deciduous forests lose their body
417	weight in winter by consuming fat deposited during autumn (Wada 1975; Wada
418	et al. 1975; Koganezawa 1995). One possible way to deal with such a situation

419	is to increase gut capacity so that they can retain indigestible materials in the gut
420	long enough to maintain fiber digestibility. Having an almost constant particle
421	MRT in the high indigestible DMI range may imply such an ability. The fact that
422	the fecal microflora of wild Japanese macaques in a snowy district was different
423	from that of captive ones (Benno et al. 1987) might also imply that wild Japanese
424	macaques have another digestive function de to unique intestinal microflora
425	Thus, our finding might not fully explain feeding adaptations in wild Japanese
426	macaques and further study of wild macaques is required.

In conclusion, we found that the digestibility of high-fiber food is lower 428than that of low-fiber food regardless of food intake level. Our findings suggest 429that Japanese macaques are capable of dealing with various food conditions by 430adopting different food processing strategies, under the strong influence of 431indigestible DMI level. Macaques excrete difficult-to-digest materials quickly in 432the low indigestible DMI range, while they have a constant MRT once 433indigestible DMI exceeds a threshold. These results demonstrate the need to 434435take food type or indigestible DMI into account when comparing MRT and digestibility within or among primate species. 436

438

439 Acknowledgements

440

The authors are grateful to Yoshiaki Kamanaka and Mayumi Morimoto of 441 442the Center for Human Evolution Modeling Research, Primate Research Institute, 443Kyoto University (KUPRI), and Kiyonori Kumazaki and Naoko Suda of the Research Resource Station, KUPRI for their great support in carrying out the 444 445experiments. We are also thankful for the help of the members of the Laboratory of Animal Nutrition, Okayama University, in marker analysis. We 446 appreciate Dr. Marcus Clauss, anonymous reviewer and the editor of this journal 447448 as well as the staff of KUPRI giving us helpful comments and advice on this study. Our study complied with the guidelines in KUPRI 's "Guide for the Care 449 450and Use of Laboratory Primates". This research has been approved by the ethics committee of KUPRI and financially supported in part by the Global 451Center of Excellence Program "Formation of a Strategic Base for Biodiversity 452453and Evolutionary Research: from Genome to Ecosystem" of the Ministry of Education, Culture, Sports and Technology (MEXT), Japan. 454

456 **References**

Blaxter, K. L., MacGraham, N. M., & Wainman, F. W. (1956). Some observations 457on the digestibility of food by sheep and on related problems. British 458459Journal of Nutrition, 10(2), 69-91. Benno, Y., Itoh, K., Miyao, Y., & Titsuoka, T. (1987). Comparison of fecal 460 microflora between wild Japanese monkeys in a snowy area and 461462laboratory-reared Japanese monkeys. Japanese Journal of Veterinary Science, 49(6), 1059-1064. 463464 Campbell, J. L., Williams, C. V., & Eisemann, J. H. (2004). Use of total dietary 465fiber across four lemur species (Propithecus verreauxi coquereli, 466 Hapalemur griseus griseus, Varecia variegata, and Eulemur fulvus): Does 467 fiber type affect digestive efficiency? American Journal of Primatology, 64, 468 323-335. 469 Caton, J. M., Hume, I. D., Hill, D. M., & Harper, P. (1999). Digesta retention in the gastro-intestinal tract of the orang utan (Pongo pygmaeus). Primates, 470 471*40*(4), 551-558. 472Chivers, D. J. (1994). Functional anatomy of the gastrointestinal tract. In A. G. Davies & J. F. Oates (Eds.), Colobine monkeys: Their Ecology, Behaviour 473and Evolution (pp. 205-227). Cambridge: Cambridge University Press. 474475Chivers, D. J., & Langer, P. (Eds.). (1994). The digestive system in mammals: Food, form and function. Cambridge: Cambridge University Press. 476Clauss, M., Streich, W. J., Schwarm, A., Ortmann, S., & Hummel, J. (2007). The 477478relationship of food intake and ingesta passage predicts feeding ecology 479in two different megaherbivore groups. Oikos, 116(2), 209-216. 480 Clauss, M., Streich, W. J. g., Nunn, C. L., Ortmann, S., Hohmann, G., Schwarm, A., et al. (2008). The influence of natural diet composition, food intake 481 482level, and body size on ingesta passage in primates. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 483150(3), 274-281. 484 485Clauss, M., Schwarm, A., Ortmann, S., Alber, D., Flach, E. J., Kühne, R., et al. (2004). Intake, ingesta retention, particle size distribution and digestibility 486 in the hippopotamidae. Comparative Biochemistry and Physiology - Part 487 A: Molecular & Integrative Physiology, 139(4), 449-459. 488 489 Edwards, M. S., & Ullrey, D. E. (1999a). Effect of dietary fiber concentration on 490 apparent digestibility and digesta passage in non-human primates. I.

- 491 Ruffed lemurs (*Varecia variegata variegata* and *V. v. rubra*). *Zoo Biology*,
 492 *18*(6), 529-536.
- Edwards, M. S., & Ullrey, D. E. (1999b). Effect of dietary fiber concentration on
 apparent digestibility and digesta passage in non-human primates. II.
 Hindgut- and foregut-fermenting folivores. *Zoo Biology*, *18*(6), 537-549.
- El-Harith, E. A., Dickerson, J. W. T., & Walker, R. (1976). Potato starch and
 caecal hypertrophy in the rat. *Food and Cosmetics Toxicology, 14*(2),
 115-121.
- Fryxell, J. M., Vamosi, S. M., Walton, R. A., & Doucet, C. M. (1994). Retention time and the functional response of beavers. *Oikos*, *71*(2), 207-214.
- Hanya, G. (2004). Seasonal variations in the activity budget of Japanese
 macaques in the coniferous forest of Yakushima: Effects of food and
 temperature. *American Journal of Primatology*, *63*(3), 165-177.
- Holleman, D. F., & White, R. G. (1989). Determination of digesta fill and passage
 rate from nonabsorbed particulate phase markers using the single dosing
 method. *Canadian Journal of Zoology, 67*(2), 488-494.
- Illius, A. W., & Gordon, I. J. (1992). Modelling the nutritional ecology of ungulate
 herbivores: evolution of body size and competitive interactions. *Oecologia*,
 89(3), 428-434.
- 510Iwamoto, T. (1982). Food and nutritional condition of free ranging Japanese511monkeys on Koshima Islet during winter. *Primates, 23*(2), 153-170.
- Koganezawa, M. (1995). Body fat indices and their seasonal variations in
 Japanese monkeys of Nikko, Japan (in Japanese with English abstract).
 Wildlife Conservation Japan, 1(1), 31-36.
- Lambert, J. E. (1998). Primate digestion: Interactions among anatomy,
- 516physiology, and feeding ecology. Evolutionary Anthropology: Issues,517News, and Reviews, 7(1), 8-20.
- 518 Milton, K., & Demment, M. W. (1988). Digestion and passage kinetics of
- 519chimpanzees fed high and low fiber diets and comparison with human520data. Journal of Nutrition, 118(9), 1082-1088.
- 521Nakagawa, N. (1989). Bioenergetics of Japanese monkeys (Macaca fuscata) on522Kinkazan Island during winter. *Primates, 30*(4), 441-460.
- Nakagawa, N. (1997). Determinants of the dramatic seasonal changes in the
 intake of energy and protein by Japanese monkeys in a cool temperate
 forest. *American Journal of Primatology*, *41*(4), 267-288.
- 526 Nakagawa, N., Iwamoto, T., Yokota, N., & Soumah, A. G. (1996). Inter-regional

and inter-seasonal variations of food guality in Japanese macagues: 527constraints of digestive volume and feeding time. In J. E. Fa & D. G. 528Lindburg (Eds.), Evolution and ecology of macaque societies. Cambridge: 529Cambridge University Press. 530531Naya, D. E., Bacigalupe, L. D., Bustamante, D. M., & Bozinovic, F. (2005). 532Dynamic digestive responses to increased energy demands in the leaf-eared mouse (Phyllotis darwini). Journal of Comparative Physiology 533534B: Biochemical, Systemic, and Environmental Physiology, 175(1), 31-36. Nijboer, J., Clauss, M., Van de Put, K., Van der Kuilen, J., Woutersee, H., & 535536Beynen, A. C. (2007). Influence of two different diets on fluid and particle 537retention time Javan langur (Trachypithecus auratus auratus). Der Zoologische Garten, 77(1), 36-46. 538Owl, M. Y., & Batzli, G. O. (1998). The integrated processing response of voles to 539fibre content of natural diets. Functional Ecology, 12(1), 4-13. 540541Remis, M., & Dierenfeld, E. (2004). Digesta passage, digestibility and behavior 542in captive gorillas under two dietary regimens. International Journal of 543Primatology, 25(4), 825-845. Robbins, C. T. (1983). Wildlife feeding and nutrition. New York: Academic Press. 544Sakaguchi, E., Suzuki, K., Kotera, S., & Ehara, A. (1991). Fiber digestion and 545digesta retention time in macaque and colobus monkeys. In A. Ehara, T. 546547Kumura, O. Takenaka & M. Iwamoto (Eds.), Primatology Today: Proceedings of XIIIth Congress of the International Primatological Society 548New York: Elsevier Science Publishers B. V. 549Schmidt, D. A., Kerley, M. S., Dempsey, J. L., Porton, I. J., Porter, J. H., Griffin, M. 550E., et al. (2009). Fiber digestibility by the orangutan (Pongo abelii): In vitro 551552and in vivo. Journal of Zoo and Wildlife Medicine, 36(4), 571-580. Stevens, C. E., & Hume, I. D. (1998). Contributions of microbes in vertebrate 553gastrointestinal tract to production and conservation of nutrients. 554Physiological Reviews, 78(2), 393-427. 555Tsuji, Y., & Takatsuki, S. (2004). Food habits and home range use of Japanese 556557macaques on an island inhabited by deer. Ecological Research, 19(4), 381-388. 558Udén, P., Colucci, P. E., & van Soest, P. J. (1980). Investigation of chromium, 559cerium and cobalt as markers in digesta. Rate of passage studies. 560Journal of the Science of Food and Agriculture, 31(7), 625-632. 561562Van Weyenberg, S., Sales, J., & Janssens, G. P. J. (2006). Passage rate of

563	digesta through the equine gastrointestinal tract: A review. Livestock
564	<i>Science, 99</i> (1), 3-12.
565	Wada, K. (1975). Ecology of wintering among Japanese monkeys in Shiga
566	heights and its adaptive significance (in Japanese with English abstract).
567	Physiology and Ecology, 19, 9-14.
568	Wada, K., Moritani, K., Hara, F., & Ohsawa, W. (1975). On the body fat of
569	Japanese monkeys inhabiting the Shiga Heights (in Japanese with
570	English abstract). Physiology and Ecology, 16(1), 104-107.
571	
572	
573	

574 Figure legends

575

- 576 Fig. 1 Mean retention time (MRT; h) of two markers by Japanese macaques
- among four feeding conditions. Box indicates upper and lower quartiles;
- 578 horizontal line indicates the median; whiskers indicate the range.
- 579 Fig. 2 Indigestible DMI in four feeding conditions.
- 580 Fig. 3 The relationship between indigestible DMI and particle Cr MRT.
- 581 Fig. 4 Relationships between MRT of the markers and apparent digestibility.
- (a) aD DM (b) aD NDF with the particle Cr marker MRT, (c) aD DM and (d)
- aD NDF with the fluid Co marker MRT.
- 584 Fig. 5 Total gut fill in four feeding conditions.

585

586

587 Table I. Details of the animals used in this study

Species	Animal	Born	Age (year)	Origin	Sex	BW (kg)
M. fuscata	1	1995	13	Captive	Male	13.2
M. fuscata	2	1995	13	Captive	Male	16.4
M. fuscata	3	1997	11	Captive	Male	14.7
M. fuscata	4	1999	9	Captive	Male	11.8

589 BW (body weight) was measured on January 20th, 2008, a day prior to the start

590 of the first experiment.

591

592 Table II. Major nutritional values of two commercial pellets and energy intake of

	High-Fiber *	Low-Fiber **
Crude protein (%)	18.6	25.9
Crude fat (%)	3.4	4.7
NDF (%)	37.5	^a 13.6
Crude ash (%)	12.1	5.7
Physiological fuel value (kcal / g)) 2.95	3.40
kcal / Large	737.5	850.0
kcal / Small	531.0	612.0

595 All values are expressed on a fresh basis.

596 NDF (neutral detergent fiber) = hemicellulose, cellulose and lignin

597 Physiological fuel value (kcal / g) = Sum of decimal fractions of proteins, fat and

carbohydrate x 4, 9, 4 kcal / g, respectively

- ⁵⁹⁹ * Diet for Zoo Animal (ZF), Oriental Yeast Co. Ltd, Tokyo
- 600 ** Certified Primate Diet, PMI Nutrition International, Montana
- ⁶⁰¹ ^a Data from Sakaguchi *et al.* (1999)
- 602

594

Table III. Mean ± SD food intake and feces excretion for each feeding trial

	Food	l intake	Feces	excretion
Diet	As fed (g)	DM (g)	DM (g)	Frequency
High-Large	1002.8 ± 2.3	921.5 ± 2.2	400.2 ± 14.6	14.0 ± 0.0
High-Small	723.3 ± 0.1	664.7 ± 0.1	284.2 ± 15.5	11.8 ± 1.5
Low-Large	1004.7 ± 0.6	940.0 ± 0.6	155.4 ± 20.7	10.3 ± 1.5
Low-Small	722.9 ± 0.2	676.3 ± 0.2	117.7 ± 16.1	9.0 ± 1.4

605	Food intake is expressed both in fresh (As fed) and dry matter (DM).
606	Frequency indicates the number of times that we collected fecal samples out of
607	14 collection times. All values are measured over 96 hours excluding first 24
608	hours.
609	High-Large = high-fiber diet in a large amount; High-Small = high-fiber diet in a
610	small amount; Low-Large = low-fiber diet in large amount; Low-Small = low-fiber
611	diet in small amount

Diet	Animal	BW		DMI	indigestible DMI	MRT		aD			
		Initial (kg)	Final (kg)	(g/day)	(g/kg ^{0.75} /day)	(g/day)	(g/kg ^{0.75} /day)	Cr (h)	Co (h)	DM (%)	NDF (%)
High-Large	e 1	13.2	13.0	230.1	33.2	96.0	13.9	35.3	31.9	58.3	48.2
	2	16.4	16.4	230.3	28.3	99.0	12.2	34.4	26.3	57.0	55.6
	3	14.7	13.5	230.2	30.7	104.8	14.0	37.1	28.4	54.5	52.7
	4	11.8	10.7	231.2	36.3	100.4	15.8	35.2	24.6	56.6	55.1
High-Small	1	13.0	12.6	166.1	24.3	70.5	10.3	34.2	32.5	57.5	48.9
0	2	16.3	15.9	166.1	20.5	69.7	8.6	38.6	34.2	58.0	55.3
	3	14.2	13.7	166.1	22.7	67.4	9.2	32.6	28.8	59.4	53.6
	4	11.6	11.6	166.1	26.4	76.6	12.2	33.6	27.4	53.9	50.1
Low-Large	1	12.8	12.5	235.3	34.8	33.9	5.0	49.9	51.2	85.6	64.9
0	2	16.3	16.2	235.2	29.0	38.9	4.8	42.7	41.3	83.4	71.9
	3	14.0	13.7	235.0	32.5	36.5	5.0	48.8	40.5	84.4	68.7
	4	11.2	10.6	234.8	38.4	46.0	7.5	34.9	31.6	80.4	66.6
Low-Small	1	13.0	12.9	169.1	24.7	25.2	3.7	56.0	55.2	85.1	52.3
	2	16.4	16.6	169.1	20.7	26.3	3.2	53.0	51.0	84.5	66.9
	3	13.5	14.1	169.1	24.0	29.3	4.2	60.2	59.9	82.7	65.2
	4	10.7	11.1	169.0	28.6	34.8	5.9	34.9	31.7	79.4	54.9

Table IV. Food and indigestible intake, MRT, digestibility and body weight of the animals under four feeding conditions

617	Diet: High = high-fiber diet, Low = low-fiber diet, Large = large amount, Small =
618	small amount; Initial BW = body weight of the animals measured before each
619	feeding trial; Final BW = body weight measured after each trial; DMI = dry matter
620	intake; MRT = mean retention time of the two markers (Cr: particle, Co: fluid); aD
621	DM = apparent DM digestibility; aD NDF = apparent NDF digestibility