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Abstract 1 

Epigenetic regulation of the nuclear estrogen and androgen receptors, ER and 2 

AR, constitutes the molecular basis for the long-lasting effects of sex steroids on gene 3 

expression in cells. The effects prevail at hundreds of gene loci in the proximity of 4 

estrogen- and androgen-responsive elements and many more such loci through intra- 5 

and even inter-chromosomal level regulation. Such a memory system should be active 6 

in a flexible manner during the early development of vertebrates, and later replaced to 7 

establish more stable marks on genomic DNA. In mammals, DNA methylation is 8 

utilized as a very stable mark for silencing of the ERα and AR isoform expression 9 

during cancer cell and normal brain development. The factors affecting the DNA 10 

methylation of the ERα and AR genes in cells include estrogen and androgen. Since 11 

testosterone induces brain masculinization through its aromatization to estradiol in a 12 

narrow time window of the perinatal stage in rodents, the autoregulation of estrogen 13 

receptors, especially the predominant form of ERα, at the level of DNA methylation to 14 

set up the “cell memory” affecting the sexually differentiated status of brain function 15 

has been attracting increasing attention. The alternative usage of the androgen-AR 16 

system for brain masculinization and estrogenic regulation of AR expression in some 17 

species imply that the DNA methylation pattern of the AR gene can be established by 18 

closely related but different systems for sex steroid-induced phenomena, including brain 19 

masculinization. 20 

Key words: estrogen receptor, androgen receptor, DNA methylation, brain 21 

masculinization, autoregulation, cell memory22 
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Introduction 1 

In mammals, sex-dependent compositions of the cells in the brains and the 2 

nature of many patterns of behaviors cannot be attributed directly to genetic differences. 3 

Rather, an important feature is that, in rodents for example, endocrine disturbance at the 4 

fetal and/or postnatal stages irreversibly changes behaviors such as lordosis (in females) 5 

and mounting (in males) that occur after the pubertal stage and are normally correlated 6 

with the genetic sex. In some cases, lordosis can even be observed in males, and 7 

mounting in females (Sodersten, 1978). In such phenomena, two classes of sex steroid 8 

hormones produced largely in gonadal tissues, estrogen and androgen, play many 9 

important physiological and pathological roles in a sex-dependent manner. In this 10 

review, I summarize the present understanding of the cellular impacts of the “genomic” 11 

effects of sex steroids, in particular the effect of estrogen through its interaction with its 12 

predominant nuclear receptor, ERα. Associated theoretical epigenetic pathways 13 

triggered by estrogen and androgen and potentially leading to the differential expression 14 

of mammalian behaviors will be featured. 15 

 16 

Sex Steroid Hormones: Epigenetic Regulators of Brain Masculinization in 17 

Rodents? 18 

In general, estradiol (E2) and testosterone (T) circulate predominantly in adult 19 

females and males of vertebrates, respectively. Therefore, one could readily assume that 20 

these hormones set up the molecular basis to establish the endocrine circumstances and 21 

thereby influence the expression of sex-dependent behavior. For example, removal of 22 
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the ovaries, the major source of E2, after the pubertal stage strongly deactivates the 1 

hypothalamus-pituitary-gonadal (HPG) axis, thereby disturbing the pulsatile- and 2 

surge-mode of luteinizing hormone secretion in rodents and many other mammals 3 

including sheep, goat, cow and pig (Bronson, 1981; Goodman, 1978; Kraeling et al., 4 

1998; McCarthy and Swanson, 1976; Mori et al., 1987; Webb et al., 1981). In parallel, 5 

the hypothalamus-pituitary-adrenal (HPA) axis is affected in ovariectomized animals 6 

(Seale et al., 2004). Since these unregulated states are largely rescued by exogenous 7 

treatment with E2 (Christian et al., 2005), estrogen has been focused on as an important 8 

trigger for sexual reproduction and many sex-dependent behaviors. A similar situation is 9 

true for males, in that castration of the testes, the major source of T, perturbs the HPG 10 

and HPA axes, and T supplementation restores many sex-dependent behaviors (Putnam 11 

et al., 2003). These losses and recoveries occur on a day- or week-scale (Lindzey et al., 12 

1998), and drastic changes of cell composition do not seem to be associated with these 13 

experimental events. In contrast, cell composition is drastically affected during the 14 

developmental stages. In fact, E2 triggers the cell fate specification at the perinatal stage 15 

in rodent brains (Schwarz and McCarthy, 2008). For example, the medial preoptic area 16 

(MPOA) and bed nucleus stria terminalis (BNST), which are famous sexually 17 

dimorphic brain nuclei, show fewer apoptotic cells after estradiol benzoate (EB) or 18 

testosterone propionate (TP) treatment at the perinatal stage in rodents (Chung et al., 19 

2000; Hsu et al., 2001). Cell proliferation and migration can also be associated with 20 

estrogen signals (McCarthy, 2008). Paradoxically, cell death is increased in a subset of 21 

sexually dimorphic nuclei by estrogen signals. The anteroventral periventricular nucleus 22 
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is the best example so far in which TUNEL-positive cells are increased after neonatal 1 

treatment with EB or TP in male and female rats (Arai et al., 1994; Arai et al., 1996). 2 

Changes of the survival and migration of the cells by the presence or absence of 3 

estrogen could explain the phenomenon of “imprinting” of the brain at the critical 4 

period, also known as brain masculinization (Cooke et al., 1998; McCarthy, 2008). 5 

Since the nuclear estrogen receptor ERα can contribute to the molecular complex of 6 

histone-interacting proteins and histone-modifying enzymes (Heinzel et al., 1997), the 7 

highly ordered chromatin structure can be differentially established and somehow fixed 8 

long-term in ERα-positive cells. In this way, the estrogen-ERα complexes could change 9 

particular cell characteristics rather than causing cells to die, proliferate, or migrate in 10 

some cases. To decipher these complex ways of “imprinting” in specific brain regions, it 11 

would be simplest to start by first dissecting the mechanisms involved at the cellular 12 

level. 13 

Until now, most studies on molecular mechanisms governing the epigenetic 14 

setting have focused on histone modifications and DNA methylation mainly occurring 15 

at the CG dinucleotide in animals. Histone modifications are commonly utilized in a 16 

wide range of species, including single cell organisms (Jenuwein and Allis, 2001). On 17 

the other hand, the overall DNA methylation level differs depending on the species. For 18 

example, only trace amounts of methylcytosine can be found in Drosophila 19 

melanogaster (Kunert et al., 2003; Lyko et al., 2000). In mammals, DNA methylation is 20 

a fundamental mechanism that differentiates the gene expression pattern in the brain 21 

(Imamura et al., 2001; Jones and Takai, 2001). Indeed, mutations in genes associated 22 
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with DNA methylation have frequently been shown to lead to many defects in neural 1 

systems. For example, mutations in MECP2, a methylcytosine interacting protein, is 2 

known to cause Rett syndrome (Amir et al., 1999). Mutations in a de novo DNA 3 

methyltransferase (DNMT), DNMT3B, lead to ICF syndrome (Hansen et al., 1999; Xu 4 

et al., 1999). Both of these syndromes show some characteristics of neuronal disorders. 5 

The DNA methylation system is also known to be critical for genomic imprinting 6 

(Heard et al., 1999), transposon silencing (Bird and Wolffe, 1999; Walsh and Bestor, 7 

1999), chromatin stability (Eden et al., 2003), and tissue-dependent gene expression 8 

(Shiota et al., 2002). In mammals, DNA methylation imposes restraints on the 9 

pluripotency because once the patterns are established during development they can be 10 

maintained through cell division (Sharif et al., 2007). Conversely, some fishes, which 11 

contain much lower DNA methylation activity (Cross et al., 1991), are found to easily 12 

and reversibly change their sex status according to the environmental context (Grober 13 

and Sunobe, 1996). These facts support the idea that sex-dependent patterns of 14 

behaviors are established through epigenetic processes. The sex-dependent patterns of 15 

mammalian behaviors could be acquired through highly irreversible processes during 16 

development by exposure to sex steroid hormones. In particular, it could be 17 

hypothesized that the long-term effects of the sex steroids at the developmental stage on 18 

behaviors after puberty are somehow marked at the genome level. 19 

 20 

Priming Effect of Sex Steroid Hormones on Gene Transcription in Cells 21 

 The biogenesis of E2 from T is accomplished by the catalytic action of 22 
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aromatase P450. Although ERα is the predominant nuclear receptor for estrogen, ERβ is 1 

known to be another nuclear receptor (Couse and Korach, 1999). So far, AR is the only 2 

known receptor for androgen. In addition to these nuclear receptors, ER-X and two 3 

G-protein-coupled receptors, GPR30 and Gq-mER, bind to estrogen to transduce the 4 

estrogen signals rapidly to adjust the cellular status (Funakoshi et al., 2006; Qiu et al., 5 

2003; Qiu et al., 2006; Revankar et al., 2005; Toran-Allerand, 2005). The differential 6 

presence of various forms of estrogen and androgen receptors in cells makes it difficult 7 

to understand the whole picture of sex steroid signaling. Although membrane-bound 8 

receptors might play some roles in gene regulation, it is simplest to first consider only 9 

the role of nuclear receptors in the epigenetic effects of estrogen and androgen. 10 

 Early work on the Xenopus vitellogenin gene identified a minimal estrogen 11 

responsive element (ERE) core sequence composed of two 6-base asymmetrical 12 

elements separated by three spacer nucleotides: 5’-GGTCAnnnTGACC-3’ 13 

(Klein-Hitpass et al., 1986). A similar but not identical structure has been found for the 14 

androgen responsive element (ARE). Most AREs conform to a consensus sequence 15 

composed of two 6-base asymmetrical elements separated by three spacer nucleotides: 16 

5’-AGAACAnnnTGTTCT-3’ (http://www.genome.jp/htbin/www_bfind?transfac). 17 

Occupancy of ERE and ARE by the steroid-nuclear receptor complex can lead to the 18 

acute upregulation of the physically associated gene. There are many examples of acute 19 

upregulation by the estrogen-ER complex together with other nuclear transcription 20 

factors (Gruber et al., 2004). Conversely, removal of steroid hormones also causes an 21 

acute decrease of gene transcription. However, there are examples in which 22 
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supplementation of steroid hormones to ERα-positive breast cells gradually upregulates 1 

the cell cycle, followed by DNA methylation, histone modification, and microRNA 2 

expression changes (Kovalchuk et al., 2007). These occurrences are associated with 3 

transformation into hyperplastic states such as those in carcinomas and metastatic cells. 4 

Another report showed that, on disruption of ERα signaling by small interfering RNA, 5 

polycomb repressors and histone deacetylases (HDACs) are recruited to initiate stable 6 

repression of the progesterone receptor (PR) gene, a known ERα target, in breast cancer 7 

cells (Leu et al., 2004). In these cells, ERα repression is accompanied by PR mRNA 8 

disappearance one day later. This event is also accompanied one week later by DNA 9 

methylation of the PR promoter, leaving a stable mark that can be inherited by cancer 10 

cell progeny. Reestablishing ER signaling alone is not sufficient to reactivate the PR 11 

gene, rather, reactivation of the PR gene also requires DNA demethylation. The removal 12 

of the nuclear estrogen signal induces progressive DNA methylation of multiple ERα 13 

targets in breast cancer genomes (Leu et al., 2004). Considering this kind of long-term 14 

effect of sex steroid hormones on setting the target gene expression status, it would be 15 

important to see the precise timeline of epigenetic alterations occurring in cells. 16 

 Since the identification of a canonical ERE, several computational 17 

approaches have been undertaken to identify ERα target genes at the genome-wide level 18 

(Bajic et al., 2003; Bourdeau et al., 2004). For example, in excess of 70,000 putative 19 

EREs have been found in the human genome, over 17,000 of which are located within 20 

15 kb of the transcription start sites of genes (Bourdeau et al., 2004). Six hundred sixty 21 

of these are conserved between the mouse and human genomes, and a fraction of these 22 
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have been confirmed experimentally to function as genuine ERα-interacting sites. In 1 

addition, imperfect EREs compared with the consensus sequence frequently show ERα 2 

binding activity (Gruber et al., 2004). Very recently, identifying long-distance chromatin 3 

interactions with ERα has been attempted at the genome-wide level (Fullwood et al., 4 

2009). Using a combinatorial technique of chromatin immunoprecipitation and 5 

ligation-mediated PCR, called ChIA-PET, DNA regions physically nearby the 6 

ERα-bound regions have been extensively sequenced. The results using E2-treated 7 

MCF-7 cells showed 1451 intra-chromosomal and, surprisingly, 15 inter-chromosomal 8 

overlapping clusters. Each of these more than one thousand clusters contains several 9 

genes, many of which showed coordinated upregulation of their transcription by E2 10 

treatment. The regions close to the ERα-bound regions showed a tendency to rapidly 11 

constitute active chromatin structures reminiscent of the active gene transcription in 12 

response to E2. Even the genes in these clusters located relatively far from the 13 

ERα-bound region also seemed responsive to E2, resuming transcription two days later 14 

on average. Such a tendency was not seen for the genes outside of the clusters. 15 

Therefore, the time lag of transcription alteration between the immediate-early and 16 

other genes raises the interesting possibility that genes in a cluster constitute an 17 

intra-chromosomal loop structure for a commonly regulated epigenetic setting (Fig. 1). 18 

In this model, a specific gene cluster could be organized to restrict the epigenetic effects 19 

of the estrogen-ERα complex within a loop to strengthen the coordination of the 20 

transcription, and this structure would isolate this effect to prevent leaky transcription of 21 

the genes located outside of the loop. The differential ERα-triggered epigenetic setting 22 
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depending on cell type may account for the tissue- and sex-dependent differences of cell 1 

fates resulting from various degrees of responsiveness to estrogen. 2 

 3 

Cell-Dependent Autoregulatory Loops of Sex-Steroid Receptor Genes 4 

 Estrogen signaling frequently affects the ERα transcription in ERα-positive 5 

cells. That is, ERα-positive cells can sensitize or desensitize their estrogen signaling 6 

pathways in a cell-intrinsic manner. For example, a low dose of E2, given to 7 

ovariectomized animals to mimic the preovulatory estrogen surges, acutely enhanced 8 

ERα as well as PR gene expression in specific uterine cells (Ing and Tornesi, 1997). 9 

These promoters were also modulated by E2 in estrogen-responsive breast cancer cell 10 

lines (Donaghue et al., 1999; Saceda et al., 1988). In the case of T47D, ZR-75, and 11 

EFM-19 breast cancer cells, E2 increased ERα expression. In contrast, the ERα 12 

promoter was downregulated by E2 in MCF-7 breast cancer cells, in which E2 reduced 13 

the receptor expression. Therefore, ERα regulation by estrogen may strongly differ in 14 

different cells. The kinetics of ERα mRNA and protein expression in MCF-7 cells were 15 

investigated after acute treatment with E2 (Saceda et al., 1988). The data have 16 

suggested that E2 downregulates ERα mRNA by inhibition of ERα gene transcription at 17 

early times and by a posttranscriptional effect on receptor mRNA at later times. Actually, 18 

three promoters have been identified for human ERα. The use of the three promoters 19 

was examined in ER-positive breast cancer cell lines, cell lines derived from other 20 

malignancies, and some normal tissues (Donaghue et al., 1999). Many 21 

estrogen-responsive breast cancer cells used all three promoters. Cell lines derived from 22 
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other malignancies and other normal tissues that express lower levels of ERα showed 1 

more selective promoter usage. This raised the possibility that the level of expression of 2 

ERα is determined by the number of promoters used, rather than the selective use of 3 

specific promoters. However, the number of known alternative ERα promoters is still 4 

growing in the human, mouse and rat (Kos et al., 2001; Wilson et al., 2008), and 5 

therefore, the possibility that the selective usage of specific promoters accounts for the 6 

tissue- or cell-specific ERα expression cannot be ruled out. 7 

In rodents, ERα mRNA is expressed in several brain regions, including the 8 

MPOA (Shughrue et al., 1992). In male mice, a high density of ERα was found in a 9 

small number of hypothalamic cells of the MPOA, arcuate, and ventromedial nuclei 10 

(Agarwal et al., 2000). A low or medium density of ERα was observed in cells of the 11 

lateral preoptic area, supraoptic nucleus, BNST, and in the central, medial and anterior 12 

cortical amygdaloid nuclei. Estrogens are believed to downregulate their own receptors 13 

in most rodent brain regions, because ovariectomy and subsequent EB supplementation 14 

very frequently increase and decrease the ERα mRNA level, respectively (Hamada et al., 15 

2005; Lauber et al., 1991; Shughrue et al., 1992). This general tendency was also 16 

assessed with aromatase knockout (ArKO) mice in which conversion of T to E2 is 17 

impaired (Agarwal et al., 2000). The number of cells containing ERα protein was 18 

significantly increased in the MPOA of the ArKO male mice. Similarly, male rats 19 

treated with an aromatase inhibitor escaped from the inhibitory effect of T on ERα 20 

expression in many brain regions, suggesting that T functions through its aromatization 21 

to E2 for the downregulation of ERα expression (Clancy and Michael, 1994). Thus, 22 
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estrogen can downregulate ERα in brain cells. 1 

However, ERα regulation by estrogen seems to differ according to the brain 2 

region. For example, EB was shown to decrease immunostaining intensity for ERα in 3 

the ventrolateral hypothalamus and BNST, but not in the periventricular preoptic area or 4 

medial amygdala of female rats (DonCarlos et al., 1995; Lauber et al., 1991). Moreover, 5 

EB treatment fails to significantly downregulate ERα mRNA levels in male rats, in 6 

contrast to the downregulation in female rats (Lauber et al., 1991).  7 

 8 

DNA Methylation of the ERα Promoter 9 

 To reconcile the mutually opposite effects of estrogen on ERα expression, 10 

namely, its upregulation and downregulation according to the cell type, it is necessary to 11 

think of the other factors that modulate the quantity of ERα mRNA. It should be noted 12 

that long-term deprivation of estrogen in the culture media of ERα-positive breast 13 

cancer cells can generate ERα-negative subclones that are completely insensitive to 14 

estrogen for their cell growth (Pink and Jordan, 1996). This phenomenon strongly 15 

suggests the involvement of an epigenetic mechanism to preset the local chromatin 16 

structure for the basal ERα expression. In this context, formation of transcriptional 17 

repression complexes including DNMT, HDAC and/or methyl-CpG binding protein is 18 

emerging as an important mechanism in silencing a variety of methylated tissue-specific 19 

and imprinted genes (Imamura et al., 2001). In fact, methylation of the ERα CpG island 20 

is associated with loss of ERα expression in human breast cancer cells (Ottaviano et al., 21 

1994). Treatment of ERα-negative human breast cancer cells with the DNMT1 inhibitor 22 
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5-aza-2’-deoxycytidine (5-aza-dC) leads to ERα mRNA and protein re-expression 1 

(Ferguson et al., 1995). Also, the HDAC inhibitor trichostatin A (TSA) could induce 2 

ERα transcripts (Yang et al., 2000). In addition, the combination of 5-aza-dC and TSA 3 

induced a synergistic increase in ERα transcripts, occurring concomitantly with 4 

markedly reduced soluble DNMT1 expression and activity, partial demethylation of the 5 

ERα CpG island, and increased acetylation of histones H3 and H4. These data suggest 6 

that the activities of both DNMT1 and HDAC are key regulators of 7 

methylation-mediated ERα gene silencing. 8 

 It has been demonstrated that thousands of CpG islands show tissue- or 9 

cell-dependent patterns of DNA methylation (Shiota et al., 2002). Therefore, distinct 10 

DNA methylation patterns in the respective cells can establish or fix cellular phenotypes. 11 

On the one hand, each differentiated cell maintains its DNA methylation pattern (Shiota 12 

and Yanagimachi, 2002). On the other hand, dynamic DNA methylation changes occur 13 

during development, and cell differentiation is always associated with DNA methylation 14 

and demethylation, forming cell-specific patterns (Ohgane et al., 2002). DNA 15 

demethylation occurs through either passive mechanisms by inhibiting the DNMT1 or 16 

through active enzymatic reactions. Active demethylation has been observed in many 17 

cells but the mechanisms involved are relatively unknown (Collas, 1998; Fremont et al., 18 

1997; Imamura et al., 2004; Jost et al., 1997; Jost and Jost, 1994; Jost et al., 1995; Jost 19 

et al., 1999; Kim et al., 2009; Ma et al., 2009). Although long-term maintenance of 20 

DNA methylation patterns is a prerequisite for an animal’s life, the overall 21 

methylcytosine content gradually decreases in parallel with aging processes. Since gene 22 
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body regions account for only a small percentage of the genome, gain or loss of the 1 

overall methylcytosine content might largely affect “bulk” sequences such as 2 

transposable elements constituting heterochromatin structure to maintain chromosomal 3 

stability. In line with this tendency, most cancer cells show a hypomethylated status at 4 

the transposable elements (Baylin et al., 1998). Paradoxically, an overall decrease of 5 

DNA methylation content is associated with local induction of the DNA methylation at 6 

multiple gene loci (Baylin et al., 1998). Considering that the circulating and local 7 

contents of sex steroid hormones dynamically change according to the developmental 8 

and aging context, DNA methylation changes related to ERα expression could occur in 9 

various brain cells, including neurons, in a spatiotemporal manner. 10 

 In fact, recent studies have shown that the DNA methylation status of ERα in 11 

physiologically normal cells differs during development depending on the cell type. In 12 

the mouse cortex, ERα mRNA expression is high early in postnatal development but 13 

declines starting at postnatal day (P) 10 and is virtually absent in the adult cortex. 14 

Several regions of the ERα promoter displayed a significant increase in methylation at 15 

P18 and P25 compared with P4 (Westberry et al., 2010). In the mouse cortex, DNMT3A 16 

(the de novo DNMT) peaked at P10 and was decreased by P25. DNMT1 increased 17 

across development and stayed high in the adult cortex. A chromatin 18 

immunoprecipitation assay showed a correlation between association of MECP2 with 19 

the ERα promoter and the increase in DNA methylation and decrease in ERα expression 20 

after P10 (Westberry et al., 2010). 21 

 External stimuli also seem to affect the establishment of the methylation 22 
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pattern of the ERα promoter. Maternal care of rat pups can lead to long-term effects 1 

affecting the life-long response to stress in the offspring (Liu et al., 1997). Mothers that 2 

have high rates of licking and grooming behavior have offspring with a more modest 3 

response to stress. Adult offspring of mothers that exhibit high licking and grooming 4 

activity have increased expression of ERα mRNA in the MPOA, and this increased 5 

expression is associated with less methylation at the ERα promoter, while the ERα 6 

promoter in offspring from low licking and grooming mothers is hypermethylated 7 

(Francis et al., 1999). In addition, variations in the rates of licking and grooming are 8 

inherited. Mothers with high rates of licking and grooming activity have pups that later 9 

exhibit similar behavior when they become mothers (Francis et al., 1999). 10 

 11 

A Model for the Estrogen Effect on ERα mRNA Expression 12 

 With the analogy of brain learning, cells with the potential to transcribe ERα 13 

may memorize the surrounding estrogen availability for the expression of specialized 14 

cell function. In line with this idea, during >8 months of deprivation of E2 from the 15 

culture media, breast cancer cells with a low level of ERα protein gradually lose the 16 

ability of ERα transcription (Pink and Jordan, 1996). After 2-month resupplementation 17 

of E2 in the media, these cells occasionally recover ERα expression competence. Such 18 

cells show steady ERα upregulation by E2 treatment. On the other hand, different cells 19 

originating from the same organ but with relatively higher levels of ERα mRNA might 20 

be affected by the possible destabilization activity of an E2-ERα complex that has been 21 

proved to bind to the coding sequence of ERα mRNA (Kaneko et al., 1993). This would 22 
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be possible if an excess amount of E2-ERα complex that could not enter into the 1 

nucleus due to physical or biochemical blockage remained located in the cytoplasm. 2 

Based on the several lines of information described above, a schematic representation of 3 

possible ERα-triggered alteration of the cell status is shown in Fig. 2. 4 

Phases A and B: Starting from the low expression status of ERα at the early 5 

stage, cells show the capacity to incorporate the extracellular estrogen signal and try to 6 

amplify this signal by upregulation of ERα. This phase could be in a learning state of 7 

the cell in terms of establishing intra- and inter-chromosomal structures through the 8 

interaction of increased E2-ERα complex with widespread ERE in the genome for the 9 

large-scale epigenetic setting triggered by E2. After a considerable level of ERα is 10 

reached, cells behave to maintain the estrogen signal to keep the equilibrium state, 11 

which is reminiscent of the homeostatic state. 12 

Phase C: During aging, overall DNA methylation and other chromatin 13 

modification activities gradually decrease in cells, while gene loci including ERα are 14 

targeted by local DNA methylation activity. In parallel, circulating E2 also decreases. 15 

This decrease within a certain time range is further memorized in cells to accelerate the 16 

DNA methylation of the ERα promoter, which is also frequently seen in ERα-negative 17 

cancer cells. 18 

Phase D: If cells do not have the capacity or chance to incorporate the 19 

estrogen signals, a concomitant increase of general DNA methylation activity 20 

specifically or non-specifically closes the chromatin structure at the ERα cis-regulatory 21 

regions by DNA methylation and/or histone modifications such as methylation at lysine 22 
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9 of histone H3. Once cells learn the expression downregulation via DNA methylation 1 

and other epigenetic modifications, such cells would rarely express ERα, thereby 2 

greatly reducing the possibility of its expression except after abnormal treatment such as 3 

long-term exposure to estrogen. 4 

The model shown here has been made based largely on cancer cell studies. 5 

Since the estrogen regulation system varies widely, it would be valuable to test several 6 

simple models of the phases described above. Of course, mechanisms mediating 7 

epigenetic alterations may differ in postmitotic brain cells and cancer cells of different 8 

origins. Nonetheless, it should be noted that acquiring the unmethylated status of the 9 

ERα promoter by either passive mechanisms (lack of faithful replication of DNA 10 

methylation patterns) or active epigenetic mechanisms (enzymatic mechanisms) is 11 

prerequisite for sensing the estrogen signal in postmitotic cells as well as cancer cells. 12 

Even in cells where estrogen can function to acutely downregulate the ERα transcription 13 

as represented by phase B, the ERα promoter is expected to be in unmethylated status. 14 

In other words, estrogen-sensing cells have learned to establish the unmethylated status 15 

in the ERα promoter. On the other hand, once DNA methylation occurs at the ERα 16 

promoter during the course of development or aging as represented by phases C and D, 17 

it seems very hard to remove this methylation. Accordingly, defining the cells 18 

represented by the phase A would greatly accelerate clarification of the mechanism of 19 

brain masculinization. 20 

 21 

Differential Impact of AR Expression Setting Depending on Cells and Species 22 
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In many androgen target tissues, androgens promote downregulation of AR 1 

mRNA levels (Hackenberg et al., 1992; Krongrad et al., 1991; Quarmby et al., 1990; 2 

Shan et al., 1990; Wolf et al., 1993). The amount of AR mRNA has been shown to 3 

increase with androgen withdrawal and to decrease below control levels after androgen 4 

stimulation in rat ventral prostate, coagulating gland, epididymis, seminal vesicle, 5 

kidney, and brain, and in several prostate cancer cell lines. In the case of the rat ventral 6 

prostate, AR mRNA increased within 24 h after castration and remained elevated for 4 7 

days (Quarmby et al., 1990). TP treatment beginning 24 h after this castration reduced 8 

ventral prostate AR mRNA within 8 h. In this case, E2 administration after castration 9 

had no significant effect on prostatic AR mRNA. Although the general tendency is 10 

androgen-mediated downregulation of AR, androgenic upregulation of AR mRNA has 11 

also been observed in a few tissues (Antonio et al., 1999; Gonzalez-Cadavid et al., 12 

1993; Kerr et al., 1995; Khetawat et al., 2000; Nastiuk and Clayton, 1994; Wiren et al., 13 

1997), which is reminiscent of the diversified autoregulation of ERα by estrogen. 14 

Administration of a non-aromatizable androgen, dihydrotestosterone (DHT), to 15 

castrated male rats has been shown to upregulate AR levels in the bulbocavernosus and 16 

levator ani muscles (Antonio et al., 1999). In humans, megakaryocyte and 17 

erythroleukemia AR expression is upregulated dose-dependently by T (up to 10 nmol/L), 18 

but downregulated by a much higher level of T (100 nmo/L) (Khetawat et al., 2000). 19 

Treatment of osteoblastic cells with DHT increased AR mRNA steadily in a time- and 20 

dose-dependent fashion (Wiren et al., 1997). Reporter assays with the proximal 21 

5'-flanking region of the human AR promoter reproduced this effect of DHT on RNA 22 
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expression (Wiren et al., 1997). 1 

 In the brain, AR mRNA expression occurs predominantly in the hypothalamus. 2 

The highest density of AR mRNA is localized in the central part of the MPOA and the 3 

principal portion of the BNST (Handa et al., 1996). Castration of adult male rats causes 4 

an increase in AR mRNA density in both brain areas. Therefore, the negative regulation 5 

of the expression of AR by androgen seems to be largely restricted to the predominant 6 

area of AR function. However, a situation similar to that of the differential 7 

autoregulation of ERα together with estrogen could again be observed for AR. In fact, 8 

comparable levels of AR mRNA can be found in specific cells of the hippocampus. CA1 9 

pyramidal cells are AR-positive and form the major signal output of the hippocampal 10 

trisynaptic circuit. A significant decrease occurs in the AR mRNA content of the 11 

hippocampus in rats after castration or in intact male rats after daily injections of the AR 12 

antagonist flutamide (Kerr et al., 1995). 13 

 It has been proposed that methylation of CpG sites in the AR promoter may 14 

influence the long-term but reversible inactivation of transcription of the AR gene in 15 

androgen-independent metastatic prostate cancers (Jarrard et al., 1998; Kinoshita et al., 16 

2000). Normal prostate epithelial cell strains showed no DNA methylation of the AR 17 

gene. In contrast, increased methylation was seen in the AR expression-negative cell 18 

lines Du145, DuPro, TSU-PR1, and PPC1, as well as in normal female breast and 19 

ovarian tissues. Exposure of AR-negative prostate cancer cell lines to 5-aza-dC induced 20 

the reexpression of AR mRNA in AR expression-negative cell lines (Jarrard et al., 21 

1998). 22 



 20 

Interestingly, in the male and female mouse brain cortex, methylation of a few 1 

CG sites in the AR core promoter has been shown to be increased by TP, but decreased 2 

by E2 (Kumar and Thakur, 2004a). These sex steroid hormones concomitantly affected 3 

DNase I accessibility to the AR core promoter (Kumar and Thakur, 2004b), suggesting 4 

that setting of the chromatin structure on the AR promoter occurs with ERα and AR. In 5 

fact, in the adult male rat, androgen and estrogen act synergistically in the regulation of 6 

male reproductive behaviors (Baum, 1979; Feder et al., 1974; Morali et al., 1977). In 7 

the MPOA and BNST of the adult male rat, AR and ERα mRNAs have been found to be 8 

distributed in unique but overlapping patterns (Handa et al., 1996). In this case, 9 

treatment of castrated adult males with DHT reversed the effects of castration on AR 10 

mRNA in both the short- and long-term castrated animals, but had no effect on ERα 11 

mRNA in either of these brain nuclei, whereas EB treatment increased AR mRNA in the 12 

long-term castrates only and decreased ERα mRNA in both long- and short-term 13 

castrates. This suggests a complex regulation of AR in specific brain regions. So far, 14 

little information is available about the DNA methylation pattern on the AR as well as 15 

the ERα gene after the short- and long-term androgen exposure or removal. Nonetheless, 16 

AR has been shown to regulate the masculinization of the mouse brain (Sato et al., 17 

2004). Furthermore, several lines of pharmacological evidence have suggested that AR 18 

is the predominant target for androgen-triggered brain masculinization in some species. 19 

In rhesus monkeys, prenatal administration of the nonaromatizable androgen DHT to 20 

females caused coital masculinization as readily as T (Pomerantz et al., 1986). In a 21 

carnivore, the ferret, neonatal exposure to T, but not its metabolites E2 or DHT, caused 22 



 21 

coital masculinization (Baum, 1976; Baum et al., 1983; Baum et al., 1982). Therefore, 1 

in addition to the setting of the chromatin modifications on ERα, that on AR by 2 

androgen and estrogen could cause comparable impacts on brain masculinization. 3 

 4 

Concluding Remarks 5 

 Nuclear estrogen and androgen signaling pathways are very complex. 6 

Diversified autoregulatory loops of ERα or AR caused by its direct interaction with 7 

estrogen or androgen further make it difficult to understand the whole picture of sex 8 

steroid signaling. Epigenetic modifications, especially DNA methylation of the ERα and 9 

AR gene regions, could partially explain the highly irreversible changes of cell 10 

responsiveness to sex steroid hormones in mammals. Local epigenetic engineering of 11 

ERα and AR, if it can be achieved, could be used to determine the exact degree of the 12 

contribution of DNA methylation to cell fate specification during development and 13 

aging in future studies (Imamura et al., 2004). This would be especially important for 14 

making the next breakthrough in understanding the irreversibility of sex-dependent 15 

behaviors. 16 
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Figure Legends 1 

 2 

Figure 1. ERα target gene regulation by chromatin setting through ERE-ERα 3 

interactions. 4 

In this model, E2 alters the chromatin structure by E2-ERα association with the estrogen 5 

responsive element (ERE). On the ERE-ERα complex, several cofactors are recruited to 6 

concordantly establish the highly ordered chromatin structure. The E2 effect is exerted 7 

on many genes within an ERE-containing cluster. Genes proximal to the ERE tend to 8 

show rapid upregulation whereas expression of distal genes occurs later on. The ERE 9 

effect could be restricted by insulators to prevent changes of the expression of genes 10 

located outside of the cluster. 11 

 12 

Figure 2. Cells with differential ERα expression setting by estrogen and DNA 13 

methylation during development and senescence. 14 

Panel A indicates a cell in which E2 starts being incorporated at early developmental 15 

stages, such as the perinatal stage of mice corresponding to the critical period of brain 16 

masculinization. ERα could enter into the nucleus to upregulate the ERα mRNA 17 

expression. After a number of cycles of synergistic increase of ERα by an increase of 18 

circulating E2, E2-ERα association with ERα mRNA occurs in the cytoplasm. This kind 19 

of blockage and other biochemical signals could prevent the entry of E2-ERα into the 20 

nucleus, as shown in panel B. These negative regulations of ERα mRNA expression 21 

allow the stable existence of ERα in a cell. Panel C represents an aged cell in which 22 
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overall DNA methylation activities, represented by hexagons, are diminishing. Decrease 1 

of the circulating E2 is accompanied by senescence. Long-term decrease of E2 and the 2 

resultant reduced content of ERα could be sensed by the cell, which would as a result 3 

change the DNA methylation status of the ERα promoter from hypomethylated (open 4 

lollipops) to hypermethylated (filled lollipops) according to the lack of need for ERα 5 

even if the overall DNA methylation level were lowered. In contrast to the senescence 6 

stage, developmental stage cells contain much higher DNA methylation activities which 7 

react with genes as well as heterochromatin regions. If a cell is not exposed to E2, there 8 

is no chance of ERα expression, leading to long-term repression by DNA methylation 9 

and other modifications reminiscent of the closed chromatin structure, as shown in 10 

panel D. 11 
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