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Symmetric charge-transfer cross sections of IIIa rare-earth-metal elements
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Symmetric charge-transfer cross sections of IIIa rare-earth-metal elements (Sc, Y, and Gd) in the impact energy
range of 30 to 1000 eV were measured for the first time. The experiments were performed with a crossed-beam
apparatus that featured primary ion production by photoionization with a tunable dye laser. Comparing the cross
sections of IIIa rare-earth-metal elements (σSc, σY , and σGd) with those of alkali metals or helium σ0, we found
that σ0 ≈ σSc < σY < σGd ≈ 2σ0at an impact energy of 1000 eV.
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I. INTRODUCTION

Symmetric charge-transfer processes have been investi-
gated since the 1930s. However, the elements studied have
been limited mainly to hydrogen, alkali metals, and noble
gases [1–5]. Being motivated by the significant lack of data [6]
about the charge-transfer cross sections for transition metallic
elements, we developed a new crossed-beam apparatus [7,8],
with which the cross section of gadolinium was successfully
measured [9,10]. An anomalously large cross section was
obtained for Gd [10]. The possibility that this result is due
to the unreliability of measurements made using the apparatus
has been ruled out by comparing experiments on Ca + Ca+
with other published data [11,12]. So the large cross section
for Gd has not yet been clearly understood and needs further
investigation. We are, therefore, studying the cross sections
of rare-earth-metal elements systematically. In this paper we
report the measurement of the cross sections for Sc and Y, and
we compare the results with the Gd data acquired previously.

II. EXPERIMENTS

The experimental technique has been reported in detail
in previous papers [7–9] and is only described briefly here.
The crossed-beam apparatus features laser photoionization to
produce primary ions in an atomic beam. Two atomic beams
were produced by collimating atomic vapor emitted from a
crucible filled with the objective metal, which was heated
with an electron-beam gun. One of the atomic beams was
partially photoionized by light from a pulsed dye laser, and
the primary ions produced were extracted from the atomic
beam and accelerated by a static electric field applied in the
laser-atom interaction region. The primary ions were detected
by an ion collector plate after colliding with another atomic
beam. The collision energy was varied from 30 to 1000 eV
by controlling the strength of the electric field. The secondary
ions produced by the charge-transfer collisions stream upward
as fast as the atoms in the beam. These were focused by
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an ion lens and guided toward a ceramic electron multiplier
detector located above the ion-atom interaction region. Table I
summarizes the experimental condition for producing atomic
and ion beams. The internal energy population in atomic beams
is calculated with the assumption of thermal equilibrium in the
crucible. The populations of Gd atoms and primary ions before
collisions have been measured separately by the laser-induced
fluorescence method [13]. The measured population of Gd
atoms can be reasonably explained by thermal equilibrium
[10], while the population of primary ions depends on the
wavelength of the laser used for photoionization. Y and Sc
atoms are also considered to be thermally populated, corre-
sponding to the source temperature on the surface of the metal
source in the crucible. Figure 1 shows the photoionization
schemes for the rare-earth-metal elements Sc, Y, and Gd in the
present experiment. The laser wavelength was tuned so that the
primary ions produced in the atomic beam were intense enough
to measure the cross sections with the crossed-beam apparatus.
It was found that the atoms were photoionized efficiently by a
two-photon resonance. For Y and Gd atoms, the two-photon
resonance is not reached from the ground state but from the first
excited state. The ions produced populate the ground state and
the excited states with internal energy less than 3ε + E0 − I ,
where ε is the photon energy, E0 is initial atomic internal
energy, and I is the ionization potential of an atom of the
element.

III. RESULTS AND DISCUSSION

Figure 2 shows the cross sections for charge transfer
between an atom of Sc, Y, or Gd and the corresponding singly
charged positive ion. The cross section at each impact energy
was obtained by averaging 1024 data points using a fast data
acquisition system [8]. The uncertainties in the cross sections
measured with the present apparatus were <6.8% and <8.1%
for impact energies of >40 eV and <40 eV, respectively.
These uncertainties are due to a combination of the fluctuation
of the atomic density (<1.8% and <3.1%, respectively) and
the accuracy of the detector calibration (5%). To discuss the
cross sections obtained experimentally, universal formulas
are available that can be used. The derivation of theoretical
or semiempirical formulas has been studied, for example,
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TABLE I. Characteristics of primary atomic and ion beams.

Atomic beam Ion beam

Source Ionization Wavelength of laser Transition for
temperature Populated states Population potential for photoionization two-photon 3ε+E0 − I a

in crucible I ε resonance
Elements (K) (cm−1) (%) (cm−1) (nm) (cm−1) (cm−1)

21Sc 1640 168 56.6 52920 560.680 0 → 35671 587
0 43.4

39Y 1930 530 50.2 52650 557.092 530 → 36431 1731
0 49.8

64Gd 2000 1719 14.4 49603 606.425 215 → 33195 82
999 20.4
533 23.3
215 22.8
0 19.0

aε is the photon energy of the laser to produce primary ions, E0 is the energy of the initial level for photoionization, and I is the photoionization
potential of an elemental atom.

by Müller et al. [14] and Selberg et al. [15] for highly
charged ion-atom collisions. Here, for the consideration of
singly charged ion-atom collisions, we use the simple formula
proposed by Sakabe et al. [16], which was derived from
both numerical calculation and accumulated experimental data
on symmetric (resonant) charge transfer. They compiled all

FIG. 1. Three-photon ionization transition via a two-photon
resonance for Sc, Y, and Gd.

the experimental data from resonant charge-transfer measure-
ments and found a simple formula that fit the data well. The
formula is a function only of the impact velocity v (cm/s) and
the ionization potential I (eV) of the element:

σ (v) = (A − B log 10v)(I/I0)−1.5 (cm2), (1)

where A = 1.81 × 10−14 cm2, B = 2.12 × 10−15 cm2, and
I0 = 13.6 eV. For the nonresonant process, we used the
calculation done by Rapp and Francis [17], which we modified
in our previous work [10]. The Sakabe formula shows that the
cross section can be related to the ionization potential I by σ ∝
(I/I0)−1.5, while the calculation by Rapp and Francis yields
the relation σ ∝ I−1. This disagreement is mainly due to the
probability of the charge transfer being calculated with the
one-electron wave function in Rapp and Francis’ approach. For
discussion of the physics of charge-transfer collisions, how far
the wave function is tailed is highly important. For elements
with a complex electron configuration, the tail of the wave
function cannot be precisely expressed by a one-electron wave
function. In order to achieve a better fit between calculation
results and experimental data, the wave function used by Rapp
and Francis was modified as follows [10]:

�(r) = (πa3
0)−1/2

(
I

I0

)9/8

exp

[
−

(
I

I0

)3/4
r

a0

]
,

It can be seen that the cross sections measured at low
impact energy are close to the values predicted by the formula,
while, as impact energy increases up to 1000 eV, the cross
sections become larger than predicted. The cross sections of
Sc, Y, and Gd (σSc, σY, and σGd, respectively) show the pattern
σ0 ≈ σSc < σY < σGd ≈ 2σ0 at an impact energy of 1000 eV,
where σ0 is given by the Sakabe formula (1). The results
of our work suggest that the impact energy dependence of
cross sections can be explained by assuming that the process
includes both resonant and nonresonant parts:

σ = ησ R + (1 − η)σ NR, (2)

where η is the fraction of the resonant process and σ R and
σ NR are the resonant and nonresonant charge-transfer cross
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FIG. 2. Dependence of the symmetric charge-transfer cross sec-
tion on impact energy for Sc, Y, and Gd. The symbols are the
data from our experiments. The dashed line is Sakabe’s formula for
symmetric charge transfer [16]. The solid lines show the results of
a calculation with the assumption that the process includes resonant
and nonresonant parts. The values of �ε for the nonresonant process
and η for the rate of the resonant process were adjusted to provide a
good fit between the calculation and the experimental data.

sections, respectively. The cross sections are calculated under
the assumption that the fraction η is constant. The fraction may
not be varied with the impact energy because the populations
of the atoms and ions do not depend on the impact energy. The
cross sections σR and σ NR are given by Sakabe’s formula and
the modified Rapp and Francis calculation [10], respectively.
The absolute values of σR and σ NR are multiplied to fit the
experimental data at 1000 eV, giving the solid lines in Fig. 2.
The best fits of the calculated impact-energy dependence
with the experimental data are obtained for η = 0.90, 0.45,
and 0.36 and �ε = 185, 205, and 340 cm−1 for Sc, Y, and
Gd, respectively. Here �ε is the internal energy difference
between the initial state and the final state for the nonresonant
charge-transfer process. The impact energy dependence can be
qualitatively explained by the model in Eq. (2). It can also be
seen that as the principle quantum number of the outer electron
becomes smaller, the fraction of the resonant process tends
to become larger. A significant defect in this simple model
is discussed below. Atoms and ions have some metastable
excited states near the ground state, and the charge-transfer

process between an atom A and its ion A+ can be represented
by the formula

A(i) + A+(j ) → AA+ → A+(k) + A(l),

where i indicates an internal energy of i cm−1 and i = 0
corresponds to the ground state. With the cross section of the
process above being σijkl , the total cross section of the charge
transfer σ may be written as

σ =
∑
ijkl

gijklσijkl, (3)

where gijkl is the statistical degeneracy of each process and
gijkl � 1. For elements without metastable states near the
ground state, the charge-transfer cross section has been studied
theoretically with a two-state model: that is, the atom is
modeled as having only the ground state and the ionization
state. This model has been used to calculate the cross section
for the nonresonant process A + B+ → A+ + B, and the
charge-transfer cross sections for hydrogen, alkali metals,
and rare gases have been well explained. If each process
is independent, then each σijkl can be simply calculated in
this way, and the total cross section is given by the linear
summation in Eq. (3). Under this assumption, σ should be less
than σijkl , where σijkl is the resonant charge-transfer cross
section for (k − j )2 + (l − i)2 = 0 and is the nonresonant
charge-transfer cross section for (k − j )2 + (l − i)2 �= 0. The
calculations may be carried out, for example, using Sakabe’s
formula for the resonant cross section σ R

ijkl and the Rapp
and Francis [17] method for the nonresonant cross section
σ NR

ijkl . However, with a two-state model, σ NR
ijkl should be less

than or equal to σ R
ijkl , regardless of which method is used

for the calculation. Therefore, σ should never be larger than
σ0. However, our experimental results show σ > σ0, which
suggests that the cross section is too large to be explained by
the long interaction distance between two nuclei, that is, by
the tail length of the atomic wave function of the electron to
be transferred. We conjecture that the total cross section is
not a simple linear summation of each process cross section
and that the interactions between the many metastable states
of atoms and ions are more complex. For elements with many
metastable states, such as the present case, it is not at all
certain that such a simple two-state model is applicable to
the prediction of cross sections, and it should be studied
theoretically in much more detail in the future.

IV. CONCLUSION

The charge-transfer cross sections for the IIIa rare-earth-
metal elements Sc, Y, and Gd have been measured successfully
for an impact energy range of 30–1000 eV, and some significant
features have been found. These features are never seen
in the cross sections for well-studied elements, such as
hydrogen, alkali metals, and helium. We can explain the
impact energy dependence by a simple two-state model that
includes both resonant and nonresonant processes; however,
the absolute value of the charge-transfer cross sections cannot
be explained using this model. We hope that these observations
will stimulate the study of the physics of collisions between
elements with complex electron configurations.
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