<table>
<thead>
<tr>
<th>Title</th>
<th>Development of integrated analysis software of observation data in the upper atmosphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>SHINBORI, Atsuki; TANAKA, Yoshimasa; KAGITANI, Masato; HAYASHI, Hiroo</td>
</tr>
<tr>
<td>Citation</td>
<td>(2011)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-03-29</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/139543</td>
</tr>
<tr>
<td>Rights</td>
<td>この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。</td>
</tr>
<tr>
<td>Type</td>
<td>Presentation</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>

Kyoto University
Development of integrated analysis software of observation data in the upper atmosphere

1Atsuki Shinbori, 2Yoshimasa Tanaka, 3Masato Kagitani and 1Hiroo Hayashi, 1RISH, Kyoto University, Uji, Japan
2NIPR, Tachikawa, Japan
3PPARC, Tohoku Univ., Sendai, Japan
1. Overview of the analysis software which has been developed in the IUGONET project

✓ Characteristics of TDAS (Themis Data Analysis Software suite)
✓ Introduce of UDAS (IUgonet Data Analysis Software) in the beta version

2. Demonstration of the UDAS software

3. Future plan and schedule of development of the UDAS software
2. Overview of the TDAS/UDAS software

2.1 TDAS (THEMIS Data Analysis Software suite)

1. The IUGONET project will provide software to analyze and visualize various kinds of ground-based observational data in our project.

2. We are developing the data analysis software on the basis of TDAS (Themis Data Analysis Software suite).

3. Everybody can freely download the TDAS software from the THEMIS homepage.

http://themis.ssl.berkeley.edu/
2. Overview of the TDAS/UDAS software

2.2 Characteristics of the TDAS software

1. The data analysis software is written in IDL (Interactive Data Language), which is widely used in fields of solar and terrestrial physics.

2. The IDL routines of TDAS enable users to easily plot and analyze various kinds of time series observation data.

3. TDAS is adopted as data analysis software of the ERG (Energization and Radiation in Geospace) mission. Our software development is conducted in collaboration with the ERG Science Center.
2. Overview of the TDAS/UDAS software

2.3 Characteristics of the TDAS software-2

Users can easily download the observation data from data servers and make time series plots with only 3 commands.

> timespan, ‘yyyy-mm-dd’, 13, /day
> thm_load_○○○
> tplot, △△△

Users can get and analyze various kinds of observation data without any concerns about data locations.
2. Overview of the TDAS/UDAS software

2.3 Characteristics of the TDAS software

TDAS has many useful routines to visualize and analyze time series data.

By using the TDAS software, everybody can easily

1. Make several time-series plots of many kinds of observation data in different fields over a long period.
2. Change the vertical and horizontal axes of the plots.
3. Calculate time derivative and low or high pass filtered data.
4. Display dynamic spectra of solar radio waves and geomagnetic field pulsation.
6. Plot the kerograms for aurora and optical image data.
7. Make time-height contour plots for three dimensional data (Neutral wind, echo power of refractive waves etc.)
2.4 Characteristics of the TDAS software

TDAS has the work of Graphical User Interface (GUI) for beginner IDL users. In the GUI mode, you can easily analyze and visualize various kinds of observation data with only the mouse clicks and key board enter.
2. Overview of the TDAS/UDAS software

2.5 Load procedures of the UDAS in beta version

1. Load procedures of observation data related to the ERG project:
 • erg_load_gmag_mm210; 210° geomagnetic data (Nagoya, Kyushu, NICT, Tohoku)
 • erg_load_gmag_nipr; geomagnetic data at Syowa, Ice Land (NIPR)

2. Load procedures of the observation data provided from the IUGONET project:
 • iug_load_blr_rish_txt; BLR (RISH, Kyoto)
 • iug_load_ltr_rish_txt; L-band LTR (RISH, Kyoto)
 • iug_load_ear; Equatorial Atmosphere Radar (EAR) (RISH, Kyoto)
 • iug_load_gmag_serc; MAGDAS geomagnetic data (Kyushu)
 • iug_load_gmag_wdc; AE, Dst, Sym, Asym induces, geomagnetic data (WDC, Kyoto)
 • iug_load_iprt; IPRT (Tohoku)
 • iug_load_mu; Middle and Upper (MU) atmosphere radar (RISH, Kyoto)
 • iug_load_meteor_rish; Meteor wind radar (RISH, Kyoto)
 • iug_load_mf_rish; MF radar (RISH, Kyoto)
 • iug_load_gmag_mm210; Elias of erg_load_gmag_mm210
 • iug_load_gmag_nipr; Elias of erg_load_gmag_nipr

3. Load procedures of other data provided in the future:
 • erg_load_sdfit; SuperDARN (Nagoya, NIPR, NICT)
 • erg_load_eiscat; EISCAT (Nagoya, NIPR)
3. RISH database of MW and MF radars

3.1 Regional network in Indonesia (MW and MF radars)

Regional network in Indonesia (1992-)
Meteor wind radar (Jakarta, Kototabang)
MF radar (Pontianak, Pameungpeuk)

MF radar Pontianak (2004-)

Meteor radar Kototabang (2002-)
3. RISH database of MW and MF radars

3.2 MF and MW radar database

1. Meteor wind radar (Kototabang, Serpong)

http://database.rish.kyoto-u.ac.jp/arch/iugonet/data/mwr/

Numerical data:
Serpong (1992/10-1999/08)
Kototabang (2002/11～present)

(1) Wind data ⇒ Format: text, NetCDF
 Time resolution: 1 hour

(2) Original data (Kototabang)
 ⇒ Format: text (mp****.mpd)
 The original data include the radial Doppler velocity, azimuth and zenith angles etc. for each meteor event.

※ Users can get these numerical data from the metadata search site. However, they can download and analyze only the wind data using the UDAS software.
3. RISH database of MW and MF radars

3.2 MF and MW radar database

2. MF radar (Pameungpeuk)

http://database.rish.kyoto-u.ac.jp/arch/iugonet/data/mf/

Numerical data: Pameungpeuk (2004/03～present)

Format: Binary, NetCDF

Time resolution: 104 seconds

※The NetCDF data include only the three components of wind data in the MLT region (52-122 km), while the binary data include all the data set of radar status and wind observation data.

※Users can get these numerical data from the metadata search system and UDAS software. Users can easily analyze and visualize the wind data obtained at the Pameungpeuk site.
3. RISH database of MW and MF radars

3.3 MF and MW radar database Homepage

Users can directly get the wind observation data of the MF and MW radars. Because the MW radar data include the wind data in the text format, users can analyze other softwares; for example excel, delta-gragh etc.
4. Demonstration of the UDAS software

4.1 Analysis and plot of the observation data in the CUI mode
(ex.) Plot of the wind data obtained from the Kototabang MWR

Start of IDL⇒enter "thm_init" on the IDL command line

> `timespan`, ‘2003-10-01’, 31, /day (One month from October 1, 2003)
> `iug_load_meteor_rish_nc`, `site` = ‘ktb’, `parameter` = ‘h2t60min00’
> `tplot_names` (Confirmation of the `tplot` variable names)
> `tplot`, ‘tplot variable names’

⇒A time series plot is displayed in the other window.

※Multiple plots: > `tplot`, [‘tplot1’, ‘tplot2’,…]
> `ylim`, ‘tplot variable names’, (lower), (upper) [Height range]
> `zlim`, ‘tplot variable names’, (lower), (upper) [color bar range]
4. Demonstration of the UDAS software

4.1 Analysis and plot of the observation data in the CUI mode

Output of time series plots of several parameters of the wind data
4. Demonstration of the UDAS software

4.2 Examples of time series plots made in the CUI mode

- Gemag. (NIPR)
- Syowa
- Ice land

Solar radio waves by IPRT

Hokkaido SuperDARN radar
4. Demonstration of the UDAS software

4.3 An example of the upper atmosphere research

Storm commencement

Geomagnetic storm

2006/12/14-16

Gemag. (KAK)

E-W plasma drift

SuperDARN (HOK)

N-S plasma drift

E-W wind

MF radar (PAM)

N-S wind

E-W wind

EAR (trop.)

N-S wind

00:00 08:00 16:00 00:00 08:00 16:00 00:00
4. Demonstration of the UDAS software

4.4 Analysis and plot of the observation data in the GUI mode

• Even the IDL beginners can easily analyze and make time series plots of various kinds of observation data in the GUI mode.

• The IUGONET project will provide the complied GUI execute file for the users with no IDL license in the future.

※ Users can use this execute file with the IDL-Virtual Machine which is freely provided from the ITT.

※ However, there are several modifications of the TDAS-GUI in order to execute this file on the IDL-VM with no error.
3. Demonstration of the UDAS software

3.4 Analysis and plot of the observation data in the GUI mode

Data load window

Select of instruments and geomagnetic indices

In the present version, you can select 10 items.

1. Geomagnetic indices
2. Fluxgate magnetometer
3. EAR (Troposphere/Ionosphere)
4. MF radar
5. Meteor wind radar
6. MU radar (Troposphere)
7. BLR
8. LTR
9. IPRT
10. SuperDARN

Select of time range of data load and plot.
3. Demonstration of the UDAS software

3.4 Analysis and plot of the observation data in the GUI mode

Data load window

Select of data type, observation site and parameters

Lists of loaded data
4. Demonstration of the UDAS software

4.4 Analysis and plot of the observation data in the GUI mode

If you try to load your selected data, acknowledgement is displayed on the other window.

Select of ‘OK’:
Finish the data loading

Select of ‘Cancel’:
Cancel the data loading.
3. Demonstration of the UDAS software

3.4 Analysis and plot of the observation data in the GUI mode

Plot and layout option window

Make a time series plot (line)

Lists of plot data

Make a time series plot (contour)
3. Demonstration of the UDAS software

3.4 Analysis and plot of the observation data in the GUI mode

GUI top window including height-time contour plots

Users can easily make time series contour and line plots for various kinds of observation data and change the vertical and horizontal scales with only the mouse click.

In this GUI mode, users can perform several simple data analyses of the loaded data; for example, average, time derivative, FFT, wavelet etc.

- E-W wind velocity (MF radar)
- N-S wind velocity (MF radar)
- E-W wind velocity (MW radar)
- N-S wind velocity (MW radar)
- E-W wind velocity (BLR)
5. Summary and future plan

5.1 Summary and future plan of the UDAS software

★ We have developed the metadata database and integrated analysis software for ground observation data of the upper atmosphere in our IUGONET project.

- We develop the integrated analysis software which depends on the observation data of each institute, on the basis of the TDAS library written by the IDL language.

- The analysis software will be open for everybody who studies the Earth’s atmosphere after may this year.

- The IUGONET project will provide the complied GUI execute file (IDL save file) for the users with no IDL license in the future.

★ We have started the cross-cutting research using various kinds of observation data provided from the IUGONET project. Our goal is to clarify the long-term variation of the upper atmosphere.
5. Summary and future plan

5.2 Future plan of development of the UDAS software

➢ The UDAS beta version does not include load procedures and plot tools of two-dimension data.
➢ We will develop the load and plot tools of two-dimension data (Sun, SuperDARN, Aurora) and open them for everybody as soon as possible next fiscal year.