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Abstract  

The storm-time ring current sometimes exhibits rapid decay, as suggested from the Dst 

index, but the underlying mechanism is unknown.  By means of a simulation with pitch 

angle scattering due to the field line curvature (FLC), together with the charge exchange 

and adiabatic loss cone loss, we investigated rapid decay of the storm-time ring current for 

the large magnetic storm that occurred on 12 August 2000.  When all three loss processes 

were included, the Dst (Sym-H) index showed rapid recovery with an e-folding time of ~6 

h.  However, without FLC scattering, the simulated Dst (Sym-H) index showed a slower 

recovery with an e-folding time of ~12 h.  Overall flux of energetic neutral hydrogen with 

energy ≥39 keV was significantly reduced by the FLC scattering, and is consistent with 

data from the high energy neutral analyzer (HENA) onboard the IMAGE satellite.  Power 

of precipitating protons showed a fairly good agreement with data from the far ultraviolet 

(FUV) imager onboard IMAGE.  These fairly good agreements with observations lead to 

the possible conclusion that the FLC scattering is a significant loss mechanism for the ring 

current ions, and the main oval of the proton aurora is likely a manifestation of the 

precipitating loss of the protons for this particular storm.  



1. Introduction 

 

The terrestrial ring current consists of ions with energies ranging from a few keV to several 

hundred keV [e.g., Smith and Hoffman, 1973; Williams, 1981].  The growth of the ring 

current is primarily caused by an enhancement of the convection electric field [e.g., Wolf et 

al., 1982].  The ring current can be further developed by the presence of a dense plasma 

sheet [e.g., Chen et al., 1994; Thomsen et al., 1998; Ebihara et al., 1998; Liemohn et al, 

2001] and a substorm injection [e.g., Fok et al., 1999].  Decay of the ring current occurs 

when (1) the ions are neutralized, (2) the ions precipitate into the ionosphere, (3) the ions 

are deenergized, and (4) the ion population drifts out through the dayside magnetopause 

while being replaced by a less dense plasma sheet source population.  

 

Item (1) refers to the charge exchange reaction with neutrals [e.g., Dessler and Parker, 

1959; Tinsley, 1976; Roelof, 1985].  Hamilton et al. [1988] found that the energy density 

of O+ dominated that of H+ near the Dst minimum during the February 1986 storm, and 

suggested that a rapid recovery of Dst (~9.3 h) results largely from the rapid loss of O+ with 

an energy of 75–100 keV via charge exchange at L = 2–3.  Fok et al. [1995] simulated the 

ring current for the February 1986 storm, and concluded that the charge exchange cannot 

account for the rapid Dst recovery.  Kozyra et al. [1998] suggested that in addition to the 

charge exchange, the precipitation loss into the ionosphere plays a major role in the rapid 

Dst recovery.  Keika et al. [2006] used observation of energetic neutral atoms emitted 

from the ring current, and concluded that the charge exchange cannot fully explain the 



rapid decay of the ring current. 

 

Item (2) refers to the precipitation loss.  During magnetic storms, a filled loss cone with 

completely/almost isotropic pitch angle distribution has been observed in the 

auroral/subauroral region at low altitudes [e.g., Amundsen et al., 1972; Hultqvist et al., 

1976; Sergeev et al., 1983; 1993; Søraas et al., 1999], at mid altitudes [e.g., Walt and Voss, 

2001], and at high altitudes [e.g., Williams and Lyons, 1974].  The latitude of the 

boundary between the isotropic and anisotropic proton precipitation (which is called the 

isotropic boundary) moves equatorward when the magnetic field is stretched [Sergeev et al., 

1993].  The isotropic boundary is collocated well with the maximum of energy flux of ion 

precipitation [Newell et al., 1998]. 

 

The following four distinct mechanisms have been suggested to explain the enhanced 

precipitation of ions:  (2a) The adiabatic loss cone loss occurs when ions drift earthward 

and their equatorial pitch angle shifts toward 90° due to the conservation of the first two 

adiabatic invariants.  The loss cone angle is also rapidly widened as the ions drift 

earthward.  Thus, ions with a small pitch angle encounter the loss cone at a certain L-value 

without any pitch angle scattering.  Jordanova et al. [1996] suggested that the adiabatic 

loss cone loss is sufficient to explain the overall precipitation of the ions observed by 

satellites.  However, Ebihara and Ejiri [2003] showed that the contribution from the 

adiabatic loss cone loss only amounts to ~1–2% of the ring current loss during weak 

magnetic storms.  (2b) The Coulomb scattering with thermal plasma is likewise thought to 



make only a minor contribution to the decay of ions at energies >15 keV [Jordanova et al., 

1996; 1997] because the deflection angle due to the Coulomb scattering is inversely 

proportional to energy.  (2c) Ions can be scattered by the wave-particle interaction, namely, 

the electromagnetic ion cyclotron (EMIC) waves that are frequently observed in the inner 

magnetosphere [e.g., Anderson et al., 1992].  Simulation efforts have been made to 

understand the generation of EMIC waves and their contribution to the ring current [e.g., 

Jordanova et al., 1997; 2006; Khazanov et al., 2007; Gamayunov and Khazanov, 2008].  

Jordanova et al. [1997; 2006] suggested that EMIC waves are developed near the 

plasmapause or inside the plasmaspheric plumes, and reduce the total energy by ~10%.  

Isolated long-lasting proton precipitation and localized spots of proton auroral emissions in 

the subauroral region are thought to result from precipitation of the protons scattered by the 

EMIC waves [e.g., Gvozdevsky et al., 1997; Fuselier et al. 2004; Spasojevic et al. 2005; 

Jordanova et al. 2007].  (2d) Ions are scattered when they travel through a region where 

the gyroradius of the ion is close to the curvature radius of a field line [e.g., Sergeev et al. 

1983, Birmingham, 1984; Büchner and Zelenyi 1989, Delcourt et al. 1996; Young et al., 

2002; 2008].  Hereinafter, this scattering mechanism is referred to as field line curvature 

(FLC) scattering.  Ion precipitation with an isotropic pitch angle distribution is suggested 

to result from the FLC scattering [e.g., Sergeev et al., 1993] based on low-altitude particle 

observations and high-altitude magnetic field observations.  The overall contribution of 

the FLC scattering to the ring current decay is not yet understood. 

 

Item (3) refers to Coulomb drag.  The energy of ions can be degraded by Coulomb drag 



when the ions move through a thermal plasma [Spitzer, 1962; Cole, 1965].  As a 

consequence, the velocity space distribution of the ions is redistributed [Fok et al., 1995; 

Jordanova et al., 1996].  The Coulomb drag is thought to be insignificant for ring current 

decay because the loss rate is much smaller than that of the charge exchange [Fok et al., 

1991], and the interaction between the ring current ions and the plasmasphere occurs in a 

limited region.  

 

Item (4) refers to convection outflow.  The ring current can decay when the ion population 

that contributes to the ring current is drained toward the dayside magnetopause by the 

convection electric field, and is replaced by a newly injected tenuous ion population from 

the nightside plasma sheet [e.g., Ebihara and Ejiri, 1998; Liemohn et al., 2001 ; Keika et al., 

2005].  The ring current decays when the number of outgoing particles exceeds that of 

incoming particles.  The decay rate of the ring current is determined by the degree of 

imbalance between incoming particles and outgoing particles.  Multipoint observations of 

incoming particles on the nightside and outgoing particles on the dayside are necessary to 

evaluate the net loss of the ion population in the ring current due to the convection outflow. 

 

The purpose of this study is to investigate the decay of the ring current due to the FLC 

scattering, whose overall contribution to the ring current decay is unknown.  We 

performed a simulation of the ring current, including the FLC scattering, charge exchange, 

and adiabatic loss cone loss.  The results were compared with the Dst*(Sym-H*) index, 

and global distributions of energetic neutral hydrogen and the Doppler-shifted Lyman  



emission (proton aurora).  

 

 

2. Simulation 

 

We used the comprehensive ring current model (CRCM) [Fok et al., 2001] to solve the 

evolution of the four-dimensional phase-space density of hot protons in the inner 

magnetosphere.  The phase space density f is a function of the magnetic latitude (MLAT), 

magnetic local time (MLT), first adiabatic invariant, and second adiabatic invariant.  The 

evolution of f is written as  
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where 
0 00, , , , , , ,  and i i s H bv n D      are the magnetic latitude, magnetic longitude, speed 

of the particle, charge exchange cross section, neutral hydrogen density, bounce period, 

equatorial pitch angle, and pitch angle diffusion coefficient, respectively.  The first three 

terms on the right hand side represent the proton loss inside the loss cone, loss due to the 

charge exchange, and pitch angle diffusion, respectively.  Readers may refer to Fok et al. 

[2001] for a detailed explanation of this model. 



 

We used the diffusion coefficient that was previously formulated by Young et al. [2008] as 
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where = rG/rc, where rG is the gyroradius in the equatorial plane and rc is the curvature 

radius of a field line in the equatorial plane. Here, 2 2
1 ( / )c cr r s     and 

2 2 2
2 0 0 0

( / )( / )cr B B s     are measures of the changing equatorial curvature radius rc and 

the equatorial magnetic field B0, respectively, and s is the distance along the magnetic field 

line.  0 is the equatorial pitch angle at which the A value reaches its maximum.  The 

parameters, (), a1(), a2(), b(), c(), and D(), are given by quadratic polynomial forms 

[Young et al., 2002; 2008].  When  >0.584, we set  =0.584 [Young et al., 2008].  When 

<0.1, we don’t calculate the pitch angle diffusion because the diffusion coefficient is too 

small. 

 

The FLC scattering takes place twice each bounce period in the equatorial plane, so that the 

diffusion coefficient is not necessary to be bounce-averaged.  The TS04 magnetic field 

model [Tsyganenko et al., 2003; Tsyganenko and Sitnov, 2005] was employed to represent 

the storm-time magnetic field in the inner magnetosphere.  The Weimer 2005 electric field 



model [Weimer, 2005] was used to impose the electric potential to the poleward boundary 

at the ionospheric altitude.  The Weimer 2005 model reproduces nonlinear saturation 

effects in the solar wind-magnetosphere coupling.  The input parameters for the TS04 

model and the Weimer 2005 model were determined using the 5-min resolution of the 

OMNI2 data set [King and Papitashvili, 2005].  

 

We focused on the magnetic storm that occurred on 12 August 2000 because the apogee of 

the IMAGE satellite was situated above the North Pole during the most developed period of 

the storm.  The solar wind, interplanetary magnetic field (IMF), and Sym-H* index are 

summarized in Figure 1.  The time of the solar wind and IMF data were shifted from the 

observation position of the satellite to the bow shock nose of the Earth [King and 

Papitashvili, 2005].  The Dst* (Sym-H*) index was obtained based on the observed Dst 

(Sym-H) index with a correction for the solar wind dynamic pressure [Gonzalez et al., 

1994].  It should be noted that the Dst* (Sym-H*) index is the appropriate index, and may 

still include contributions from the magnetopause current, the field-aligned current, and the 

ionospheric current. 

 

No geosynchronous satellites measured hot ions on the nightside during the main phase of 

this storm.  We used the differential proton intensity measured by Polar/MICS [Wilken et 

al., 1992; Roeder, 2005] at L = 6.6 and 0253 MLT near the equatorial plane at 0922 UT on 

12 August 2000.  The differential flux was fitted to the double-Maxwellian distribution.  

The fitted parameters are as follows: a density of 0.23 cm-3 and temperature of 2.7 keV for 



the first Maxwellian, and a density of 0.13 cm-3 and temperature of 26 keV for the second 

Maxwellian.  The double-Maxwellian distribution was imposed to the outer boundary of 

the simulation.  

 

In order to isolate the influence of the loss processes, three different simulations were 

performed:  Run 1 included (1) the charge exchange loss, (2a) the adiabatic loss cone loss, 

and (2d) the FLC scattering.  Run 2 included (1) the charge exchange loss and (2a) the 

loss cone loss.  Run 3 included only (2a) the loss cone loss.  All of the other parameters 

had the same settings.  These simulation settings are summarized in Table 1. 

 

 

3. Results 

 

Figure 2 shows the calculated plasma pressure perpendicular to the magnetic field at 0840 

UT on 12 August 2000 (in the late main phase).  The plasma pressure was well developed 

at around L = 2–3 on the nightside.  When the FLC scattering was included (Run 1), the 

plasma pressure was significantly decreased in the outer ring current in comparison with 

that in Runs 2 and 3. 

 

Figure 3 shows ratio between the curvature radius of a field line and the gyroradius of 50 

keV protons in the equatorial plane (i.e., the  value in (2)) for 0840 UT on 12 August 2000.  

The ratio is greater than 0.1 on the nightside at L ≥ 5 due to the stretched and weak 



magnetic field. 

 

In Figure 4, we show the pitch angle distributions (PADs) of the protons at 50 keV at 

midnight at L = 4 (left) and L = 5 (right).  At L = 4, the  value is ~0.029 at midnight, so 

that the pitch angle diffusion is not calculated.  The loss cone is almost empty for Runs 1 

and 2 (left).  At L = 5, the  value is ~0.12 at midnight and the diffusion coefficient is 

relatively large (~4×10–4 s–1 at the equatorial pitch angle of 10° at midnight) for Run 1.  

The protons are effectively scattered, and the loss cone is completely filled by the FLC 

scattering for Run 1.  The maximum of 
0 0 bD    is 0.13 at this moment, so that the FLC 

scattering is small on the bounce period time scale.  The nearly isotropic PAD around the 

loss cone are consistent with the in-situ satellite observations [e.g., Amundsen et al., 1972; 

Hultqvist et al., 1976; Sergeev et al., 1983; 1993; Søraas et al., 1999]. 

 

The left panel of Figure 5 shows the energy flux of precipitating protons obtained by the 

Doppler-shifted Lyman  images captured by a far ultraviolet (FUV) imager on board the 

IMAGE satellite [Mende et al., 2002a; 2002b].  See Hubert et al. [2002] and Frey et al. 

[2003] for the derivation of the energy flux of precipitating protons from the auroral images.  

The equatorward boundary of the observed proton precipitation was located at ~55 MLAT 

at midnight at 0840 UT on 12 August 2000.  Coumans et al. [2002] compared the 

IMAGE/FUV observation with particle data obtained from the NOAA-TIROS satellite at 

1011–1020 UT on 12 August 2000.  They demonstrated that the energy flux based on the 

IMAGE/FUV observation shows a satisfactory agreement with the in-situ particle 



observations.   

 

The middle panel of Figure 5 shows the simulated energy flux of precipitating protons for 

Run 1.  The precipitation occurs in the oval-shaped region with its peak flux taking place 

near midnight.  When only the adiabatic loss cone loss is included (Run 2), the energy flux 

is lower compared to that of Run 1 and the precipitation occurs in a latitudinally confined 

region, which is inconsistent with the observations.  

 

Power of precipitating protons into the ionosphere () can be derived by the following 

equation: 

 22 ( , ) cos( ) ,F r d dl f l l fY = ´òò  (6) 

where F and r are the precipitating energy flux and the geocentric distance of the 

ionosphere altitude (100 km altitude), respectively, assuming that the same quantity of 

protons was precipitating into both hemispheres.  Since the Doppler-shifted Lyman  

images were slightly contaminated by the solar radiance on the dayside, the integration was 

performed only on the nightside, that is, from 1800 MLT to 0600 MLT.  

 

Figure 6 shows the power of precipitating protons.  The observed power (solid line) 

reached its maximum value of ~3 × 1026 keV s-1 at ~0910 UT, and gradually decayed in the 

early recovery phase.  The power is consistent with that derived by Fang et al. [2007] who 

used data from the polar orbiting satellite, NOAA.  In Run 1, the power was ~1.5 × 1026 

keV s-1 at ~0630 UT, and decayed gradually over time, which is consistent with the 



observation.  In Run 2, the maximum power was ~4 × 1025 keV s-1, which is an order of 

magnitude smaller than the observation, indicating that the adiabatic loss cone loss cannot 

account for the observation of proton precipitation.  The FLC scattering might sufficiently 

explain the power of the nightside proton precipitation within a factor of ~2. 

 

Figure 7 compares the observed Sym-H* index with the calculated ones.  At 1025 UT, the 

observed Sym-H* started to show a rapid recovery, followed by a slow recovery.  An 

e-folding decay time of the observed Sym-H* during the initial rapid recovery was ~3 h.  

In Run 1 (red line), the Sym-H* index also showed an initial rapid recovery (starting at 

~0900 UT) with an e-folding decay time of ~6 h.  The e-folding decay time was ~12 h in 

Run 2 (blue line), and ~28 h in Run 3 (green line).   

 

Figures 8a summarizes composite images of the number flux of energetic hydrogen 

(reddish color) at 39–50 keV together with the energy flux of precipitating protons (bluish 

color) from the vantage point of the IMAGE satellite.  The energetic hydrogen was 

emitted from the region where a proton undergoes a charge exchange process in a collision 

with exospheric neutral hydrogen or neutral oxygen of the upper atmosphere, and was 

observed by a high energy neutral analyzer (HENA) on board the IMAGE satellite 

[Mitchell et al., 2000].  The energy flux of the precipitating protons is the same as Figure 

5, and was obtained based on the Doppler-shifted Lyman  emission remotely captured by 

IMAGE/FUV [Mende et al., 2000a; 2000b].  Thus, the composite image is a direct 

representation of the two major loss processes of the ring current, that is, the charge 



exchange (reddish color) and precipitation into the ionosphere (bluish color).  The peak 

intensity of the observed energetic hydrogen occurred in the post-midnight, which was 

previously reported [Brandt et al., 2002].  The post-midnight enhancement of the peak 

intensity of the energetic hydrogen is attributed to the skewed electric potential that resulted 

from the ring current [Fok et al., 2003; Ebihara and Fok, 2004].   

 

Figures 8b and 8c are the same as Figure 8a, but were obtained by the simulation.  The 

number flux of the energetic hydrogen was calculated by the line of sight integral as 

 ,EH s H Pj n j dl   (7) 

where jp is the differential flux of the protons, and dl is a line element along the line of sight 

from the IMAGE satellite [Roelof, 1987; Fok et al., 2003].  The maximum intensity of the 

energetic hydrogen is larger than that of the observed one, but overall morphology of the 

simulated distribution of the energetic hydrogen is consistent with the observation. 

 

Figure 9 shows time history of the integrated energetic hydrogen flux.  The integration 

was performed by using the images of the neutral hydrogen shown in Figure 8 over 45° 

from the center of the Earth with the following equation 
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where E is the kinetic energy, and  is the solid angle.  The integrated flux shows a 

gradual decrease in the first half of the period in the outbound pass, and a gradual increase 

in the second half of the period in the inbound pass of its orbit.  This gradual change in the 



flux is primarily due to a geometrical effect [e.g., Ohtani et al., 2006].  The most intense 

emission of energetic hydrogen is confined to a region near the Earth as shown in Figure 9 

(i.e., the source can be approximated as a point source), so that the integrated flux tends to 

decrease with the geocentric distance.  In addition, the pitch angle distribution of seed 

protons is known to influence the global distribution of energetic hydrogen [e.g., Perez et 

al., 2001; Ohtani et al., 2005].  The dotted and dashed lines stand for the simulated flux in 

Run 1 and Run 2, respectively.  At energy 10–39 keV (Figure 9a), both the simulated 

fluxes are almost the same with each other because the gyroradius of the 10–39 keV 

protons are too small to occur the FLC scattering significantly.  In general, the simulated 

flux is larger than observed.  The difference between the simulation and the observation is 

attributed to the assumed pitch angle distribution and the energy distribution of protons at 

the simulation boundary, but is beyond the scope of this study.  At energy 39–119 keV 

(Figure 9b), the simulated flux in Run 1 is smaller than in Run 2 by a factor of ~2, and is 

closed to the one observed when IMAGE was located at radial distance ≥6 Re (~0900–1700 

UT).  The significant reduction of the energetic hydrogen in Run 1 implies that the FLC 

scattering is effective for reducing the overall protons with energy ≥39 keV. 

 

 

4. Discussion 

 

In Run 1, the ring current decayed rapidly with an e-folding time of ~6 h at the beginning 

of the recovery phase.  This e-folding time is consistent with typical decay time values of 



5–10 h during magnetic storms [Gonzalez et al., 1994 and references therein].  Kozyra et 

al. [1998] compiled the precipitating ion fluxes observed by the low-altitude satellites 

NOAA and DMSP, and derived the lifetime of the order of 8–10 h or less for the 

precipitating loss during the February 1986 storm.  The global morphology and intensity 

of the proton precipitation were fairly consistent with the IMAGE/FUV observations within 

a factor of 2.  The results of Run 1 suggest that the FLC scattering may sufficiently 

explain the decay of the storm-time ring current, and the global precipitation of protons. 

 

Unfortunately, we cannot easily make a direct comparison with the observed Sym-H* 

(Dst*) index because Sym-H* (Dst*) includes contributions not only from the ring current, 

but also from the tail current, field-aligned current, and ionospheric current.  Ohtani et al. 

[2005] suggested that the rapid recovery of Sym-H* starting at 1024 UT on 12 August 2000 

was caused by a sudden collapse of the tail current associated with a substorm.  Run 1 

showed that the rapid recovery of Sym-H* occurred at ~0920 UT, which is earlier than 

observed.  The earlier onset of the rapid recovery may be explained by the uncertainty in 

the travel time of the solar wind condition to the inner magnetosphere, or by the exclusion 

of the contribution from the tail current to the simulated Sym-H*. 

 

Of course, we cannot rule out the other processes.  Jordanova et al. [2006] calculated the 

evolution of the ring current together with the pitch angle scattering by the electromagnetic 

ion cyclotron (EMIC) waves.  They calculated the wave growth and pitch angle diffusion 

coefficient under the quasi-linear theory, and concluded that the pitch angle scattering due 



to the EMIC waves reduced the total proton energy of the ring current by ~10% during the 

storm recovery phase.  Recently, Omura et al. [2010] derived wave equations that describe 

the nonlinear behavior of the trapped protons interacting with the EMIC waves, called the 

EMIC chorus.  The EMIC chorus could have resulted in the strong proton scattering and 

precipitation into the ionosphere.   

 

The convection outflow of particles has been thought to contribute significantly to the ring 

current decay [e.g., Ebihara and Ejiri, 1998; Liemohn et al., 2001; Keika et al., 2005].  

This mechanism becomes significant when the plasma sheet density (which is a source of 

ring current ions) drops suddenly, with a time scale shorter than that of the convection 

electric field.  Unfortunately, no geosynchronous satellite observed the plasma sheet ions 

on the nightside during the recovery phase.  Therefore, the influence of the convection 

outflow cannot be investigated.  It can be said that, for this particular storm, the 

convection outflow seems to be unnecessary to explain the rapid decay of the ring current 

because the FLC scattering satisfactorily explains the rapid decay of the ring current. 

 

We assumed that the ring current consist of protons only in the simulation.  Previous 

studies have shown that the contribution from oxygen ions is not negligible for intense 

magnetic storms [e.g., Hamilton et al., 1988; Daglis et al., 1999].  Exclusion of the oxygen 

ions could have some impacts on the simulation results.  First, when the oxygen ions are 

included, the intensity of the ring current would be stronger.  Secondly, the oxygen ring 

current would decay more rapidly because the FLC scattering is more effective in the 



reduction of the oxygen ions that have larger gyroradius.  Thirdly, the intensity of the 

shielding electric field would be stronger.  The strong shield electric field impedes the 

earthward penetration of the ions from the nightside plasma sheet, so that the intensity of 

the ring current does not increase much [Ebihara et al., 2005].  This effect may reduce the 

first concern that the simulated ring current is underestimated too much.  For these reasons, 

it can be said that our simulation may provide lower limit of the rapid decay of the ring 

current. 

 

 

5. Conclusion 

 

We obtained the following conclusions. 

1. The Dst (Sym-H) index showed rapid recovery with the e-folding time of ~6 h when 

the FLC scattering, charge exchange and adiabatic loss cone loss were fully included.  

The e-folding time was ~12 h when the FLC scattering is excluded.  The e-folding 

time is ~28 h when the charge exchange was further excluded.  The e-folding time of 

~6 h is consistent with typical one during magnetic storms. 

2. The FLC scattering is efficient for decaying the overall protons with energy ≥39 keV, 

and is the major loss mechanism for the ring current for the 12 August 2000 storm.  

The charge exchange and the adiabatic loss cone loss are insufficient to explain the 

overall decay of the ring current. 

3. Formation of the main oval of the storm-time nightside aurora can be sufficiently 



explained by the precipitating protons under the influence of the FLC scattering.  The 

calculated power of the protons precipitating into the ionosphere is consistent with the 

IMAGE/FUV observation. 
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Table 

 

Table 1. List of the simulation settings. 

Name Adiabatic loss cone loss Charge exchange FLC scattering 

Run 1 Yes Yes Yes 

Run 2 Yes Yes No 

Run 3 Yes No No 

 

 



Figure caption 

Figure 1.  From top to bottom, IMF By, IMF Bz, solar wind density (Nsw), solar wind 

velocity (Vsw), and Sym-H* are shown. The IMF and solar wind parameters were obtained 

from the 5-min resolution of the OMNI2 database, which are time-shifted to the bow shock 

position. 

 

Figure 2.  Calculated perpendicular plasma pressure of protons at 0840 UT on 12 August 

2000.  The pressure is shown in the equatorial plane, and the Sun is to the left. The outer 

circle corresponds to L = 6.5. 

 

Figure 3.  Ratio between the gyroradius of a 50 keV proton and the curvature radius of a 

field line and in the equatorial plane as predicted by the TS04 magnetic field model for the 

condition corresponding to 0840 UT on 12 August 2000. 

 

Figure 4.  Calculated pitch angle distribution of 50 keV protons as a function of equatorial 

pitch angle at midnight at L = 4 (left) and L = 5 (right) for Run 1 (thick line) and Run 2 

(thin line). 

 

Figure 5.  Energy flux of precipitating protons at the ionosphere altitude at 0840 UT on 12 

August 2000.  The energy flux was obtained from auroral images acquired by the IMAGE 



satellite (left), and simulations for Run 1 (left) and Run 2 (middle). 

 

Figure 6.  Observed Dst* index (top) and the power of the precipitating protons (bottom). 

The solid, dotted, and dashed lines indicate the observed values and those simulated for 

Run 1 and Run 2, respectively. 

 

Figure 7.  Observed Sym-H* (black) and simulated ones for Run 1 (red), Run 2 (blue), 

and Run 3 (green). 

 

Figure 8.  Composite images of energetic hydrogen (reddish color) and precipitating 

protons (bluish color) from the vantage point of the IMAGE satellite at (0.4, 0.7, 5.7) RE in 

the SM coordinates at 0840 UT on 12 August 2000.  Panel (a) shows the images of 

energetic hydrogen observed by IMAGE/HENA (39–50 keV) and precipitating protons 

observed by IMAGE/FUV, panel (b) shows the simulated ones for Run 1, and panel (c) 

shows the simulated ones for Run 2.  Unit for energetic hydrogen is 1/cm2 s str keV, and 

unit for precipitating protons is 1012 eV/cm2 s. Dipole field lines for L = 3 and 6.6 are 

drawn at 0000, 0600, 1200, and 1800 MLT.  The outer circle corresponds to L = 6.6 and 

the inner circle represents the surface of the Earth. 

 

Figure 9.  Integrated energetic neutral hydrogen flux with energy (a) 10–39 keV and (b) 

39–119 keV.  A solid line shows the one observed by IMAGE/HENA.  Dotted and 

dashed lines show the simulated one in Run 1 and Run 2, respectively. 



Figures 1 

Figure 1.  From top to bottom, IMF By, IMF Bz, solar wind density (Nsw), solar wind 2 

velocity (Vsw), and Sym-H* are shown. The IMF and solar wind parameters were obtained 3 

from the 5-min resolution of the OMNI2 database, which are time-shifted to the bow shock 4 

position. 5 
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Figure 2.  Calculated perpendicular plasma pressure of protons at 0840 UT on 12 August 8 

2000.  The pressure is shown in the equatorial plane, and the Sun is to the left. The outer 9 

circle corresponds to L = 6.5. 10 
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Figure 3.  Ratio between the gyroradius of a 50 keV proton and the curvature radius of a 12 

field line and in the equatorial plane as predicted by the TS04 magnetic field model for the 13 

condition corresponding to 0840 UT on 12 August 2000. 14 
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Figure 4.  Calculated pitch angle distribution of 50 keV protons as a function of equatorial 16 

pitch angle at midnight at L = 4 (left) and L = 5 (right) for Run 1 (thick line) and Run 2 17 

(thin line). 18 
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Figure 5.  Energy flux of precipitating protons at the ionosphere altitude at 0840 UT on 12 20 

August 2000.  The energy flux was obtained from auroral images acquired by the IMAGE 21 

satellite (left), and simulations for Run 1 (left) and Run 2 (middle). 22 
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Figure 6.  Observed Dst* index (top) and the power of the precipitating protons (bottom). 24 

The solid, dotted, and dashed lines indicate the observed values and those simulated for 25 

Run 1 and Run 2, respectively. 26 
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Figure 7.  Observed Sym-H* (black) and simulated ones for Run 1 (red), Run 2 (blue), 28 

and Run 3 (green). 29 

30 

-250

-200

-150

-100

-50

0

D
st

*(
nT

)
D

st
*(

nT
)

       

Run 1

Observation

Run 2

Run 3
0000 0400 0800 1200 1600 2000 0000

UT on 12 August 2000



Figure 8.  Composite images of energetic hydrogen (reddish color) and precipitating 31 

protons (bluish color) from the vantage point of the IMAGE satellite at (0.4, 0.7, 5.7) RE in 32 

the SM coordinates at 0840 UT on 12 August 2000.  Panel (a) shows the images of 33 

energetic hydrogen observed by IMAGE/HENA (39–50 keV) and precipitating protons 34 

observed by IMAGE/FUV, panel (b) shows the simulated ones for Run 1, and panel (c) 35 

shows the simulated ones for Run 2.  Unit for energetic hydrogen is 1/cm2 s str keV, and 36 

unit for precipitating protons is 1012 eV/cm2 s. Dipole field lines for L = 3 and 6.6 are 37 

drawn at 0000, 0600, 1200, and 1800 MLT.  The outer circle corresponds to L = 6.6 and 38 

the inner circle represents the surface of the Earth.  39 
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Figure 9.  Integrated energetic neutral hydrogen flux with energy (a) 10–39 keV and (b) 41 

39–119 keV.  A solid line shows the one observed by IMAGE/HENA.  Dotted and 42 

dashed lines show the simulated one in Run 1 and Run 2, respectively. 43 
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