<table>
<thead>
<tr>
<th>Title</th>
<th>Dietary adaptations of temperate primates: comparisons of Japanese and Barbary macaques.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hanya, Goro; Ménard, Nelly; Qarro, Mohamed; Ibn Tattou, Mohamed; Fuse, Mieko; Vallet, Dominique; Yamada, Aya; Go, Moe; Hino, Takafumi; Tsujino, Riyou; Agetsuma, Naoki; Wada, Kazuo</td>
</tr>
<tr>
<td>Citation</td>
<td>Primates; journal of primatology (2011), 52(2): 187-198</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/139581</td>
</tr>
<tr>
<td>Right</td>
<td>The final publication is available at www.springerlink.com; この論文は著者最終稿です。内容が印刷版と異なることがありますので、引用の際には出版社版をご確認ご利用ください。This is the Accepted Author Manuscript. Please cite only the published version.</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>

Kyoto University
Dietary adaptations of temperate primates: comparisons of Japanese and Barbary macaques

Goro Hanya, Nelly Ménard, Mohamed Qarro, Mohamed Ibn Tattou, Mieko Fuse, Dominique Vallet, Aya Yamada, Moe Go, Hino Takaumi, Riyou Tsujino, Naoki Agetsuma and Kazuo Wada

G. Hanya, A. Yamada, M. Go, K. Wada: Primate Research Institute, Kyoto University, Inuyama, Japan
N. Ménard, D. Vallet: Station Biologique, CNRS-université Rennes, Paimpont, France
M. Qarro: Ecole Nationale Forestière d’Ingénieurs, Salé, Morocco
M. Ibn Tattou: Institut Scientifique, Université Mohammed V-Agdal, Rabat, Morocco
M. Fuse: Sasayama Field Station, Kobe University, Sasayama, Japan
H. Takaumi and N. Agetsuma: Field Science Center for Northern Biosphere, Hokkaido University
R. Tsujino: Research Institute for Humanity and Nature

Correspondence to: G. Hanya: Primate Research Institute, Kyoto University, Kanrin 41-2, Inuyama, Aichi, 484-8506 Japan. E-mail: hanya@pri.kyoto-u.ac.jp, Tel: +81-568-63-0542, Fax: +81-568-63-0564

Short title: Diet of temperate macaques
Abstract

Habitat, diet and leaf chemistry are compared between Japanese and Barbary macaques in order to reveal the similarities and differences in dietary adaptations of temperate primates living at the eastern and western extremes of the genus *Macaca*. Tree species diversity and proportion of fleshy-fruited species are much higher in Japan than in North Africa. Both species spend considerable annual feeding time on leaves. Japanese macaques prefer fruits and seeds over leaves and Barbary macaques prefer seeds. These characteristics are adaptive in temperate regions where fruit availability varies considerably with season, since animals can survive during the lean period by relying on leaf and other vegetative foods. The two species are different with respect to the higher consumption of herbs by Barbary macaques, and the leaves consumed contain high condensed and hydrolysable tannin for Barbary but not for Japanese macaques. Barbary macaques supplement less diverse tree foods with herbs. Because of the low species diversity and high tannin content of the dominant tree species, Barbary macaques may have developed the capacity to cope with tannin. This supports the idea that the digestion of leaves is indispensable to survive in temperate regions where fruit and seed foods are not available for a prolonged period during each year.

KEY WORDS: Barbary macaque, condensed tannin, Japanese macaque, leaf chemistry, temperate forest

Introduction

Primates originated in the tropical rain forests (Fleagle 1999), but they have radiated into various marginal habitats, such as woodlands, savanna and high mountains. Temperate forest is one of those marginal habitats harboring approximately 20 genera.
within 8 families (Lemuridae, Indriidae, Cheirogaleidae, Lorisidae, Cebidae, Callitrichidae, Cercopithecidae and Hylobatidae), if we define the border between temperate and tropical regions as the tropics of Cancer and Capricorn (Fleagle 1999). Among them, five species (Japanese and Barbary macaques, Sichuan and Guizhou golden monkeys, and golden langurs) are distributed exclusively in the temperate regions (Fleagle 1999). Although temperate primates are a minority within the order, it is expected that adaptations to temperate habitat have evolved in various lineages.

Temperate forest is characterized by high seasonal variations in temperature and day length. In addition, fruitsing phenology in temperate forest is more seasonal than in tropical forest (Ting et al. 2008), and the fruitsing peak tends to occur in a more limited time of the year (autumn). Consequently, fruitsing phenology tends to be more seasonal and predictable in temperate forest than in tropical forest (Ting et al. 2008). In the former, fruit is commonly absent for several months of the year (Herrera 1984; Hanya et al. 2004). In some tropical forests, plant reproductive phenology is aseasonal or weakly seasonal (Sakai 2002). In most tropical forests, however, fruitsing peaks are predictable, but not all species peak in the same month (van Schaik et al. 1993; Ting et al. 2008).

Based on a review of 51 temperate and tropical forests all over the world, fruit fall in the tropical forests is, on average, 1.71 times larger than that in temperate forests (Hanya and Aiba, in press). The proportion of fleshy-fruitsing species, potential foods for primates, is also smaller in temperate than in tropical forests (Willson et al. 1989).

Therefore, fruit food availability (biomass of edible parts of fruits) seems to be smaller in temperate than in tropical forests.

Availability of young leaves, as well as fruits, may also be limited in temperate forests. Young leaves are usually available throughout the year in the tropics
(van Schaik et al. 1993), but the period of leaf flushing is confined to spring and early summer in temperate regions (Agetsuma 1995; Komiyama et al. 2001). Therefore, protein-rich young leaves cannot be used as a fallback food when fruits are not available, particularly in winter.

Hanya (2004) revealed that Japanese macaques have two dietary characteristics that are adaptive in temperate forests: 1) They eat substantial amounts of leaves and other vegetative parts, while fruits and seeds are only minor foods; 2) Even in the fruit-poor environments, they prefer fruits and seeds and eat them whenever they are available. To survive in a fruit-poor environment, monkeys must adapt by eating a large amount of leaf foods. In fact, the proportion of fruit-feeding time of temperate macaques (Macaca fuscata, M. cyclopis, and M. mulatta: 9-54%) is lower than that of tropical macaques (M. fascicularis, M. radiata, M. nigra, and M. nemestrina: 59-70%) (Hanya 2004). At the same time, preference for fruit is also useful in temperate regions because food ingested in excess of daily requirements can be saved as fat to help animals survive in the fruit-poor winter (Wada 1975). Since the fruiting phenology and climate are highly annually periodic in temperate forests, it is possible for animals to predict when to start fat deposition and how long a food shortage will last. In fact, patterns of seasonal change in deposited fat are quite similar among different populations of Japanese macaques, having peaks in early spring and late autumn, corresponding to the seasonal change in food availability (Muroyama et al. 2006). Therefore, dependence on deposited fat is a safe strategy in temperate regions, and fat deposition is in fact prevalent in temperate and arctic endotherms (Pond 1978).

This paper compares habitat, diet and leaf food selection by two species of temperate macaques, Japanese and Barbary macaques. We chose these species because
1) they are among the most-studied temperate macaques and 2) they are the most
distantly located, at the eastern- and western-most extremes of the distribution of genus
Macaca. Japanese macaques are distributed widely throughout the Japanese archipelago
(30—41° N). Their habitat includes both warm-temperate broad-leaved evergreen
forest and cool-temperate broad-leaved deciduous forest. They also live in coniferous
forests in high mountains (Izumiyama 2002; Hanya et al. 2004). Barbary macaques live
in isolated forest patches in Morocco and Algeria (31—36° N). They live from
lowland thermophilous scrub through mid-altitude mixed deciduous and evergreen oak
forest and high-altitude coniferous forest (Fa 1984b). Among the extant macaques,
Barbary macaques represent a relatively ancient branch (Fa 1989). Some data on other
temperate species are available, but we have not examined them in detail, as we have
done for the Barbary and Japanese macaques because data for those other species are
scanty, in particular habitat data.

Based on our original data and review of published articles, we examine 1)
the difference in tree species diversity and composition between the two habitats; 2) the
annual diet of the two species, with special reference to fruit/seed- and leaf-eating; 3)
the relationship between fruit/seed availability and fruit/seed-eating in the two species,
in order to clarify the preferences for fruit/seeds by these macaques; and 4) leaf
chemistry of food and non-food tree leaves, in order to reveal the difference in selection
criterion of leaf foods in response to the habitat differences.

Methods

Vegetation

Data on the vegetation of macaque habitats were derived from our published (Ménard
Diet of temperate macaques

Hanya et al.

and Vallet 1988; Hanya et al. 2003) and unpublished data. Data from six sites in Japan and two sites in Algeria were compared. We sampled trees of >5 cm in diameter at breast height (DBH). The number of species and the Shannon-Wiener diversity index (Clutton-Brock 1977) were compared. In the calculation of the diversity index, each species was evaluated either by basal area or coverage. We controlled for the effect of area on species diversity by comparing plot sizes of 0.5 ha, in some cases obtained by extrapolation (Colwell and Coddington 1994), using the software program ‘EstimateS’.

Diet

Annual dietary composition was compared primarily by using observational data of 12 months or more, expressing dietary composition according to feeding time. Data were available for three sites (lowland and coniferous forest of Yakushima and deciduous forest of Kinkazan) for Japanese macaques (Hill 1997; Hanya 2004; Tsuji et al. 2006) and two sites for Barbary macaques (deciduous oak forest of Akfadou and coniferous/evergreen broad-leaved forest of Djurdjura, Algeria) (Ménard 1985; Ménard and Vallet 1986). For comparative purposes, data on annual diet of three species of tropical macaques (M. nigra, M. fascicularis and M. radiata), studied by scan sampling (Ali 1986; Yeager 1996; O’Brien and Kinnaird 1997), are also shown. Data on monthly changes were not available for the tropical macaques. At Kinkazan, data were obtained over several years and included all 12 calendar months. At other sites, data were taken for at least 12 consecutive months. In the lowland forest of Yakushima, data were taken for 1.5 years, but we used data for only the first 12 consecutive months.

At the two North African sites, we used the scan sampling method, recording the activity of the first five animals seen every 10 min. At Yakushima, we used focal
sampling of adults and recorded behavior by instantaneous 1-min sampling (lowland habitat) or continuous sampling (coniferous forest). At Kinkazan, both scan sampling (every ten or five minutes) of all visible individuals and continuous focal-animal sampling of adult females were used. There are methodological differences among the studies, but for rough comparison of major food items, these can be neglected (Fragaszy et al. 1992). In lowland Yakushima, annual dietary composition described by scan sampling (Agetsuma and Nakagawa 1998; data not used because observations for January were lacking) is similar to that obtained by focal animal sampling (Hill 1997; data used in this paper). Dietary data were expressed as the proportion of the food in the annual feeding time. The actual proportion of each food’s intake may be different from the value expressed by feeding time. However, this should not matter for comparative purposes, such as the evaluations in this study. Other types of data, e.g. data representing diet by energy intake or data of less than one year, were used ad libitum.

Leaf chemistry

Data on leaf chemistry for Japanese macaques in Yakushima are taken from Hanya et al. (2007), but the data for Barbary macaques in Moyen Atlas, Morocco, are original. In Yakushima and Moyen Atlas, both food and non-food leaves were sampled. In Yakushima, food leaves were determined from our observational data covering a one-year period in the coniferous and lowland forests (Hanya et al. 2007). For non-food leaves, all of the species which appeared in two vegetation plots but were not eaten by macaques were examined. The vegetation plots were 50 m × 50 m and 5 m × 1500 m in lowland and coniferous forests, respectively. Both plots, although having different sizes and shapes, reflect typical macaque habitat characteristics (Hanya et al. 2007). Since...
there was no essential difference in leaf selection between the two habitats (Hanya et al. 2007), data on coniferous and lowland forests were combined. Leaves were sampled in September 2000, 2004 and 2005. In Moyen Atlas, leaves of all species listed in Table 6.4 of Drucker (1984) (except introduced species), representing food species and major trees in Moyen Atlas, were sampled. Among them, food leaves were determined using the comprehensive food list of Barbary macaques in Appendix II of Fa (1984a). Leaves were sampled in late September and early October 2005. The numbers of food and non-food leaf species sampled were, respectively, 24 and 54 in Yakushima and 13 and 16 in Moyen Atlas. Sampling periods were determined by the following conditions: 1) several months after the leaf flush in spring, 2) before the deciduous species shed leaves in late autumn 3) when at least some leaf eating was observed. Since the sites’ sampling periods roughly matched, data were comparable.

Sampling was conducted for at least four individual trees, except when the species was rare (2 species for each area, sampled for only one tree). At least 20 leaves were sampled for each species. Collected leaves were kept in paper envelopes and brought to field stations where they were immediately dried at 40°C for 24 hours. Pre-dried leaves were kept in plastic bags and brought to the laboratory at the Primate Research Institute, Kyoto University, where they were dried again at 40°C for 48 hours by a vacuum incubator. After weighing, leaves were ground, sieved through a 0.5-mm mesh, put in plastic tubes, and kept in a desiccator.

All of the chemical analyses were done at the Primate Research Institute, Kyoto University, under the same protocol. Crude protein was determined using the Kjeldahl procedure for total nitrogen and multiplying by 6.25 (Hasegawa 1993). Crude lipid was measured as diethyl-ether extract by the Soxhlet method (Hasegawa 1993).
Crude ash was determined by ashing at 550°C (Hasegawa 1993). Neutral detergent fiber (NDF) was estimated following the methods of van Soest et al. (1991). Condensed tannin was extracted with 50% methanol and determined by the butanol-HCl method (Porter 1989). Condensed tannin concentration was calibrated from the absorbance at 550 nm, using the known concentration of cyanidin chloride. Hydrolysable tannin extracted with 70% aqueous acetone was determined by the potassium iodine method (Willis and Allen 1998). Hydrolysable tannin concentration was calibrated as a tannic acid equivalent from the absorbance at 550 nm. The available standards of tannins substantially overestimate or underestimate tannin concentration (Rautio et al. 2007), so the reported values of tannin are used only for comparative purposes (food vs. non-food or Yakushima vs. Moyen Atlas) in this study.

With respect to leaf chemistry, we conducted two kinds of analysis. First, in order to analyze leaf selection at each study site, we used the generalized linear model (GLM) based on whether macaques ate the species (0 = non-food, 1 = food) as a dependent variable and the above-mentioned six chemical properties as independent variables. This analysis was conducted separately for each site. All possible combinations of independent factors were examined, and the model fitness was assessed by Akaike’s Information Criterion, or AIC (Burnham and Anderson 2002). We examined only the model having a ΔAIC (difference with the smallest AIC) of less than two. In order to assess the relative likelihood of these models, we calculated Akaike weight as: exp(-0.5 * ΔAIC score for that model)/sum of exp(-0.5 * ΔAIC score) for all of the models (Burnham and Anderson 2002). Second, in order to determine the difference in the chemical properties of food leaves between the two macaque species, we compared the six chemical properties of food leaves between the sites by the t-test.
Since six analyses were run, the alpha level was set to $0.05/6 = 0.0083$, using Bonferroni correction (Curtin and Schulz 1998).

Results

Habitat

Habitats of Japanese macaques were richer in tree species, in particular fleshy-fruited species, than those of Barbary macaques, although the same genera or families were often dominant in both regions. When comparing the number of species per 0.5 ha, the Japanese forests had 18-61 tree species, including 7-35 fleshy-fruited species. On the other hand, the North African forests had only four or five tree species (all non-fleshy).

As for the diversity index, quantitative comparison is difficult due to the difference in plot size and sampling method (basal area is used in most of the Japanese forests, and coverage is used in the North African forests). However, all of the Barbary macaque habitats had lower diversity indices than the Japanese macaque habitats (Table I). In one study site where the diversity index was calculated from both coverage and basal area, coverage resulted in a higher index than did basal area. If this held true for North African sites, the difference in diversity between Algeria and Japan may have been larger than shown in Table I. Even when a much broader area was covered (84 forests over 20 km × 70 km), both number of species and diversity were lower in the Barbary macaque habitat (Ajbilou et al. 2006) than in any of the Japanese macaque habitats.

Fleshy-fruited species constituted more than half of the tree species in Japanese forests but only a small portion (0-33%) in North African forests. In both habitats, oaks (Quercus) were dominant in lowlands and conifers (Cedrus and Pinus in North Africa and Abies, Cryptomeria and Tsuga in Japan) were dominant in high-altitude forests.
Among the five populations, the proportion of time spent feeding on leaves was highest for Barbary macaques in the coniferous/evergreen broad-leaved forest of Djurdjura (48%) and second highest in Japanese macaques in the coniferous forest of Yakushima (41%) (Fig. 1). The proportion of time spent feeding on seeds was highest for Japanese macaques in the deciduous forest of Kinkazan (44%), followed by two Barbary macaque populations (26% and 32%) and Japanese macaques in the lowland forest of Yakushima (34%); however, this value was low in the coniferous forest of Yakushima (4%). The proportion of fruit-eating time was higher for Japanese macaques (10-24%) than Barbary macaques (0.8-4.3%). Lichen constituted a considerable proportion of feeding time of the Barbary macaques in the deciduous oak forest of Akfadou (14%). It has not been reported that Japanese macaques eat lichens. In the coniferous forest of Yakushima, the macaques also spend considerable time feeding on mushrooms (14%). Compared with tropical macaques, time spent feeding on fruits was considerably lower (54-67% for tropical vs. 0.8-25% for temperate macaques).

Barbary macaques eat more herbs than Japanese macaques. Barbary macaques in the coniferous/evergreen broad-leaved forest of Djurdjura spent 54% of their annual feeding time on herbs, constituting 35% leaves, 8% root and 11% seeds, and those in the deciduous oak forest of Akfadou spent 32% of feeding time on herbs (19% leaves, 7% roots and 6% seeds) (Ménard 2002). Japanese macaques in the coniferous forest of Yakushima spent only 15% of annual feeding time on herbs (9% leaves, 3% roots, 1% seeds) (Hanya 2004), and those at Kinkazan spent 28% of annual feeding time on herbs (leaves 25% and fruits 3%) (Tsuji et al 2006; Tsuji et al. unpublished data). Hill (1997)
Hanya et al.
Diet of temperate macaques

does not report the herb feeding time. However, according to Agetsuma and Nakagawa (1998), who reported the food composition of Japanese macaques in the lowland of Yakushima for 11 calendar months, herb feeding time was only 3% of the annual feeding time.

Seasonal changes in diet were similar in the two species, although the absolute feeding time was considerably different (Fig. 2). In the case of Japanese macaques, leaf eating was dominant in winter (January-March) or spring (April-June), since fruits and seeds were not available and macaques ate mature leaves as fallback foods (Hanya 2004) or because protein-rich young leaves are available. Fruit and seed eating occurred most often in autumn (September-November) and intermediately in summer (July and August, except in the coniferous forest of Yakushima).

Mushroom-eating was observed in various months for Japanese macaques, most often in summer. In summary, Japanese macaques ate young leaves in spring, various foods such as fruits, mature leaves, fungi, seeds and animals (mostly insects) in summer, and fleshy fruits and seeds (in particular acorns) in autumn. In winter, after consuming the fruits and seeds produced in the preceding autumn, they ate mature leaves of evergreen trees in evergreen forests or bark and winter buds in deciduous forests. The same pattern has also been reported at other sites, such as the warm-temperate forest of Koshima or the cool-temperate forest of Shiga Heights (Suzuki 1965; Iwamoto 1982). Barbary macaques also ate leaves in spring, various foods such as fruits, seeds, leaves, lichens and roots in summer, acorns and conifer (Abies and Cedrus) seeds in autumn, and leaves and lichens (Akfadou only) in winter. Similar patterns have been reported from Rif or Moyen Atlas (Drucker 1984; Mehlman 1988; Ménard and Qarro 1999).

Japanese macaques prefer fruits and seeds, while Barbary macaques also...
 prefer seeds but not fruits. It has already been shown that Japanese macaques in the
coniferous forest of Yakushima increased their feeding time on fruits and seeds with
increasing availability (Hanya 2004). We analyzed the relationship between fruit/seed
eating and availability for Barbary macaques in Moyen Atlas using the data by Drucker
(1984), expressing monthly dietary composition by energy intake. They ate fleshy fruits
of lianas from February to April and acorns from August to November. Monthly feeding
time on seeds and seed availability correlated significantly ($r = 0.969, P < 0.0001$).
However, correlation between the monthly feeding time on fruits and fruit availability
was not significant ($r = 0.569, P = 0.523$).

Leaf chemistry
Condensed tannin and lipid content affected leaf selection of Japanese macaques, but no
chemical factor significantly affected leaf selection of Barbary macaques (Tables II and
III). GLM analysis revealed that all of the models having Δ AIC < 2 included condensed
tannin, hydrolysable tannin, and crude lipid (all negative effect), and thus the effects of
these three factors were robust. On the other hand, in the analysis of Barbary macaques,
a null model having no independent factor had the smallest AIC, and none of the other
models having Δ AIC < 2 were significant.

In comparing food leaves between Japanese and Barbary macaques (Fig. 3),
the food leaves of Barbary macaques included significantly higher condensed tannins,
hydrolysable tannin, and crude lipid (condensed tannin: $t = 3.92, P = 0.004$;
hydrolysable tannin: $t = 3.13, P = 0.0035$; crude lipid: $t = 4.17, P = 0.0002$). On the
other hand, the content of crude protein, neutral detergent fiber and crude ash did not
differ significantly between the two macaques (crude protein: $t = 2.12, P = 0.041$;
neutral detergent fiber: \(t = 2.75, P = 0.0093 \); crude ash: \(t = 0.838, P = 0.41 \).

Discussion

We established that tree species diversity, in particular fleshy-fruited species, is higher in Japan than in North Africa. Both Japanese and North African forests are dominated by *Quercus* (lowland) and conifers (high altitude forests), but North African forests consist almost exclusively of those dominant species. This difference significantly affected the feeding ecology of the two macaque species.

Similarities

In response to the pronounced seasonal changes in temperature and fruiting phenology, which is a more-or-less universal pattern among temperate forests (Ting et al. 2008), both Japanese and Barbary macaques showed qualitatively similar patterns of seasonal dietary change. They eat young leaves in spring, various foods including fruits, mature leaves, and fungi in summer, fruits and/or seeds in autumn, and leaves and other vegetative foods such as mature leaves, buds and bark in winter. A similar pattern can also be seen for Taiwanese macaques (Su and Lee 2001). The dietary pattern of rhesus macaques in Pakistan seems a bit different; since they increase fruit eating in the monsoon season (July-September) between dry early summer and dry autumn (Goldstein and Richard 1989). In this area, the greatest fruit diversity and biomass is available for macaques in the monsoon season (Goldstein and Richard 1989).

Barbary macaques share many dietary characteristics with Japanese macaques, which have been proposed by Hanya (2004) as adaptive strategies to survive in temperate habitat. Barbary macaques also rely considerably on leaves. It is known that
primates in Asia, in particular cercopithecines, tend to use leaves as fallback foods compared to primates in other regions (Hemingway and Bynum 2005). The dependence on leaves may have been an important prerequisite for macaques to survive in temperate forests. At the same time, they prefer seeds, which contain less fiber and more digestible carbohydrates than leaves (Janson and Chapman 1999), such as those of *Quercus*, *Cedrus* and fir (*Abies*), and they eat them whenever available. Although this tendency was statistically confirmed for only Moyen Atlas, Ménard (2002) mentioned that in North African forests, acorns are available from autumn to winter, which coincides with the acorn-eating period of Barbary macaques. Likewise, fir seeds are a major component of the Barbary macaque diet in the Rif Mountains when they are abundant (Mehlman 1988).

Differences between Japanese and Barbary macaques differ with respect to their degree of reliance on herbs and fleshy fruits, and their leaf selection. These differences seem to be related to the lower tree species diversity in North Africa than in Japan. Barbary macaques rely on herbs more than do Japanese macaques. Barbary macaques compensate for low tree species diversity by consuming herbs. In the two North African forests (Djurdjura and Akfadou), the two most dominant species (*Quercus* and *Cedrus*) account for more than 95% of the trees in coverage (Ménard and Vallet 1988). Barbary macaques eat the leaves and seeds of both species, but seeds are available only for a limited period. Leaves of herbs may be more palatable than tree leaves due to their low fiber (Waterman 1984). In addition, excessive consumption of the leaves of one or a few species may overload the detoxifying capacity of animals for...
a particular toxin contained in the leaves (Janson and Chapman 1999). Japanese macaques at Kinkazan relied more heavily on herbs than those at Yakushima. The forests of Kinkazan have been degraded by overgrazing of sika deer, and some forests were converted to grasslands (Tsuji and Takatsuki 2004), so Japanese macaques also supplement their diet with herbs when food resources are scarce. Even stronger dependence on herbs has been reported for another temperate primate, the rhesus macaques in northwest Pakistan (Goldstein and Richard 1989). They live in a degraded habitat where vegetation has been damaged by logging, overgrazing by cattle, and natural disturbances. Feeding on herbs constituted 68% of the total feeding time of this population. Macaques mostly utilize forest habitat (Hanya et al. 2002), but they seem to be able to subsist largely on herbs, especially in poor temperate habitats.

Both Barbary and Japanese macaques often consumed considerable amounts of seeds, but most populations consumed fruits when they were available (Fig. 2). Seeds preferred by Barbary macaques came from the dominant plants of the forest (e.g. *Quercus, Cedrus* and *Abies*), whereas fleshy-fruited species were only a minority of the community. Therefore it was difficult to determine whether Barbary macaques actually preferred fleshy fruits over seeds. On the other hand, Japanese forests harbor many fleshy-fruited tree species. Many of these are common and supply a considerable amount of food for the macaques (Hanya et al. 2003).

Chemical properties, as well as relative availability, affect the selection of food leaves by Japanese macaques (Hanya et al. 2007). In North Africa, however, the effect of chemical properties may be masked by the effect of uncertain availability. The more palatable leaves may be simply not available for the Barbary macaques in this low-diversity forest.
We found that Japanese macaques avoided leaves with high condensed tannin, hydrolysable tannin, and crude lipid content. It is not evident why Japanese macaques avoided leaves with high crude lipid, but they may dislike the non-fat constituents included in crude lipid, such as waxes, cutins and pigments (Bleisch et al. 1998). On the other hand, the food leaves of Barbary macaques contained more tannin (both condensed and hydrolysable) and crude lipid than those eaten by Japanese macaques. In Yakushima, coniferous leaves, such as Abies, Tsuga and Cryptomeria, contain large amounts of condensed tannin (1.9%, 1.3% and 0.5%, respectively), and Japanese macaques never eat these leaves. The condensed tannin contents of these leaves were 4.1-15.7 times higher than the average for the food leaves (0.12%). In Moyen Atlas, conifer leaves such as Cedrus and Juniperus also contain much condensed tannin (2.4% and 3.7%, respectively), but Barbary macaques eat conifer leaves not only in Moyen Atlas but also in other habitats, such as Rif (Mehlman 1988) and Djurdjura (Ménard and Vallet 1986). In addition, condensed tannin content was higher in Moyen Atlas than in Yakushima not only for dominant species but also on average. The same pattern was found for hydrolysable tannins (Hanya et al., unpublished data). Barbary macaques survive in an environment where tree species diversity is low and leaves contain much tannin. On the other hand, most Japanese macaque habitats are covered with broad-leaved trees, and conifers are dominant only in high mountains (Yamagiwa and Hill 1998). However, broad-leaved trees are available even in coniferous forest (Table I), so Japanese macaques do not need the capacity to tolerate high levels of condensed tannin. It remains an open question whether Barbary and Japanese macaques have developed different detoxifying abilities for tannins. Interestingly, similar situations are reported in two species of closely related rodents (Skopec et al. 2008). However, the
evidence is equivocal, since specialists on tannin-rich oaks are known to have higher
detoxifying abilities for tannins than sympatric generalist species, but these two species
showed similar responses of body weight and survival in a feeding experiment on oak
leaves (Skopec et al. 2008). Experimental studies are necessary for the two macaque
species.

Conclusions and future directions in the study of temperate primates

This study has shown that both Japanese and Barbary macaques adapt to
temperate habitats in similar ways. They spend much time eating leaves and other
vegetative foods and select seeds and fruits when they are available. Barbary macaques
appear to have a high tolerance for secondary compounds in leaves, which may be
expected in their environment with lower tree species diversity. Animals can survive
during the lean period by consuming leaf and other vegetative foods and by
metabolizing the fat deposited from eating fruits and seeds during the food-abundant
period. This will lead to decreases in body weight during winter (Wada 1975; Kurita et
al. 2002). Such dietary switching is a common response to the deterioration of food
resources in many tropical forests as well (van Schaik and Pfannes 2005). It has already
been reported that the degree of seasonal dietary variability increases with increasing
latitude (Hemingway and Bynum 2005), and our close examination of the two
temperate species confirmed this. Temperate primates may show the extreme of this
strategy because of the prolonged period of fruit scarcity and the lack of fallback fruits,
such as Ficus or Musanga, which are often available to tropical primates even when
other fruits are not available (Terborgh 1983; Furuichi et al. 2001). In fact, Japanese and
Barbary macaques depend on leaf and other vegetative foods (45% and 55% of diet,
respectively, for one population of each), as do the “folivorous” colobines (average for 24 species: 52% of diet) (Kirkpatrick 1999). These temperate macaques consume no fruits/seeds and rely exclusively on fallback foods such as fibrous foods and lichen in some months of the year (Fig. 2), a pattern not seen in tropical macaques (Ali 1986; Yeager 1996; O’Brien and Kinnaird 1997). Therefore, leaves and lichen are ‘staple’, not ‘filler’ fallback foods for temperate macaques (Marshall and Wrangham 2007). Fat deposition is commonly reported for temperate endotherms (Pond 1978), including Japanese macaques (Wada 1975), but data on this are scarce for tropical primates. Interestingly, fat deposition has been reported in orangutans living in a habitat experiencing considerable supra-annual mast fruiting (Knott 1998). Future work on physiological and genetic analyses of fat deposition, digestion and detoxification abilities of temperate macaques would further support our conclusion.

In order to generalize these findings, more work is needed on other species. A comparison with Rhinopithecus, another lineage radiated in temperate regions, would be particularly interesting. The dependence on leaves and the preference for fruits are compatible in macaques because they are caeco-colic-fermenters which can digest both leaves and fruits (Lambert 1998), but this may not be so in the case of forestomach-fermenting colobines. Interestingly, Rhinopithecus prefer young leaves but rely heavily on lichens as fallback foods (Grueter et al. 2009), which are also eaten by Barbary macaques. Lichens are composed of largely water-soluble carbohydrates, whose digestibility is higher than NDF (Kirkpatrick et al. 2001), so they might be a better food than mature leaves. A comparison between Macaca and Rhinopithecus would be useful in helping us understand the kinds of adaptations required for primates to survive in temperate forests.
Acknowledgements

We would like to thank our friends and colleagues who supported our fieldwork in Japan, Morocco and Algeria. The Ministry of Environment and Forestry Agency, Japan, and Haut Commissariat aux Eaux et Forêt et à la Lutte Contre la Désertification, Morocco gave us permission to study in the area. Dr. Y. Tsuji kindly provided his published data. This study was financed by the JSPS Core-to-core Program HOPE, Cooperation Research Program of KUPRI and the MEXT Grant-in-Aid for JSPS Fellows, Grant-in-Aid for Young Scientists (#20770195 and #22687002) to GH, the 21st Century COE Program (A14) and Global COE Program “Formation of a Strategic Base for Biodiversity and Evolutionary Research: from Genome to Ecosystem.”

References

Diet of temperate macaques

Hanya et al.
Diet of temperate macaques

528 Living and Extinct Human and Non-Human Primates. Cambridge University Press, Cambridge, pp 57—104

<table>
<thead>
<tr>
<th>Study site</th>
<th>Country*</th>
<th>Vegetation</th>
<th>Area (ha)</th>
<th>#Tree Species</th>
<th>#Fleshy-fruited tree species</th>
<th>#Tree Species/0.5 ha**</th>
<th>#Fleshy-fruited tree species/0.5ha**</th>
<th>H (BA based)</th>
<th>H (cover based)</th>
<th>Dominant species (Top3)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yakushima ma, 100 m</td>
<td>J</td>
<td>Evergreen broad-leaved forest</td>
<td>0.5</td>
<td>52</td>
<td>31</td>
<td>52</td>
<td>31</td>
<td>3.17</td>
<td>-</td>
<td>Ardisia sieboldii (Myrsinaceae), Lithocarpus edulis (Fagaceae), Litsea acuminata (Lauraceae)</td>
<td>Takafumi</td>
</tr>
<tr>
<td>Yakushima ma, 600 m</td>
<td>J</td>
<td>Evergreen broad-leaved forest</td>
<td>0.25</td>
<td>18</td>
<td>10</td>
<td>18</td>
<td>10</td>
<td>2.04</td>
<td>-</td>
<td>Distylium racemosum (Hamamelidaceae), Quercus salicina (Fagaceae), Neolitsea aciculata (Lauraceae)</td>
<td>Hanya et al. (2003)</td>
</tr>
<tr>
<td>Yakushima ma, 1050 m</td>
<td>J</td>
<td>Coniferous/evergreen broad-leaved forest</td>
<td>0.5</td>
<td>21</td>
<td>10</td>
<td>21</td>
<td>10</td>
<td>2.10</td>
<td>2.57</td>
<td>Abies firma (Pinaceae), Cryptomeria japonica (Taxodiaceae), Tsuga sieboldii (Pinaceae)</td>
<td>Hanya, unpublished</td>
</tr>
<tr>
<td>Koshima</td>
<td>J</td>
<td>Evergreen broad-leaved forest</td>
<td>0.5</td>
<td>55</td>
<td>35</td>
<td>55</td>
<td>35</td>
<td>2.45</td>
<td>-</td>
<td>Machilus thunbergii (Lauraceae), Podocarpus macrophyllus (Podocarpaceae), Prunus jamasakura (Rosaceae)</td>
<td>Go, unpublished</td>
</tr>
<tr>
<td>Shiga Heights</td>
<td>J</td>
<td>Deciduous broad-leaved forest</td>
<td>0.22</td>
<td>48</td>
<td>10</td>
<td>61</td>
<td>13</td>
<td>2.97</td>
<td>-</td>
<td>Betula ermanii (Betulaceae), Quercus crispula (Fagaceae), Fagus crenata (Fagaceae),</td>
<td>Wada, unpublished</td>
</tr>
<tr>
<td>Muroo</td>
<td>J</td>
<td>Deciduous broad-leaved forest</td>
<td>0.04</td>
<td>14</td>
<td>5</td>
<td>25</td>
<td>7</td>
<td>2.25</td>
<td>-</td>
<td>Quercus serrata (Fagaceae), Quercus glauca (Fagaceae), Acanthopanax scidophyloides (Araliaceae)</td>
<td>Yamada, unpublished</td>
</tr>
<tr>
<td>Akfadou</td>
<td>A</td>
<td>Deciduous oak forest</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0.77</td>
<td>-</td>
<td>Quercus afres (Fagaceae), Quercus faginea (Fagaceae), Quercus suber (Fagaceae)</td>
<td>Ménard and Vallet (1988)</td>
</tr>
<tr>
<td>Djurdjura</td>
<td>A</td>
<td>Coniferous/evergreen broad-leaved forest</td>
<td>0.5</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0.73</td>
<td>-</td>
<td>Cedrus atlantica (Pinaceae), Quercus ilex (Fagaceae), Pinus clusiana (Pinaceae)</td>
<td>Ménard and Vallet (1988)</td>
</tr>
<tr>
<td>Northern Morocco (Rif)</td>
<td>M</td>
<td>Mixed oak evergreen and semidiciduous forests</td>
<td>NA***</td>
<td>15</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>1.85</td>
<td>-</td>
<td>Pinus pinaster (Pinaceae), Quercus canariensis (Fagaceae), Quercus cocciifera (Fagaceae)</td>
<td>Ajbilou et al. (2006)</td>
</tr>
</tbody>
</table>

*H: Shannon-Wiener’s diversity index, calculated by the proportion of each species either as basal area (BA) or coverage.
*: J: Japan, A: Algeria, M: Morocco
**: Underlined are estimated values by the method of Colwell and Coddington (1994)
***: Vegetation data of 84 forests of northern Morocco (scattered over an area of 20 km*70 km), sampled by ‘nearest neighbor method’
Table II. Summary of the generalized linear models on the effect of chemical properties on leaf food selection

a) Japanese macaques in Yakushima

<table>
<thead>
<tr>
<th>Adopted factors</th>
<th>AIC</th>
<th>∆AIC</th>
<th>Akaike weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein+, Lipid-, Condensed-, Hydrolysable-</td>
<td>75.4</td>
<td>0.0</td>
<td>21%</td>
</tr>
<tr>
<td>Ash+, Lipid-, Condensed-, Hydrolysable-</td>
<td>76.9</td>
<td>1.6</td>
<td>9%</td>
</tr>
<tr>
<td>Lipid-, Condensed-, Hydrolysable-</td>
<td>77.0</td>
<td>1.7</td>
<td>9%</td>
</tr>
<tr>
<td>Protein+, Lipid-, Condensed-, Hydrolysable-</td>
<td>77.1</td>
<td>1.7</td>
<td>9%</td>
</tr>
<tr>
<td>Protein+, NDF+, Lipid-, Condensed-, Hydrolysable-</td>
<td>77.4</td>
<td>2.0</td>
<td>8%</td>
</tr>
</tbody>
</table>

b) Barbary macaques in Moyen Atlas

<table>
<thead>
<tr>
<th>Adopted factors</th>
<th>AIC</th>
<th>∆AIC</th>
<th>Akaike weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Null model)</td>
<td>43.1</td>
<td>0.0</td>
<td>8%</td>
</tr>
<tr>
<td>Condensed+</td>
<td>44.2</td>
<td>1.2</td>
<td>5%</td>
</tr>
<tr>
<td>Hydrolysable-</td>
<td>44.3</td>
<td>1.2</td>
<td>4%</td>
</tr>
<tr>
<td>Protein-</td>
<td>44.4</td>
<td>1.4</td>
<td>4%</td>
</tr>
<tr>
<td>Ash+</td>
<td>44.6</td>
<td>1.5</td>
<td>4%</td>
</tr>
<tr>
<td>Ash+, Condensed+</td>
<td>44.7</td>
<td>1.7</td>
<td>4%</td>
</tr>
<tr>
<td>Lipid-</td>
<td>45.0</td>
<td>1.9</td>
<td>3%</td>
</tr>
<tr>
<td>NDF-</td>
<td>45.0</td>
<td>2.0</td>
<td>3%</td>
</tr>
</tbody>
</table>

Protein: crude protein; NDF: neutral detergent fiber; Ash: crude ash; Lipid: crude lipid; condensed: condensed tannin; Hydrolysable: hydrolysable tannin

△AIC: Difference with the smallest AIC
Akaike weight: \(\exp(-0.5 \times \Delta AIC) / \sum \exp(0.5 \times \Delta AIC) \) (Burnham and Anderson, 2002)

Bold indicates that the model is significant (compared with the null model).

Table III. Best-fit generalized linear model on the effect of chemical properties on leaf food selection

a) Japanese macaques in Yakushima

<table>
<thead>
<tr>
<th>Adopted factors</th>
<th>Coefficient</th>
<th>SE</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude protein</td>
<td>19.4</td>
<td>10.5</td>
<td>0.064</td>
</tr>
<tr>
<td>Crude lipid</td>
<td>-37.8</td>
<td>14.2</td>
<td>0.01</td>
</tr>
<tr>
<td>Condensed tannin</td>
<td>-387</td>
<td>139</td>
<td>0.0053</td>
</tr>
<tr>
<td>Hydrolysable tannin</td>
<td>-24.5</td>
<td>12.4</td>
<td>0.048</td>
</tr>
</tbody>
</table>

In this best-fit model, df=72, AIC=75.4, p<0.0001 in the likelihood ratio test using \(\chi^2 \) distribution

Coefficient: coefficient by maximum likelihood estimation; SE: standard error of the coefficient, p: the probability that the coefficient is not different from zero by Wald test.

b) Barbary macaques in Moyen Atlas

Null model had the smallest AIC: AIC=43.1
Hanya et al.
Diet of temperate macaques

Legends for figures

Fig. 1. Comparisons of annual diet of temperate and tropical macaques. Percentage to total annual feeding time of each food category is shown. Data from (Ménard 1985; Ali 1986; Ménard and Vallet 1986; Yeager 1996; Hill 1997; O’Brien and Kinnaird 1997; Hanya 2004; Tsuji et al. 2006).

Fig. 2. Seasonal variations in the diet of Japanese and Barbary macaques. Percentage to total monthly feeding time of each food category is shown. Data from (Ménard 1985; Ménard and Vallet 1986; Hill 1997; Hanya 2004; Tsuji et al. 2006).

Fig. 3. Leaf chemistry of food and non-food leaves of Yakushima (Japanese macaques) and Moyen Atlas (Barbary macaques). Y-axis is the proportion of dry matter. Average+SD is shown. Note that the scale is different among graphs.
Hanya et al.

Fig. 1

Diet of temperate macaques

- M. radiata
- M. fascicularis
- M. nigra
- M. sylvanus
- M. nigra
- M. fascicularis

Yakushima, coniferous
Yakushima, lowland
Kinkazan
Akdadou
Djurdjura

Leaves, Seed, Fruit, Mushroom, Lichen, Flower, Other fibrous foods, Animal, Other
M. sylvanus (Djudjura)
M. sylvanus (Akfadou)
M. fuscata (Kinkazan)
M. fuscata (Yakushima, lowland)
M. fuscata (Yakushima, coniferous)

Fig. 2
Hanya et al.
Diet of temperate macaques

Fig. 3

(a) Crude protein

(b) Neutral detergent fiber

(c) Crude ash

(d) Crude lipid

(e) Condensed tannin

(f) Hydrolysable tannin

653
654

Fig. 3