1	Dietary adaptations of temperate primates: comparisons of Japanese and Barbary
2	macaques
3	
4	Goro Hanya, Nelly Ménard, Mohamed Qarro, Mohamed Ibn Tattou, Mieko Fuse,
5	Dominique Vallet, Aya Yamada, Moe Go, Hino Takafumi, Riyou Tsujino, Naoki
6	Agetsuma and Kazuo Wada
7	
8	G. Hanya, A. Yamada, M. Go, K. Wada: Primate Research Institute, Kyoto University,
9	Inuyama, Japan
10	N. Ménard, D. Vallet: Station Biologique, CNRS-université Rennes, Paimpont, France
11	M. Qarro: Ecole Nationale Forestière d'Ingénieurs, Salé, Morocco
12	M. Ibn Tattou: Institut Scientifique, Université Mohammed V-Agdal, Rabat, Morocco
13	M. Fuse: Sasayama Field Station, Kobe University, Sasayama, Japan
14	H. Takafumi and N. Agetsuma: Field Science Center for Northern Biosphere, Hokkaido
15	University
16	R. Tsujino: Research Institute for Humanity and Nature
17	
18	Correspondence to: G. Hanya: Primate Research Institute, Kyoto University, Kanrin
19	41-2, Inuyama, Aichi, 484-8506 Japan. E-mail: hanya@pri.kyoto-u.ac.jp, Tel:
20	+81-568-63-0542, Fax: +81-568-63-0564
21	
22	Short title: Diet of temperate macaques
23	

24 Abstract

25 Habitat, diet and leaf chemistry are compared between Japanese and Barbary macaques 26 in order to reveal the similarities and differences in dietary adaptations of temperate 27 primates living at the eastern and western extremes of the genus Macaca. Tree species 28 diversity and proportion of fleshy-fruited species are much higher in Japan than in 29 North Africa. Both species spend considerable annual feeding time on leaves. Japanese 30 macaques prefer fruits and seeds over leaves and Barbary macaques prefer seeds. These 31 characteristics are adaptive in temperate regions where fruit availability varies 32 considerably with season, since animals can survive during the lean period by relying 33 on leaf and other vegetative foods. The two species are different with respect to the 34 higher consumption of herbs by Barbary macaques, and the leaves consumed contain 35 high condensed and hydrolysable tannin for Barbary but not for Japanese macaques. 36 Barbary macaques supplement less diverse tree foods with herbs. Because of the low 37 species diversity and high tannin content of the dominant tree species, Barbary 38 macaques may have developed the capacity to cope with tannin. This supports the idea 39 that the digestion of leaves is indispensable to survive in temperate regions where fruit 40 and seed foods are not available for a prolonged period during each year. 41 **KEY WORDS**: Barbary macaque, condensed tannin, Japanese macaque, leaf chemistry, 42 temperate forest 43 44 Introduction

45 Primates originated in the tropical rain forests (Fleagle 1999), but they have radiated

46 into various marginal habitats, such as woodlands, savanna and high mountains.

47 Temperate forest is one of those marginal habitats harboring approximately 20 genera

48	within 8 families (Lemuridae, Indriidae, Cheirogaleidae, Lorisidae, Cebidae,
49	Callitrichidae, Cercopithecidae and Hylobatidae), if we define the border between
50	temperate and tropical regions as the tropics of Cancer and Capricorn (Fleagle 1999).
51	Among them, five species (Japanese and Barbary macaques, Sichuan and Guizhou
52	golden monkeys, and golden langurs) are distributed exclusively in the temperate
53	regions (Fleagle 1999). Although temperate primates are a minority within the order, it
54	is expected that adaptations to temperate habitat have evolved in various lineages.
55	Temperate forest is characterized by high seasonal variations in temperature and
56	day length. In addition, fruiting phenology in temperate forest is more seasonal than in
57	tropical forest (Ting et al. 2008), and the fruiting peak tends to occur in a more limited
58	time of the year (autumn). Consequently, fruiting phenology tends to be more seasonal
59	and predictable in temperate forest than in tropical forest (Ting et al. 2008). In the
60	former, fruit is commonly absent for several months of the year (Herrera 1984; Hanya et
61	al. 2004). In some tropical forests, plant reproductive phenology is aseasonal or weakly
62	seasonal (Sakai 2002). In most tropical forests, however, fruiting peaks are predictable,
63	but not all species peak in the same month (van Schaik et al. 1993; Ting et al. 2008).
64	Based on a review of 51 temperate and tropical forests all over the world, fruit fall in the
65	tropical forests is, on average, 1.71 times larger than that in temperate forests (Hanya
66	and Aiba, in press). The proportion of fleshy-fruited species, potential foods for
67	primates, is also smaller in temperate than in tropical forests (Willson et al. 1989).
68	Therefore, fruit food availability (biomass of edible parts of fruits) seems to be smaller
69	in temperate than in tropical forests.
70	Availability of young leaves, as well as fruits, may also be limited in

71 temperate forests. Young leaves are usually available throughout the year in the tropics

72	(van Schaik et al. 1993), but the period of leaf flushing is confined to spring and early
73	summer in temperate regions (Agetsuma 1995; Komiyama et al. 2001). Therefore,
74	protein-rich young leaves cannot be used as a fallback food when fruits are not available,
75	particularly in winter.
76	Hanya (2004) revealed that Japanese macaques have two dietary
77	characteristics that are adaptive in temperate forests: 1) They eat substantial amounts of
78	leaves and other vegetative parts, while fruits and seeds are only minor foods; 2) Even
79	in the fruit-poor environments, they prefer fruits and seeds and eat them whenever they
80	are available. To survive in a fruit-poor environment, monkeys must adapt by eating a
81	large amount of leaf foods. In fact, the proportion of <u>fruit-feeding</u> time of temperate
82	macaques (Macaca fuscata, M. cyclopis, and M. mulatta: 9-54%) is lower than that of
83	tropical macaques (M. fascicularis, M. radiata, M. nigra, and M. nemestrina: 59-70%)
84	(Hanya 2004). At the same time, preference for fruit is also useful in temperate regions
85	because food ingested in excess of daily requirements can be saved as fat to help
86	animals survive in the fruit-poor winter (Wada 1975). Since the fruiting phenology and
87	climate are highly annually periodic in temperate forests, it is possible for animals to
88	predict when to start fat deposition and how long a food shortage will last. In fact,
89	patterns of seasonal change in deposited fat are quite similar among different
90	populations of Japanese macaques, having peaks in early spring and late autumn,
91	corresponding to the seasonal change in food availability (Muroyama et al. 2006).
92	Therefore, dependence on deposited fat is a safe strategy in temperate regions, and fat
93	deposition is in fact prevalent in temperate and arctic endotherms (Pond 1978).
94	This paper compares habitat, diet and leaf food selection by two species of
95	temperate macaques, Japanese and Barbary macaques. We chose these species because

96	1) they are among the <u>most-studied</u> temperate macaques and 2) they are the most
97	distantly located, at the eastern- and western-most extremes of the distribution of genus
98	Macaca. Japanese macaques are distributed widely throughout the Japanese archipelago
99	$(30-41^{\circ} \text{ N})$. Their habitat includes both <u>warm-temperate</u> broad-leaved evergreen
100	forest and cool-temperate broad-leaved deciduous forest. They also live in coniferous
101	forests in high mountains (Izumiyama 2002; Hanya et al. 2004). Barbary macaques live
102	in isolated forest patches in Morocco and Algeria (31–36 $^{\circ}$ N). They live from
103	lowland thermophilous scrub through mid-altitude mixed deciduous and evergreen oak
104	forest and high-altitude coniferous forest (Fa 1984b). Among the extant macaques,
105	Barbary macaques represent a relatively ancient branch (Fa 1989). Some data on other
106	temperate species are available, but we have not examined them in detail, as we have
107	done for the Barbary and Japanese macaques because data for those other species are
108	scanty, in particular habitat data.
109	Based on our original data and review of published articles, we examine 1)
110	the difference in tree species diversity and composition between the two habitats; 2) the
111	annual diet of the two species, with special reference to fruit/seed- and leaf-eating; 3)
112	the relationship between fruit/seed availability and fruit/seed-eating in the two species,
113	in order to clarify the preferences for fruit/seeds by these macaques; and 4) leaf
114	chemistry of food and non-food tree leaves, in order to reveal the difference in selection
115	criterion of leaf foods in response to the habitat differences.
116	
117	Methods

118 Vegetation

119 Data on the vegetation of macaque habitats were derived from our published (Ménard

120	and Vallet 1988; Hanya et al. 2003) and unpublished data. Data from six sites in Japan
121	and two sites in Algeria were compared. We sampled trees of $\geq 5 \text{ cm}$ in diameter at
122	breast height (DBH). The number of species and the Shannon-Wiener diversity index
123	(Clutton-Brock 1977) were compared. In the calculation of the diversity index, each
124	species was evaluated either by basal area or coverage. We controlled for the effect of
125	area on species diversity by comparing plot sizes of 0.5 ha, in some cases obtained by
126	extrapolation (Colwell and Coddington 1994), using the software program 'EstimateS'.
127	
128	Diet
129	Annual dietary composition was compared primarily by using observational data of 12
130	months or more, expressing dietary composition according to feeding time. Data were
131	available for three sites (lowland and coniferous forest of Yakushima and deciduous
132	forest of Kinkazan) for Japanese macaques (Hill 1997; Hanya 2004; Tsuji et al. 2006)
133	and two sites for Barbary macaques (deciduous oak forest of Akfadou and
134	coniferous/evergreen broad-leaved forest of Djurdjura, Algeria) (Ménard 1985; Ménard
135	and Vallet 1986). For comparative purposes, data on annual diet of three species of
136	tropical macaques (M. nigra, M. fascicularis and M. radiata), studied by scan sampling
137	(Ali 1986; Yeager 1996; O'Brien and Kinnaird 1997), are also shown. Data on monthly
138	changes were not available for the tropical macaques. At Kinkazan, data were obtained
139	over several years and included all 12 calendar months. At other sites, data were taken
140	for at least 12 consecutive months. In the lowland forest of Yakushima, data were taken
141	for 1.5 years, but we used data for only the first 12 consecutive months.
142	At the two North African sites, we used the scan sampling method, recording

the activity of the first five animals seen every 10 min. At Yakushima, we used focal

144	sampling of adults and recorded behavior by instantaneous 1-min sampling (lowland
145	habitat) or continuous sampling (coniferous forest). At Kinkazan, both scan sampling
146	(every ten or five minutes) of all visible individuals and continuous focal-animal
147	sampling of adult females were used. There are methodological differences among the
148	studies, but for rough comparison of major food items, these can be neglected (Fragaszy
149	et al. 1992). In lowland Yakushima, annual dietary composition described by scan
150	sampling (Agetsuma and Nakagawa 1998; data not used because observations for
151	January were lacking) is similar to that obtained by focal animal sampling (Hill 1997;
152	data used in this paper). Dietary data were expressed as the proportion of the food in the
153	annual feeding time. The actual proportion of each food's intake may be different from
154	the value expressed by feeding time. However, this should not matter for comparative
155	purposes, such as the evaluations in this study. Other types of data, e.g. data
156	representing diet by energy intake or data of less than one year, were used ad libitum.
157	
158	Leaf chemistry
159	Data on leaf chemistry for Japanese macaques in Yakushima are taken from Hanya et al.

160 (2007), but the data for Barbary macaques in Moyen Atlas, Morocco, are original. In

161 Yakushima and Moyen Atlas, both food and non-food leaves were sampled. In

162 Yakushima, food leaves were determined <u>from</u> our observational data covering a

163 one-year period in the coniferous and lowland forests (Hanya et al. 2007). For non-food

164 leaves, all of the species which appeared in two vegetation plots but were not eaten by

165 macaques were examined. The vegetation plots were 50 m \times 50 m and 5 m \times 1500 m in

166 lowland and coniferous forests, respectively. Both plots, although having different sizes

167 and shapes, reflect typical macaque habitat characteristics (Hanya et al. 2007). Since

168 there was no essential difference in leaf selection between the two habitats (Hanya et al. 169 2007), data on coniferous and lowland forests were combined. Leaves were sampled in 170 September 2000, 2004 and 2005. In Moyen Atlas, leaves of all species listed in Table 171 6.4 of Drucker (1984) (except introduced species), representing food species and major 172 trees in Moyen Atlas, were sampled. Among them, food leaves were determined using 173 the comprehensive food list of Barbary macaques in Appendix II of Fa (1984a). Leaves 174 were sampled in late September and early October 2005. The numbers of food and 175 non-food leaf species sampled were, respectively, 24 and 54 in Yakushima and 13 and 176 16 in Moyen Atlas. Sampling periods were determined by the following conditions: 1) 177 several months after the leaf flush in spring, 2) before the deciduous species shed leaves 178 in late autumn 3) when at least some leaf eating was observed. Since the sites' sampling 179 periods roughly matched, data were comparable.

180 Sampling was conducted for at least four individual trees, except when the 181 species was rare (2 species for each area, sampled for only one tree). At least 20 leaves 182 were sampled for each species. Collected leaves were kept in paper envelopes and 183 brought to field stations where they were immediately dried at 40°C for 24 hours. 184 Pre-dried leaves were kept in plastic bags and brought to the laboratory at the Primate 185 Research Institute, Kyoto University, where they were dried again at 40°C for 48 hours 186 by a vacuum incubator. After weighing, leaves were ground, sieved through a 0.5-mm 187 mesh, put in plastic tubes, and kept in a desiccator.

All of the chemical analyses were done at the Primate Research Institute, Kyoto University, under the same protocol. Crude protein was determined using the Kjeldahl procedure for total nitrogen and multiplying by 6.25 (Hasegawa 1993). Crude lipid was measured as diethyl-ether extract by the Soxhlet method (Hasegawa 1993).

192 Crude ash was determined by ashing at 550°C (Hasegawa 1993). Neutral detergent fiber 193 (NDF) was estimated following the methods of van Soest et al. (1991). Condensed 194 tannin was extracted with 50% methanol and determined by the buthanol-HCl method 195 (Porter 1989). Condensed tannin concentration was calibrated from the absorbance at 196 550 nm, using the known concentration of cyanidin chloride. Hydrolysable tannin 197 extracted with 70% aqueous acetone was determined by the potassium iodine method 198 (Willis and Allen 1998). Hydrolysable tannin concentration was calibrated as a tannic 199 acid equivalent from the absorbance at 550 nm. The available standards of tannins 200 substantially overestimate or underestimate tannin concentration (Rautio et al. 2007), 201 so the reported values of tannin are used only for comparative purposes (food vs. 202 non-food or Yakushima vs. Moyen Atlas) in this study. 203 With respect to leaf chemistry, we conducted two kinds of analysis. First, in 204 order to analyze leaf selection at each study site, we used the generalized linear model 205 (GLM) based on whether macaques ate the species (0 = non-food, 1 = food) as a 206 dependent variable and the above-mentioned six chemical properties as independent 207 variables. This analysis was conducted separately for each site. All possible 208 combinations of independent factors were examined, and the model fitness was assessed 209 by Akaike's Information Criterion, or AIC (Burnham and Anderson 2002). We 210 examined only the model having a \triangle AIC (difference with the smallest AIC) of less than 211 two. In order to assess the relative likelihood of these models, we calculated Akaike weight as: $exp(-0.5 * \Delta AIC \text{ score for that model})/sum of exp(-0.5 * \Delta AIC \text{ score}) for all$ 212 213 of the models (Burnham and Anderson 2002). Second, in order to determine the 214 difference in the chemical properties of food leaves between the two macaque species, 215 we compared the six chemical properties of food leaves between the sites by the t-test.

- Since six analyses were run, the alpha level was set to 0.05/6 = 0.0083, using
- 217 Bonferroni correction (Curtin and Schulz 1998).
- 218

219 Results

220 Habitat

221 Habitats of Japanese macaques were richer in tree species, in particular fleshy-fruited 222 species, than those of Barbary macaques, although the same genera or families were 223 often dominant in both regions. When comparing the number of species per 0.5 ha, the 224 Japanese forests had 18-61 tree species, including 7-35 fleshy-fruited species. On the 225 other hand, the North African forests had only four or five tree species (all non-fleshy). 226 As for the diversity index, quantitative comparison is difficult due to the difference in 227 plot size and sampling method (basal area is used in most of the Japanese forests, and 228 coverage is used in the North African forests). However, all of the Barbary macaque 229 habitats had lower diversity indices than the Japanese macaque habitats (Table I). In one 230 study site where the diversity index was calculated from both coverage and basal area, 231 coverage resulted in a higher index than did basal area. If this held true for North 232 African sites, the difference in diversity between Algeria and Japan may have been 233 larger than shown in Table I. Even when a much broader area was covered (84 forests 234 over 20 km \times 70 km), both number of species and diversity were lower in the Barbary 235 macaque habitat (Ajbilou et al. 2006) than in any of the Japanese macaque habitats. 236 Fleshy-fruited species constituted more than half of the tree species in Japanese forests 237 but only a small portion (0-33%) in North African forests. In both habitats, oaks 238 (Quercus) were dominant in lowlands and conifers (Cedrus and Pinus in North Africa 239 and *Abies*, *Cryptomeria* and *Tsuga* in Japan) were dominant in high-altitude forests.

241 Diet

242	Among the five populations, the proportion of time spent feeding on leaves was highest
243	for Barbary macaques in the coniferous/evergreen broad-leaved forest of Djurdjura
244	(48%) and second highest in Japanese macaques in the coniferous forest of Yakushima
245	(41%) (Fig. 1). The proportion of time spent feeding on seeds was highest for Japanese
246	macaques in the deciduous forest of Kinkazan (44%), followed by two Barbary
247	macaque populations (26% and 32%) and Japanese macaques in the lowland forest of
248	Yakushima (34%); however, this value was low in the coniferous forest of Yakushima
249	(4%). The proportion of fruit-eating time was higher for Japanese macaques (10-24%)
250	than Barbary macaques (0.8-4.3%). Lichen constituted a considerable proportion of
251	feeding time of the Barbary macaques in the deciduous oak forest of Akfadou (14%). It
252	has not been reported that Japanese macaques eat lichens. In the coniferous forest of
253	Yakushima, the macaques also spend considerable time feeding on mushrooms (14%).
254	Compared with tropical macaques, time spent feeding on fruits was considerably lower
255	(54-67% for tropical vs. 0.8-25% for temperate macaques).

256 Barbary macaques eat more herbs than Japanese macaques. Barbary macaques 257 in the coniferous/evergreen broad-leaved forest of Djurdjura spent 54% of their annual 258 feeding time on herbs, constituting 35% leaves, 8% root and 11% seeds, and those in the 259 deciduous oak forest of Akfadou spent 32% of feeding time on herbs (19% leaves, 7% 260 roots and 6% seeds) (Ménard 2002). Japanese macaques in the coniferous forest of 261 Yakushima spent only 15% of annual feeding time on herbs (9% leaves, 3% roots, 1% 262 seeds) (Hanya 2004), and those at Kinkazan spent 28% of annual feeding time on herbs 263 (leaves 25% and fruits 3%) (Tsuji et al 2006; Tsuji et al. unpublished data). Hill (1997)

does not report the herb feeding time. However, according to Agetsuma and Nakagawa
(1998), who reported the food composition of Japanese macaques in the lowland of
Yakushima for 11 calendar months, herb feeding time was only 3% of the annual
feeding time.

268 Seasonal changes in diet were similar in the two species, although the 269 absolute feeding time was considerably different (Fig. 2). In the case of Japanese 270 macaques, leaf eating was dominant in winter (January-March) or spring (April-June), 271 since fruits and seeds were not available and macaques ate mature leaves as fallback 272 foods (Hanya 2004) or because protein-rich young leaves are available. Fruit and seed 273 eating occurred most often in autumn (September-November) and intermediately in 274 summer (July and August, except in the coniferous forest of Yakushima). 275 Mushroom-eating was observed in various months for Japanese macaques, most often 276 in summer. In summary, Japanese macaques ate young leaves in spring, various foods 277 such as fruits, mature leaves, fungi, seeds and animals (mostly insects) in summer, and 278 fleshy fruits and seeds (in particular acorns) in autumn. In winter, after consuming the 279 fruits and seeds produced in the preceding autumn, they ate mature leaves of evergreen 280 trees in evergreen forests or bark and winter buds in deciduous forests. The same pattern 281 has also been reported at other sites, such as the warm-temperate forest of Koshima or 282 the cool-temperate forest of Shiga Heights (Suzuki 1965; Iwamoto 1982). Barbary 283 macaques also ate leaves in spring, various foods such as fruits, seeds, leaves, lichens 284 and roots in summer, acorns and conifer (Abies and Cedrus) seeds in autumn, and leaves 285 and lichens (Akfadou only) in winter. Similar patterns have been reported from Rif or 286 Moyen Atlas (Drucker 1984; Mehlman 1988; Ménard and Qarro 1999). 287 Japanese macaques prefer fruits and seeds, while Barbary macaques also

288	prefer seeds but not fruits. It has already been shown that Japanese macaques in the
289	coniferous forest of Yakushima increased their feeding time on fruits and seeds with
290	increasing availability (Hanya 2004). We analyzed the relationship between fruit/seed
291	eating and availability for Barbary macaques in Moyen Atlas using the data by Drucker
292	(1984), expressing monthly dietary composition by energy intake. They ate fleshy fruits
293	of lianas from February to April and acorns from August to November. Monthly feeding
294	time on seeds and seed availability correlated significantly ($r = 0.969, P < 0.0001$).
295	However, correlation between the monthly feeding time on fruits and fruit availability
296	was not significant ($r = 0.569$, $P = 0.523$).
297	
298	Leaf chemistry
299	Condensed tannin and lipid content affected leaf selection of Japanese macaques, but no
300	chemical factor significantly affected leaf selection of Barbary macaques (Tables II and
301	III). GLM analysis revealed that all of the models having $\Delta AIC < 2$ included condensed
302	tannin, hydrolysable tannin, and crude lipid (all negative effect), and thus the effects of
303	these three factors were robust. On the other hand, in the analysis of Barbary macaques,
304	a null model having no independent factor had the smallest AIC, and none of the other
305	models having $\Delta AIC < 2$ were significant.
306	In comparing food leaves between Japanese and Barbary macaques (Fig. 3),
307	the food leaves of Barbary macaques included significantly higher condensed tannins,
308	hydrolysable tannin, and crude lipid (condensed tannin: $t = 3.92$, $P = 0.004$;
309	hydrolysable tannin: $t = 3.13$, $P = 0.0035$; crude lipid: $t = 4.17$, $P = 0.0002$). On the
310	other hand, the content of crude protein, neutral detergent fiber and crude ash did not
311	differ significantly between the two macaques (crude protein: $t = 2.12$, $P = 0.041$;

314 Discussion

315 We established that tree species diversity, in particular fleshy-fruited species, is higher

316 in Japan than in North Africa. Both Japanese and North African forests are dominated

317 by *Quercus* (lowland) and conifers (high altitude forests), but North African forests

318 consist almost exclusively of those dominant species. This difference significantly

319 affected the feeding ecology of the two macaque species.

320

321 Similarities

322 In response to the pronounced seasonal changes in temperature and fruiting phenology,

323 which is a more-or-less universal pattern among temperate forests (Ting et al. 2008),

324 both Japanese and Barbary macaques showed qualitatively similar patterns of seasonal

325 dietary change. They eat young leaves in spring, various foods including fruits, mature

326 leaves, and fungi in summer, fruits and/or seeds in autumn, and leaves and other

327 vegetative foods such as mature leaves, buds and bark in winter. A similar pattern can

328 also be seen for Taiwanese macaques (Su and Lee 2001). The dietary pattern of rhesus

329 macaques in Pakistan seems a bit different; since they increase fruit eating in the

330 monsoon season (July-September) between dry early summer and dry autumn

331 (Goldstein and Richard 1989). In this area, the greatest fruit diversity and biomass is

available for macaques in the monsoon season (Goldstein and Richard 1989).

Barbary macaques share many dietary characteristics with Japanese macaques,
which have been proposed by Hanya (2004) as adaptive strategies to survive in

temperate habitat. Barbary macaques also rely considerably on leaves. It is known that

336	primates in Asia, in particular cercopithecines, tend to use leaves as fallback foods
337	compared to primates in other regions (Hemingway and Bynum 2005). The dependence
338	on leaves may have been an important prerequisite for macaques to survive in temperate
339	forests. At the same time, they prefer seeds, which contain less fiber and more digestible
340	carbohydrates than leaves (Janson and Chapman 1999), such as those of Quercus,
341	Cedrus and fir (Abies), and they eat them whenever available. Although this tendency
342	was statistically confirmed for only Moyen Atlas, Ménard (2002) mentioned that in
343	North African forests, acorns are available from autumn to winter, which coincides with
344	the acorn-eating period of Barbary macaques. Likewise, fir seeds are a major
345	component of the Barbary macaque diet in the Rif Mountains when they are abundant
346	(Mehlman 1988).
347	
219	Differences

348 Differences

Japanese and Barbary macaques differ with respect to their degree of reliance on herbs
and fleshy fruits, and their leaf selection. These differences seem to be related to the
lower tree species diversity in North Africa than in Japan.

352 Barbary macaques rely on herbs more than do Japanese macaques. Barbary 353 macaques compensate for low tree species diversity by consuming herbs. In the two 354 North African forests (Djurdjura and Akfadou), the two most dominant species 355 (Quercus and Cedrus) account for more than 95% of the trees in coverage (Ménard and 356 Vallet 1988). Barbary macaques eat the leaves and seeds of both species, but seeds are 357 available only for a limited period. Leaves of herbs may be more palatable than tree 358 leaves due to their low fiber (Waterman 1984). In addition, excessive consumption of 359 the leaves of one or a few species may overload the detoxifying capacity of animals for

360	a particular toxin contained in the leaves (Janson and Chapman 1999). Japanese
361	macaques at Kinkazan relied more heavily on herbs than those at Yakushima. The
362	forests of Kinkazan have been degraded by overgrazing of sika deer, and some forests
363	were converted to grasslands (Tsuji and Takatsuki 2004), so Japanese macaques also
364	supplement their diet with herbs when food resources are scarce. Even stronger
365	dependence on herbs has been reported for another temperate primate, the rhesus
366	macaques in northwest Pakistan (Goldstein and Richard 1989). They live in a degraded
367	habitat where vegetation has been damaged by logging, overgrazing by cattle, and
368	natural disturbances. Feeding on herbs constituted 68% of the total feeding time of this
369	population. Macaques mostly utilize forest habitat (Hanya et al. 2002), but they seem to
370	be able to subsist largely on herbs, especially in poor temperate habitats.
371	Both Barbary and Japanese macaques often consumed considerable amounts
372	of seeds, but most populations consumed fruits when they were available (Fig. 2). Seeds
373	preferred by Barbary macaques came from the dominant plants of the forest (e.g.
374	Quercus, Cedrus and Abies), whereas fleshy-fruited species were only a minority of the
375	community. Therefore it was difficult to determine whether Barbary macaques actually
376	preferred fleshy fruits over seeds. On the other hand, Japanese forests harbor many
377	fleshy-fruited tree species. Many of these are common and supply a considerable
378	amount of food for the macaques (Hanya et al. 2003).
379	Chemical properties, as well as relative availability, affect the selection of
380	food leaves by Japanese macaques (Hanya et al. 2007). In North Africa, however, the
381	effect of chemical properties may be masked by the effect of uncertain availability. The
382	more palatable leaves may be simply not available for the Barbary macaques in this
383	low-diversity forest.

384	We found that Japanese macaques avoided leaves with high condensed tannin,
385	hydrolysable tannin, and crude lipid content. It is not evident why Japanese macaques
386	avoided leaves with high crude lipid, but they may dislike the non-fat constituents
387	included in crude lipid, such as waxes, cutins and pigments (Bleisch et al. 1998). On the
388	other hand, the food leaves of Barbary macaques contained more tannin (both
389	condensed and hydrolysable) and crude lipid than those eaten by Japanese macaques. In
390	Yakushima, coniferous leaves, such as Abies, Tsuga and Cryptomeria, contain large
391	amounts of condensed tannin (1.9%, 1.3% and 0.5%, respectively), and Japanese
392	macaques never eat these leaves. The condensed tannin contents of these leaves were
393	4.1-15.7 times higher than the average for the food leaves (0.12%) . In Moyen Atlas,
394	conifer leaves such as Cedrus and Juniperus also contain much condensed tannin (2.4%
395	and 3.7%, respectively), but Barbary macaques eat conifer leaves not only in Moyen
396	Atlas but also in other habitats, such as Rif (Mehlman 1988) and Djurdjura (Ménard and
397	Vallet 1986). In addition, condensed tannin content was higher in Moyen Atlas than in
398	Yakushima not only for dominant species but also on average. The same pattern was
399	found for hydrolysable tannins (Hanya et al., unpublished data). Barbary macaques
400	survive in an environment where tree species diversity is low and leaves contain much
401	tannin. On the other hand, most Japanese macaque habitats are covered with
402	broad-leaved trees, and conifers are dominant only in high mountains (Yamagiwa and
403	Hill 1998). However, broad-leaved trees are available even in coniferous forest (Table I),
404	so Japanese macaques do not need the capacity to tolerate high levels of condensed
405	tannin. It remains an open question whether Barbary and Japanese macaques have
406	developed different detoxifying abilities for tannins. Interestingly, similar situations are
407	reported in two species of closely related rodents (Skopec et al. 2008). However, the

408	evidence is equivocal, since specialists on tannin-rich oaks are known to have higher
409	detoxifying abilities for tannins than sympatric generalist species, but these two species
410	showed similar responses of body weight and survival in a feeding experiment on oak
411	leaves (Skopec et al. 2008). Experimental studies are necessary for the two macaque
412	species.
413	
414	Conclusions and future directions in the study of temperate primates
415	This study has shown that both Japanese and Barbary macaques adapt to
416	temperate habitats in similar ways. They spend much time eating leaves and other
417	vegetative foods and select seeds and fruits when they are available. Barbary macaques
418	appear to have a high tolerance for secondary compounds in leaves, which may be
419	expected in their environment with lower tree species diversity. Animals can survive
420	during the lean period by consuming leaf and other vegetative foods and by
421	metabolizing the fat deposited from eating fruits and seeds during the food-abundant
422	period. This will lead to decreases in body weight during winter (Wada 1975; Kurita et
423	al. 2002). Such dietary switching is a common response to the deterioration of food
424	resources in many tropical forests as well (van Schaik and Pfannes 2005). It has already
425	been reported that the degree of seasonal dietary variability increases with increasing
426	latitude (Hemingway and Bynum 2005), and our close examination of the two
427	temperate species confirmed this. Temperate primates may show the extreme of this
428	strategy because of the prolonged period of fruit scarcity and the lack of fallback fruits,
429	such as Ficus or Musanga, which are often available to tropical primates even when
430	other fruits are not available (Terborgh 1983; Furuichi et al. 2001). In fact, Japanese and
431	Barbary macaques depend on leaf and other vegetative foods (45% and 55% of diet,

432	respectively, for one population of each), as do the "folivorous" colobines (average for
433	24 species: 52% of diet) (Kirkpatrick 1999). These temperate macaques consume no
434	fruits/seeds and rely exclusively on fallback foods such as fibrous foods and lichen in
435	some months of the year (Fig. 2), a pattern not seen in tropical macaques (Ali 1986;
436	Yeager 1996; O'Brien and Kinnaird 1997). Therefore, leaves and lichen are 'staple', not
437	'filler' fallback foods for temperate macaques (Marshall and Wrangham 2007). Fat
438	deposition is commonly reported for temperate endotherms (Pond 1978), including
439	Japanese macaques (Wada 1975), but data on this are scarce for tropical primates.
440	Interestingly, fat deposition has been reported in orangutans living in a habitat
441	experiencing considerable supra-annual mast fruiting (Knott 1998). Future work on
442	physiological and genetic analyses of fat deposition, digestion and detoxification
443	abilities of temperate macaques would further support our conclusion.
444	In order to generalize these findings, more work is needed on other species. A
444 445	In order to generalize these findings, more work is needed on other species. A comparison with <i>Rhinopithecus</i> , another lineage radiated in temperate regions, would be
445	comparison with <i>Rhinopithecus</i> , another lineage radiated in temperate regions, would be
445 446	comparison with <i>Rhinopithecus</i> , another lineage radiated in temperate regions, would be particularly interesting. The dependence on leaves and the preference for fruits are
445 446 447	comparison with <i>Rhinopithecus</i> , another lineage radiated in temperate regions, would be particularly interesting. The dependence on leaves and the preference for fruits are compatible in macaques because they are caeco-colic-fermenters which can digest both
445 446 447 448	comparison with <i>Rhinopithecus</i> , another lineage radiated in temperate regions, would be particularly interesting. The dependence on leaves and the preference for fruits are compatible in macaques because they are caeco-colic-fermenters which can digest both leaves and fruits (Lambert 1998), but this may not be so in the case of
445 446 447 448 449	comparison with <i>Rhinopithecus</i> , another lineage radiated in temperate regions, would be particularly interesting. The dependence on leaves and the preference for fruits are compatible in macaques because they are caeco-colic-fermenters which can digest both leaves and fruits (Lambert 1998), but this may not be so in the case of forestomach-fermenting colobines. Interestingly, <i>Rhinopithecus</i> prefer young leaves but
 445 446 447 448 449 450 	comparison with <i>Rhinopithecus</i> , another lineage radiated in temperate regions, would be particularly interesting. The dependence on leaves and the preference for fruits are compatible in macaques because they are caeco-colic-fermenters which can digest both leaves and fruits (Lambert 1998), but this may not be so in the case of forestomach-fermenting colobines. Interestingly, <i>Rhinopithecus</i> prefer young leaves but rely heavily on lichens as fallback foods (Grueter et al. 2009), which are also eaten by
 445 446 447 448 449 450 451 	comparison with <i>Rhinopithecus</i> , another lineage radiated in temperate regions, would be particularly interesting. The dependence on leaves and the preference for fruits are compatible in macaques because they are caeco-colic-fermenters which can digest both leaves and fruits (Lambert 1998), but this may not be so in the case of forestomach-fermenting colobines. Interestingly, <i>Rhinopithecus</i> prefer young leaves but rely heavily on lichens as fallback foods (Grueter et al. 2009), which are also eaten by Barbary macaques. Lichens are composed of largely water-soluble carbohydrates,
 445 446 447 448 449 450 451 452 	comparison with <i>Rhinopithecus</i> , another lineage radiated in temperate regions, would be particularly interesting. The dependence on leaves and the preference for fruits are compatible in macaques because they are caeco-colic-fermenters which can digest both leaves and fruits (Lambert 1998), but this may not be so in the case of forestomach-fermenting colobines. Interestingly, <i>Rhinopithecus</i> prefer young leaves but rely heavily on lichens as fallback foods (Grueter et al. 2009), which are also eaten by Barbary macaques. Lichens are composed of largely water-soluble carbohydrates, whose digestibility is higher than NDF (Kirkpatrick et al. 2001), so they might be a
 445 446 447 448 449 450 451 452 453 	comparison with <i>Rhinopithecus</i> , another lineage radiated in temperate regions, would be particularly interesting. The dependence on leaves and the preference for fruits are compatible in macaques because they are caeco-colic-fermenters which can digest both leaves and fruits (Lambert 1998), but this may not be so in the case of forestomach-fermenting colobines. Interestingly, <i>Rhinopithecus</i> prefer young leaves but rely heavily on lichens as fallback foods (Grueter et al. 2009), which are also eaten by Barbary macaques. Lichens are composed of largely water-soluble carbohydrates, whose digestibility is higher than NDF (Kirkpatrick et al. 2001), so they might be a better food than mature leaves. A comparison between <i>Macaca</i> and <i>Rhinopithecus</i>

457 Acknowledgements

458	We would like to thank	our friends and colleagu	es who supported our fieldwork in

- 459 Japan, Morocco and Algeria. The Ministry of Environment and Forestry Agency, Japan,
- 460 and Haut Commissariat aux Eaux et Forêt et à la Lutte Contre la Désertification,
- 461 Morocco gave us permission to study in the area. Dr. Y. Tsuji kindly provided his
- 462 published data. This study was financed by the JSPS Core-to-core Program HOPE,
- 463 Cooperation Research Program of KUPRI and the MEXT Grant-in-Aid for JSPS
- 464 Fellows, Grant-in-Aid for Young Scientists (#20770195 and #22687002) to GH, the
- 465 21st Century COE Program (A14) and Global COE Program "Formation of a Strategic
- 466 Base for Biodiversity and Evolutionary Research: from Genome to Ecosystem."

467

- 468 References
- 469 Agetsuma N (1995) Dietary selection by Yakushima macaques (*Macaca fuscata yakui*):
- 470 the influence of food availability and temperature. Int J Primatol 16: 611–627.
- 471 Agetsuma N, Nakagawa N (1998) Effects of habitat differences on feeding behaviors of
- 472 Japanese monkeys: Comparison between Yakushima and Kinkazan. Primates 39:
 473 275—289.
- 474 Ajbilou R, Maranon T, Arroyo J (2006) Ecological and biogeographical analyses of
- 475 Mediterranean forests of northern Morocco. Acta Oecol 29: 104–113.
- 476 Ali R (1986) Feeding ecology of the bonnet macaque at the Mundanthurai Sanctuary,
- 477 Tamil Nadu. J Bombay Nat Hist Soc 83: 98—110.
- 478 Bleisch W, Liu Z, Dierenfeld E, Xie J (1998) Selected nutrient analysis of plants in the
- 479 diet of the Guizhou snub-nosed monkey (*Rhinopithecus* [*Rhinopithecus*] brelichi).

- 480 In: Jablonski N (ed) The Natural History of the Doucs and Snub-nosed Monkeys.
- 481 World Scientific Publishing, Singapore, pp 241—254
- 482 Burnham KP, Anderson DR (2002) Model Selection and Multi-model Inference. 2nd
- 483 Edition. Springer, New York.
- 484 Clutton-Brock TH (1977) Primate Ecology: Studies of Feeding and Ranging Behaviour
- 485 in Lemurs, Monkeys and Apes. Academic Press, Brighton.
- 486 Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through
- 487 extrapolation. Philos Trans R Soc Lond Ser B-Biol Sci 345: 101–118.
- 488 Curtin F, Schulz P (1998) Multiple correlations and Bonferroni's correction. Biol
- 489 Psychiatry 44: 775–777.
- 490 Drucker GR (1984) The feeding ecology of Barbary macaque and cedar forest
- 491 conservation in the Moroccan Moyen Atlas. In: Fa JE (ed) The Barbary Macaque: A
- 492 case study in Conservation. Plenum Press, New York, pp 135—164
- 493 Fa JE (1984a) The Barbary Macaque: A Case Study in Conservation. Plenum Press,

494 New York.

- 495 Fa JE (1984b) Habitat distribution and habitat preference in Barbary macaques (Macaca
- 496 *sylvanus*). Int J Primatol 5: 273—286.
- 497 Fa JE (1989) The Genus *Macaca*: a review of taxonomy and evolution. Mammal Rev
 498 19: 45—81.
- Fleagle JG (1999) Primate Adaptation and Evolution. Second Edition. Academic Press,
 London.
- 501 Fragaszy DM, Boinski S, Whipple J (1992) Behavioral sampling in the field:
- 502 Comparison of individual and group sampling methods. Am J Primatol 26:
- 503 259—275.

- 504 Furuichi T, Hashimoto C, Tashiro Y (2001) Fruit availability and habitat use by
- 505 chimpanzees in the Kalinzu Forest, Uganda: Examination of fallback foods. Int J
- 506 Primatol 22: 929—945.
- 507 Goldstein SJ, Richard AF (1989) Ecology of rhesus macaques (Macaca mulatta) in
- 508 northwest Pakistan. Int J Primatol 10: 531—567.
- 509 Grueter CC, Li DY, Ren BP, Wei FW, Xiang ZF, van Schaik CP (2009) Fallback foods
- 510 of temperate-living primates: a case study on snub-nosed monkeys. Am J Phys
- 511 Anthropol 140: 700—715.
- 512 Hanya G (2004) Diet of a Japanese macaque troop in the coniferous forest of
- 513 Yakushima. Int J Primatol 25: 55—71.
- 514 Hanya G, Kiyono M, Takafumi H, Tsujino R, Agetsuma N (2007) Mature leaf selection
- 515 of Japanese macaques: effects of availability and chemical content. J Zool 273:
- 516 140—147.
- 517 Hanya G, Noma N, Agetsuma N (2003) Altitudinal and seasonal variations in the diet of
- 518 Japanese macaques in Yakushima. Primates 44: 51—59.
- 519 Hanya G, Yamada H, Arakane T (2002) Expeditionary ranging by a Japanese macaque
- 520 troop in Hieizan. Anthropol Sci 110: 415–420.
- 521 Hanya G, Yoshihiro S, Zamma K, Matsubara H, Ohtake M, Kubo R, Noma N, Agetsuma
- 522 N, Takahata Y (2004) Environmental determinants of the altitudinal variations in
- 523 relative group densities of Japanese macaques on Yakushima. Ecol Res 19:
- 524 <u>485</u>—493.
- 525 Hasegawa K (1993) Nutritional Analysis (in Japanese). Baifukan, Tokyo.
- 526 Hemingway C, Bynum N (2005) The influence of seasonality on primate diet and
- 527 ranging. In: Brockman DK, van Schaik CP (eds) Seasonality in Primates: Studies of

- 528 Living and Extinct Human and Non-Human Primates. Cambridge University Press,
- 529 Cambridge, pp 57—104
- 530 Herrera CM (1984) A study of avian frugivores, bird-dispersed plants, and their
- 531 interaction in Mediterranean scrublands. Ecol Monogr 54: 1–23.
- 532 Hill DA (1997) Seasonal variation in the feeding behavior and diet of Japanese
- macaques (*Macaca fuscata yakui*) in lowland forest of Yakushima. Am J Primatol
 43: 305—322.
- 535 Iwamoto T (1982) Food and nutritional condition of free ranging Japanese monkeys on
- 536 Koshima Islet during winter Primates 23: 153—170.
- 537 Izumiyama S (2002) Above the forest limit (in Japanese). In: Oi T, Masui K (eds)
- 538 Natural History of Japanese Macaque: Their Ecological Diversity and Conservation.
- 539 Tokai University Press, Tokyo, pp 67—77
- 540 Janson C, Chapman C (1999) Resources and primate community structure. In: Fleagle J,
- 541 Janson C, Reed K (eds) Primate Communities. Cambridge Univ Press, Cambridge,
- 542 pp 237—267
- 543 Kirkpatrick RC (1999) Colobine diet and social organization. In: Dolhinow P, Fuentes A
- (eds) The Nonhuman Primates. Mayfield Publishing Company, Mountain View, pp
 93—105
- 546 Kirkpatrick RC, Zou RJ, Dierenfeld ES, Zhou HW (2001) Digestion of selected foods
- 547 by Yunnan snub-nosed monkey *Rhinopithecus bieti* (Colobinae). Am J Phys
- 548 Anthropol 114: 156—162.
- 549 Knott CD (1998) Changes in orangutan caloric intake, energy balance, and ketones in
- response to fluctuating fruit availability. Int J Primatol 19: 1061—1079.
- 551 Komiyama A, Kato S, Teranishi M (2001) Differential overstory leaf flushing

552 contributes to the formation of a patchy understory. Journal of Forest Research 6:

553 163—171.

554 Kurita H, Shiniomura T, Fujita T (2002) Temporal variation in Japanese macaque bodily

555 mass. International Journal of Primatology 23: 411–428.

556 Lambert JE (1998) Primate digestion: Interactions among anatomy, physiology, and

557 feeding ecology. Evol Anthropol 7: 8—20.

558 Ménard N (1985) Le régime alimentaire de Macaca sylvanus dans différents habitats

- d'Algérie: I. Régime en chênaie décidue. Revue d'Ecologie (La Terre Et La Vie) 40:
 351—466.
- 561 Ménard N (2002) Ecological plasticity of Barbary macaques (*Macaca sylvanus*). Evol
- 562 Anthropol 11: 95—100.
- 563 Ménard N, Qarro M (1999) Bark stripping and water availability: A comparative study
- between Moroccan and Algerian Barbary Macaques (*Macaca sylvanus*). Revue
- 565 d'Ecologie (La Terre Et La Vie) 54: 123—132.
- 566 Ménard N, Vallet D (1986) Le régime alimentaire de Macaca sylvanus dans différents
- 567 habitats d'Algérie: II. Régime en forêt sempervirente et sur les sommets roucheux.
- 568 Revue d'Ecologie (La Terre Et La Vie) 41: 173—192.
- 569 Ménard N, Vallet D (1988) Disponibilités et utilisation des ressources par le magot
- 570 (Macaca sylvanus) dans différents milieux en Algérie. Revue d'Ecologie (La Terre
- 571 Et La Vie) 43: 201–250.
- 572 Marshall AJ, Wrangham RW (2007) Evolutionary consequences of fallback foods. Int J
- 573 Primatol 28: 1218—1235.
- 574 Mehlman PT (1988) Food resources of the wild barbary macaque (Macaca sylvanus) in
- 575 high altitude fir forest, Ghomaran Rif, Morocco. Journal of Zoology 214: 469–490.

576	Muroyama Y, Kanamori H, Kitahara E (2006) Seasonal variation and sex differences in
577	the nutritional status in two local populations of wild Japanese macaques. Primates
578	47: 355—364.
579	O'Brien TG, Kinnaird MF (1997) Behavior, diet, and movements of the Sulawesi crested
580	black macaque (Macaca nigra). Int J Primatol 18: 321-351.
581	Pond CM (1978) Morphological aspects and ecological and mechanical consequences
582	of fat deposition in wild vertebrates. Annual Review of Ecology and Systematics 9:
583	519—570.
584	Porter LJ (1989) Tannins. In: Dey PM, Harborne JB (eds) Methods in Plant
585	Biochemistry, vol1 Plant Phenolics. Academic Press, London, pp 389-419
586	Rautio P, Bergvall UA, Karonen M, Salminen JP (2007) Bitter problems in ecological
587	feeding experiments: Commercial tannin preparations and common methods for
588	tannin quantifications. Biochem Syst Ecol 35: 257–262.
589	Sakai S (2002) General flowering in lowland mixed dipterocarp forests of South-east
590	Asia. Biol J Linnean Soc 75: 233–247.
591	Skopec MM, Haley S, Torregrossa AM, Dearing MD (2008) An oak (Quercus agrifolia)
592	specialist (Neotoma macrotis) and a sympatric generalist (Neotoma lepida) show
593	similar intakes and digestibilities of oak. Physiol Biochem Zool 81: 426-433.
594	Su HH, Lee LL (2001) Food habits of Formosan rock macaques (Macaca cyclopis) in
595	Jentse, northeastern Taiwan, assessed by fecal analysis and behavioral observation.
596	Int J Primatol 22: 359—377.
597	Suzuki A (1965) An ecological study of wild Japanese monkeys in snowy areas: focused
598	on their food habits. Primates 6: 31-72
599	Terborgh J (1983) Five New World Primates. Princeton University Press, Princeton.

- Ting S, Hartley S, Burns KC (2008) Global patterns in fruiting seasons. Glob Ecol
 Biogeogr 17: 648—657.
- Tsuji Y, Fujita S, Sugiura H, Saito C, Takatsuki S (2006) Long-term variation in fruiting
- and the food habits of wild Japanese macaques on Kinkazan Island, northern Japan.
- 604 Am J Primatol 68: 1068—1080.
- Tsuji Y, Takatsuki S (2004) Food habits and home range use of Japanese macaques on
 an island inhabited by deer. Ecol Res 19: 381–388.
- 607 van Schaik CP, Pfannes K (2005) Tropical climates and phenology: a primate
- 608 perspective. In: Brockman DK, van Schaik CP (eds) Seasonality in Primates:
- 609 Studies of Living and Extinct Human and Non-Human Primates. Cambridge
- 610 University Press, Cambridge, pp 23—54
- 611 van Schaik CP, Terborgh JW, Wright SJ (1993) The phenology of tropical forests:
- 612 adaptive significance and consequences for primary consumers. Annu Rev Ecol
- 613 System 24: 353—377.
- 614 van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral
- 615 detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J
- 616 Dairy Sci 74: 3583—3597.
- 617 Wada K (1975) Ecology of wintering among Japanese monkeys in Shiga Heights and its
- 618 adaptive significance. Physiol Ecol Jpn 16: 9–14.
- 619 Waterman P (1984) Food acquisition and processing as a function of plant chemistry. In:
- 620 Chivers DJ, Wood BA, Bilsborough A (eds) Food Acquisition and Processing in
- 621 Primates. Plenum Press, New York, pp 177—211
- 622 Willis RB, Allen PR (1998) Improved method for measuring hydrolyzable tannins using
- 623 potassium iodide. Analyst 123: 435—439.

624	Willson MF, Irvine AK, Walsh NG (1989) Vertebrate dispersal syndromes in some
625	Australian and New Zealand plant communities, with geographic comparisons.
626	Biotropica 21: 133—147.
627	Yamagiwa J, Hill D (1998) Intraspecific variation in the social organization of Japanese
628	macaques: Past and present scope of field studies in natural habitats. Primates 39:
629	257—273.
630	Yeager CP (1996) Feeding ecology of the long-tailed macaque (Macaca fascicularis) in
631	Kalimantan Tengah, Indonesia. Int J Primatol 17: 51-62.
632	

Study site	Cou ntry*	Vegetation	Area (ha)	#Tree Specie s	#Fleshy- fruited tree species	#Tree Specie s/0.5 ha**	#Fleshy- fruited tree species/ 0.5ha**	H (BA based)	H (cover based)	Dominant species (Top3)	Source
Yakushi ma, 100 m		Evergreen broad-leaved forest	0.5	52	31	52	31	3.17	-	Ardisia sieboldii (Myrsinaceae), Lithocarpus edulis (Fagaceae), Litsea acuminata (Lauraceae)	Takafumi , Agetsum a, Tsujino, unpublis
Yakushi ma, 600 m		Evergreen broad-leaved forest	0.25	18	10	<u>18</u>	<u>10</u>	2.04	-	Distylium racemosum (Hamamelidaceae), Quercus salicina (Fagaceae), Neolitsea aciculata (Lauraceae)	Hanya et al. (2003)
Yakushi ma, 1050 m	J	Coniferous/e vergreen broad-leaved forest	0.5	21	10	21	10	2.10	2.57	Abies firma (Pinaceae), Cryptomeria japonica (Taxodiaceae), Tsuga sieboldii (Pinaceae)	Hanya, unpublis hed
Koshim a	J	Evergreen broad-leaved forest	0.5	55	35	55	35	2.45	-	Machilus thunbergii (Lauraceae), Podocarpus macrophyllus (Podocarpaceae), Prunus jamasakura (Rosaceae)	Go, unpublis hed
Shiga Heights	J	Deciduous broad-leaved forest	0.22	48	10	<u>61</u>	<u>13</u>	2.97	-	Betula ermanii (Betulaceae), Quercus crispula (Fagaceae), Fagus crenata (Fagaceae),	Wada, unpulish ed
Muroo	J	Deciduous broad-leaved forest	0.04	14	5	<u>25</u>	<u>7</u>	2.25	-	Quercus serrata (Fagaceae), Quercus glauca (Fagaceae), Acanthopanax sciadophylloides (Araliaceae)	Yamada, unpublis hed
Akfadou	A	Deciduous oak forest	0.5	4	0	4	0	-	0.77	Quercus afares (Fagaceae), Quercus faginea (Fagaceae), Quercus suber (Fagaceae)	Ménard and Vallet (1988)
Djurdjur a	A	Coniferous/e vergreen broad-leaved forest	0.5	5	0	5	0	-	0.73	Cedrus atlantica (Pinaceae), Quercus ilex (Fagaceae), Pinus clusiana (Pinaceae)	Ménard and Vallet (1988)
Northen Morocc o (Rif)	М	Mixed oak evergreen and semidiciduou s forests	NA***	15	5	-	-	1.85	-	Pinus pinaster (Pinaceae), Quercus canariensis (Fagaceae), Quercus coccifera (Fagaceae)	Ajbilou <i>et al</i> . (2006)

Table I. Number of tree species and diversity in Japanese and north African forests

H: Shannon-Wiener's diversity index, calculated by the proportion of of each species either as basal area (BA) or coverage. *: J: Japan, A: Algeria, M: Morocco ***: <u>Underlined</u> are estimated values by the method of Colwell and Coddington (1994) ***: Vegetation data of 84 forests of northern Morocco (scattered over an area of 20 km*70 km), sapmled by 'nearest neighbo

s forests

Table II. Summary of the generalized linear models on the effect of chemical properties on leaf food selection

a)	Japanese	macaque	s in	Yakushima

Adopted factors	AIC	∆AIC	Akaike weight
Protein+, Lipid-, Condensed-, Hydrolysable-	75.4	0.0	21%
Ash+, Lipid-, Condensed-, Hydrolysable-	76.9	1.6	9%
Lipid-, Condensed-, Hydrolysable-	77.0	1.7	9%
Protein+, Lipid-, Condensed-, Hydrolysable-	77.1	1.7	9%
Protein+, NDF+, Lipid-, Condensed-, Hydrolysable	77.4	2.0	8%

b) Barbary macaques in Moven Atlas

b) Darbary macaques in Moyen Allas			
Adopted factors	AIC	∆AIC	Akaike weight
(Null model)	43.1	0.0	8%
Condensed+	44.2	1.2	5%
Hydrolysable-	44.3	1.2	4%
Protein-	44.4	1.4	4%
Ash+	44.6	1.5	4%
Ash+, Condensed+	44.7	1.7	4%
Lipid-	45.0	1.9	3%
NDF-	45.0	2.0	3%

Protein: crude protein; NDF: neutral detergent fiber; Ash: crude ash; Lipid: crude lipid; condensed: condensed tannin; Hydrolysable: hydrolysable tannin

△AIC: Difference with the smallest AIC

Akaike weight: exp(-0.5* \triangle AIC)/ Σ exp(0.5* \triangle AIC) (Burnham and Anderson, 2002)

+ denotes positive effect (more likely to select as a food) and - denotes negative effect on food selection.

Bold indicates that the model is significant (compared with the null model). 635

636

Table III. Best-fit generalized linear model on the effect of chemical properties on leaf food selection

a) Japanese macaques in Yakushima							
Adopted factors Coefficient SE p							
Crude protein	19.4	10.5	0.064				
Crude lipid	-37.8	14.2	0.01				
Condensed tannin	-387	139	0.0053				
Hvdrolvsable tannin	-24.5	12.4	0.048				

In this best-fit model, df=72, AIC=75.4, p<0.0001 in the likelihood ratio test using χ^2 distribution

Coefficient: coefficient by maximum likelihood estimation; SE: standard error of the coefficient, p: the probability that the coefficient is not different from zero by Wald test.

b) Barbary macaques in Moyen Atlas

Null model had the smallest AIC: AIC=43.1 637

638 Legends for figures

639 Fig. 1. Comparisons of annual diet of temperate and tropical macaques. Percentage to 640 total annual feeding time of each food category is shown. Data from (Ménard 641 1985; Ali 1986; Ménard and Vallet 1986; Yeager 1996; Hill 1997; O'Brien and 642 Kinnaird 1997; Hanya 2004; Tsuji et al. 2006). 643 Fig. 2. Seasonal variations in the diet of Japanese and Barbary macaques. Percentage to 644 total monthly feeding time of each food category is shown. Data from (Ménard 645 1985; Ménard and Vallet 1986; Hill 1997; Hanya 2004; Tsuji et al. 2006). 646 Fig. 3. Leaf chemistry of food and non-food leaves of Yakushima (Japanese macaques) 647 and Moyen Atlas (Barbary macaques). Y-axis is the proportion of dry matter. 648 Average+SD is shown. Note that the scale is different among graphs.

650 Fig. 1

652 Fig. 2

Moyen Atlas

(a) Crude protein

(b) Neutral detergent fiber

Yakushima

0.6

0.4

0.2

0

(e) Condensed tannin

(d) Crude lipid

(f) Hydrolysable tannin

654 Fig. 3