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Abstract

Plio-Pleistocene epithermal quartz veins in southern Kyushu, Japan, include gold deposits. The coherent trend of the ore veins
suggests tectonic control for their formation. However, the stress regime during the formation has been controversial. To solve
this problem, we improved existing methods for inferring paleostresses from vein orientations. It was assumed that veins making
a cluster were formed intermittently from thermal fluids with various pressures. The present method determines stress ratio and
stress axes with 95% confidence regions. The method was applied to mid Pliocene quartz veins cropping out at Hashima, south-
western Kyushu. We obtained a normal faulting regime of stress with the trend of sigma3 at 167◦ ± 10◦ and the stress ratio at
0.20+0.13/−0.09. The low stress ratio and the lack of slickenlines and slickenfibers on vein walls suggest that the host rock was
subject to a small differential stress, i.e., a weak tectonic stress, when the veins were formed.
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1. Introduction

Mineral veins are fossils of episodic venting of fluids from
deep earth. Understanding of their formation is important not
only to mining but also to hydrocarbon exploration (Hood et al.,
2003; Sorkhabi, 2005; Tamagawa et al., 2008), geological dis-
posal or storage (Shipton et al., 2004) and earthquake disaster
prevention (Sibson, 1987, 2000; Beeler et al., 2000; Miller et
al., 2004).

There are Plio-Pleistocene epithermal gold veins in the
southern part of Kyushu Island, northern Ryukyu arc, Japan
(e.g., Izawa and Urashima, 2001; Izawa and Watanabe, 2001),
where most ore veins have coherent trends (Fig. 1). Therefore,
following Newhouse (1942) and McKinstry (1948), regional
tectonics has been regarded as an important factor for the vein
formation (e.g., Shiobara and Yoshikawa, 1958; Ikeda, 1962;
Matsutoya, 1967; Sanematsu et al., 2006). However, it has been
unclear which stress regime, normal or strike-slip faulting, pre-
vailed in the metallogenic province (Ikeda, 1962; Matsutoya,
1967; Uto et al., 2001; Sillitoe and Hedenquist, 2003; Yamaji,
2003; Yamaji et al., 2003; Hikichi and Yamaji, 2008). To solve
this problem, we observed quartz veins at the Hashima site,
southwest Kyushu (Fig. 1), where gold-silver deposits were
mined until the early 20th Century.

At the beginning of this project, we planned to employ the
method of Jolly and Sanderson (1997), which has been applied
to veins and dikes in several areas (e.g., Andre et al., 2001;
McKeagney et al., 2004; Mazzarini and Isola, 2007; Mazzarini
and Musumeci, 2008). The method makes use of vein orien-
tations to infer the paleostress during vein formation. For this
purpose, it is expected that poles to veins are oriented in an el-
liptical cone or along a girdle, and that domains with and with-

out data points are clearly separated on a stereogram (Fig. 2a).
Theσ3 orientation is, then, determined as the axis of the cone
or the densest point on the girdle; and theσ2σ3-principal stress
plane coincides with the major axis orientation of the ellipse or
with the girdle. This method is based on the principle that ther-
mal fluid opens fractures by its pressure,pf , only if the pres-
sure exceeds the normal stresses on the fractures (Delaney et
al., 1986). The Mohr diagram in Fig. 2a illustrates this situa-
tion. The domains with and without data points correspond to
the orientations whether this condition was satisfied or not. The
shape and position of the boundary line between the domains
indicate the stress in question. Accordingly, the number den-
sity of poles should have an abrupt change across this line to
estimate the state of stress.

However, it was difficult to apply the method to our data.
Poles to the Hashima veins showed a nebulous pattern on a
stereogram (Fig. 2b). Consequently, we improved the methods
of Baer et al. (1994) and Jolly and Sanderson (1997) to cope
with vein orientations with such a gradation.

2. Stochastic model

2.1. Normalization

The present method aims at determining the state of stress
during the formation of veins from their orientations. In gen-
eral, orientations are dimensionless quantities, whereas stress
components have a physical unit, e.g., pascals. Therefore, the
absolute stress values cannot be determined only from orien-
tations. Instead, the principal stress axes and stress ratio are
inferred. The ratio is defined asΦ = (σ2 − σ3)/(σ1 − σ3)
(Bishop, 1966), whereσ1, σ2 andσ3 are the principal stresses
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Figure 1: Trends of ore veins in southern Kyushu, Japan, after Izawa (2004).
Geological map of southern Kyushu simplified from Geological Survey of
Japan (1992). H, Hishikari; K, Kushikino; M, Miyazaki; O, Okuchi; QVF,
Quaternary volcanic front; Y, Yamagano.

Figure 2: Schematic illustrations showing the model of Baer et al. (1994) and
Jolly and Sanderson (1997) (a), and our model (b) for the formation of epither-
mal veins. Equal-area projections show the poles to veins; closed circle, cross
and solid circle indicateσ1, σ2 andσ3 orientations, respectively. The former
model assumes that vein minerals were deposited from thermal fluid with a dis-
tinctive pressure,pf . Veins are thought to be formed in fractures with its normal
stress,σn, being smaller thanpf , whenpf is greater thanσ3. As a result, the
poles to veins are confined in an elliptical cone or along a girdle in the deter-
ministic model. In contrast, the we assume fluctuating fluid pressure. The poles
are thought to show a nebulous pattern on the stereogram in our model due to
fluctuating pf : gradation in the stereogram and the Mohr diagram depict the
number density of data points.

Figure 3: Equal-area projections showing the contours ofσn for threeΦ values.
Planes perpendicular to theσ3- andσ1-axes have the minimum and maximum
σn values. With the increase ofΦ from 0 to 1, the region of the leastσn values
changes its shape from a girdle through an ellipse to a circle.

(σ1 ≥ σ2 ≥ σ3), and compression is positive in sign. Pres-
sure of the fluid, from which veins were formed, is normalized
through the equation,p = (pf −σ3)/(σ1−σ3). This is identical
with the “normalized driving pressure” of Baer et al. (1994).

In this article, we use the term “a state of stress” to refer
to the stresses collectively that have the principal orientations
and stress ratios in common. As the absolute values are not
evaluated in this work, we identify the principal stresses asσ3 =

0,σ2 = Φ andσ1 = 1. Accordingly, stress tensor has the form,
σ = E⊤σ0E, where

σ0 =

1 0 0
0 Φ 0
0 0 0

 (1)

is the simplest 3× 3 matrix to have the information ofΦ, andE
is the orthogonal matrix representing the principal orientations.
A fracture surface with the unit normal,v, is subject to the trac-
tion, t = σv, which has the normal and shear components,

σn = v⊤t = v⊤E⊤σ0Ev (2)

σs = | t − σnv | , (3)

in the ranges 0≤ σn ≤ 1 and 0≤ σs ≤ 1/2 (Table 1). Equal-
area projections in Fig. 3 show the correspondence betweenσn

andv for threeΦ values.

2.2. Basic assumptions

To determine the state of stress from a nebulous pattern of
poles to veins, some rule relating vein orientations to stress is
necessary. We have the four assumptions for the formation of a
cluster of veins:

1. The state of far field stress did not change during the for-
mation of the cluster.

2. The country rock was effectively isotropic for the vein ori-
entations to inherit orthorhombic symmetry from the stress
(Baer et al., 1994) (Fig. 3).

3. Veins were formed on fracture surfaces only if the normal
stresses acting on them were smaller than the pressure of
thermal fluid from which vein minerals were precipitated
(Delaney et al., 1986) (Fig. 2).

4. The cluster was formed as a result of multiple ascending
events of thermal fluids with various fluid pressures.
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Table 1: List of symbols used in this article. All vectors are expressed by column matrices.

A normalization constant of the Bingham distribution
E orthogonal matrix denoting the symmetry axes ofσ or of the Bingham distribution
e(1), e(2), e(3) unit vectors denoting symmetry axes ofσ or of the Bingham distribution
N number of veins
Nb number of bootstrap sample sets
P( ) probability distribution function
p normalized fluid pressure
p∗ lower bound of the maximump
pf fluid pressure
⊤ matrix transpose
v unit vector perpendicular to a vein
v(i) unit vector perpendicular to theith vein
x 5-dimensional unit vector representing a state of stress
x 5-dimensional unit vector representing the state of stress optimal for data
Θ distance between stress states
Θ uncertainty of the optimal state of stress
κ1, κ2 concentration parameters of the Bingham distribution
Λ measure of how often veins are formed on fractures subject to high normal stresses
Φ stress ratio or normalized intermediate principal stress
σ stress tensor normalized to have the principal stresses, 0,Φ and 1
σ1, σ2, σ3 principal stresses
σn, σs normal and shear stresses
ς reduced stress tensor normalized by its first and second basic invariants

The first assumption is essential—it is beyond the scope of this
study to deal with heterogeneous data. Geological media are
heterogeneous and anisotropic to some extent. The second as-
sumption, i.e., the effective isotropy, means that the internal
structures of the host rock, e.g., bedding planes, sedimentary
particles and their matrix and pre-existing fractures, are thought
to have negligible effect in a statistical sense for vein orienta-
tions as a whole. We do not consider the reason for the atti-
tude of each fracture. The network and interaction of fractures
(e.g., Blenkinsop, 2008) are neglected in this work: Baer et al.
(1994) considered their effects. As a result, number density of
the poles to veins is expected to have contours along those of
σn on a stereogram (Fig. 3), if the number of veins is large. The
third assumption leads us to exclude data from veins formed in
shear fractures, which can give rise to the deposition of miner-
als, e.g., slickenfibers, irrelevant to the present problem.

There are lines of evidence for the fourth assumption. A clus-
ter of epithermal veins has variations in their lithology and in
formation temperature to some extent (e.g., Izawa et al., 1981;
Sanematsu et al., 2006). In the Hishikari ore field (Fig. 1),
a thick vein grew in distinct episodes separated by 30 to 110
kyr (Sanematsu et al., 2006); and the economically most im-
portant mineralization lasted only for∼50 kyr, while mineral-
ization in the field lasted for∼300 kyr (Sekine et al., 2002).
Sibson (1987) argued that such episodic movements of thermal
fluids are linked with earthquake swarms. Economically impor-
tant swarms often have such veins that include breccias brought
from host rocks by thermal fluid rushing up in fractures. But,

not all veins of a swarm contain breccias. Thermal fluids had
various impetuses.

From the third assumption, the fractures in which veins were
formed in an event had normal stresses satisfying the condi-
tion 0 < σn < p, wherep is the fluid pressure of the event.
Thanks to the orthorhombic symmetry of stress tensors, it is
enough to consider a quadrant of the principal stress coordi-
nate system. Fig. 4 is the schematic illustration showing the
formation of a vein cluster by the episodic mineralization with
the non-dimensional fluid pressures at 0.2, 0.4, 0.1 and so on.
Thermal fluids have to permeate fractures before they deposit
minerals, while fracture permeability decreases with increasing
σn on the fractures (e.g., Pyrak-Nolte and Morris, 2000; Uehara
and Shimamoto, 2008). Hence, normal stresses on the fractures
in which veins were formed in an event have a frequency distri-
bution denoted by a decreasing function ofσn with the ceiling
at thep value of the event.

Episodic mineralization could have had different fluid pres-
sures. We consider that lowp fluids passed through the ob-
served rock mass more often than highp fluids. Veins we ob-
serve today are the result of those events. Lowσn fractures had
chances to be mineralized more often than highσn ones. Con-
sequently, the probability distribution of vein orientations can
be expressed by a decreasing functionf (σn) from theσ3- to
σ1-orientations (Fig. 3). That is, Eq. (2) leads to the expres-
sion,

P(v) ∝ f (v⊤E⊤σ0Ev), (4)

for the frequency of veins perpendicular tov.
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Figure 4: Schematic picture for the formation of a cluster of veins under a state of stress withΦ = 0.6. Each fan shows a quadrant of the equal-area projection: open
circle, cross and closed circle indicate theσ1-, σ2- andσ3-orientations, respectively. Colored area in the quadrant illustrates the fractures in which veins can be
formed. Dotted lines indicate the contours ofσn with the intervals of 0.1. Event 1 is assumed to have resulted in the first group of veins from a fluid withp = 0.2, by
which poles to the veins are enveloped by the contour ofσn = 0.2. The succeeding events are assumed to have had the pressures at 0.4, 0.1, and so on. In addition,
we assume that lowp fluids came up more often than highp ones. As a result, orientations of the veins that we observe today have the maximum and minimum
densities at theσ3- andσ1-orientations, respectively. And, the orientation distribution has contours (white lines) along iso-σn lines on the equal-area projection.

2.3. Bingham distribution

The form of the functionf (σn) is not well known. For mathe-
matical simplicity, we hypothesize an exponentially decreasing
function,

P(v) ∝ exp
(
−v⊤E⊤σ0Ev/Λ

)
, (5)

whereΛ is a constant standing for the frequency of highp flu-
ids passing through the rock mass compared to lowp ones.
The orientation distribution denoted by Eq. (5) is known as the
Bingham distribution, and here, relates the nebulous pattern of
vein orientations to a stress state. The choice of the exponential
function is arbitrary—a discussion of this is given in§5.1.

The Bingham distribution is the well understood and it is
the simplest extension of the multivariate normal distribution to
the orientation distribution with orthorhombic symmetry (Bing-
ham, 1974). The distribution has the probability density,

PB(v) =
1
A

exp
(
v⊤E⊤KEv

)
, (6)

whereA is the normalization constant, and

K =

κ1 0 0
0 κ2 0
0 0 0

 (7)

is the matrix characterizing the distribution (Love, 2007). In
this case,E is the orthogonal matrix representing the axes of
the minimum, intermediate and maximum concentrations, re-
spectively. The parameters,κ1 andκ2, are negative in sign, and
their absolute values denote concentrations. The spread of ori-
entations from the maximum to minimum concentration axes is
denoted by 1/|κ1|, and that from the maximum to intermediate
concentration axes is denoted by 1/|κ2| (Fig. 5).

Comparing the Bingham distributions denoted by Eqs. (5)
and (6), we obtain

− 1
Λ

(
1 0
0 Φ

)
=

(
κ1 0
0 κ2

)
. (8)

in terms of Eqs. (1) and (7). It follows thatΦ andΛ satisfy

Φ = κ2/κ1 (9)

Figure 5: Equal-area projections of the Bingham distributions for severalκ1 and
κ2 values. Solid and open circles indicate the axes of the maximum and mini-
mum concentrations, respectively. The intermediate concentration axis perpen-
dicular to them is indicated by crosses.

andΛ = −1/κ1. The comparison leads to the correspondence of
theσ1-, σ2- andσ3-axes with the maximum, intermediate and
minimum concentration axes, respectively.

3. Paleostress analysis

3.1. Optimal solution

The state of stress optimal for a cluster of veins is obtained
from the Bingham distribution that best fits the vein orienta-
tions. We employed the maximum likelihood estimator (e.g.,
van den Bos, 2007) for this optimization. That is,E andK are
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optimized by maximizing the logarithmic likelihood function,

L(E,K ) =
N∑

i=1

logPB(v(i),E,K ), (10)

wherev(i) is the unit normal of theith vein, andN is the number
of veins. Combining Eqs. (6) and (10) we have

L(E,K ) =
N∑

i=1

[
v(i)

]⊤
E⊤KEv (i) − N logA. (11)

A is a function ofK , and was evaluated by the numerical inte-
gration of the probability density over the unit sphere (Tanaka,
1999). We began the maximization from the initial condition,
κ1 = κ2 = −10; E was initialized using the eigenvectors of the
orientation matrix (Borradaile, 2003) of the vein orientations,

v(1)[v(1)]⊤ + · · · + v(N)[v(N)]⊤. (12)

OnceE andK were optimized for the data, the optimal stress
ratio, Φ̂, was evaluated via Eq. (9).

We envisage that overpressured fluids episodically left veins.
The fluids are assumed to have had different pressure values.
The normal stresses that acted on the vein walls were capped
by the maximum pressure of the fluids (Fig. 4). On one hand,
the quantity

p∗ = max
(
σ̂(1)

n , . . . , σ̂
(N)
n

)
(13)

can be calculated from the data, where ˆσ(i)
n (i = 1, . . . , N) is

the normal stress on theith vein evaluated using the optimal
stress and Eq. (2). On the other hand, we cannot expect to ob-
serve the particular veins that were formed from the fluid with
the maximum pressure because a vein cluster always includes
unobserved members. It is difficult to estimate the maximum
pressure, butp∗ is the lower bound of the maximum.

3.2. Error analysis

The confidence regions of the optimal stress axes and stress
ratio were estimated by the bootstrap method. That is, theN
data were resampledNb times with repetition (Nb ≫ N). And,
we obtainedNb stress states as the optimal solutions from the
Nb data sets. Uncertainty of the optimal solution was evaluated
from them through the following procedure.

1. The stress states were transformed to 5-dimensional unit
vectors,x(1), . . . , x(Nb) (Appendix A).

2. A unit vector is computed as the mean of the unit vectors:

x = [x(1) + · · · + x(Nb)]/|x(1) + · · · + x(Nb)|.

The uncertainty of the optimal stress was denoted by the
spread of the unit vectors aroundx (Yamaji and Sato,
2006).

3. Distances of the unit vectors fromx were computed via
Eq. (A.4) to evaluate the spread. LetΘ(i) be the distance
betweenx(i) andx.

4. TheNb unit vectors were sorted by theirΘ vales in ascend-
ing order.

5. The 95% confidence region of the optimal stress state was
represented by the spread of the unit vectors excluding 5%
of the vectors that were the most distant fromx. Thus, the
last 5% of the unit vectors were excluded from the follow-
ing processing. Letn be the maximum integer satisfying
n ≤ 0.95Nb.

6. The remainingn unit vectors were converted to the corre-
sponding reduced stress states through Eq. (A.3).

7. Finally, the 95% confidence regions of the optimal stress
state were obtained as the envelopes of then stress axes on
a stereogram and of then values ofΦ on a histogram.

In addition to the confidence regions, it is sometimes conve-
nient to use a single precision parameter. To this end, we adopt
the “mean angular stress distance” (Yamaji and Sato, 2006):
Θ =

[
Θ(1)+ · · ·+Θ(Nb)]/Nb. If the Nb stress states are completely

random,Θ has the maximum value of 90◦, meaning that stress
is not constrained at all from data. If all the stress states are
identical, we haveΘ = 0◦. Precisely determined stress states
have smallΘ values.

4. Application to the Hashima data

4.1. Geologic setting

A cluster of veins occurs on the coast of Hashima village
(Fig. 6), western part of the Kushikino metallogenic district,
southern Kyushu (Fig. 1). Kushikino deposits were formed at
the paleo temperatures of 210–250◦C and at the depths of 450–
850 m (Izawa et al., 1981). Adularia and illite from a vein of the
cluster yielded the K-Ar ages of 3.55±0.11 and 3.67±0.09 Ma,
respectively (Izawa and Zeng, 2001). The veins are hosted by
massive, altered tuff breccia of the Hokusatsu Koki Andesites,
which yielded the K-Ar ages of 4.0–4.2 Ma (Ministry of In-
ternational Trace and Industry, 1979; Izawa and Zeng, 2001).
The host rock is composed of poorly sorted matrix including
granule to pebble sized breccias. Bedding surfaces were spo-
radically observed with a westward dip of.15◦, gentle enough
for us not to consider tilt-correction of the data. Cretaceous and
older accretionary complexes make up the basement of the An-
desites. A Jurassic complex was found at the depth of 140 m
below sea-level near the village (Morishita and Teraoka, 1996).

Until the extrusion of the Hokusatsu Koki Andesites, south-
ern Kyushu situated in the fore-arc, except for the short-term
unusual fore-arc magmatism in the early Middle Miocene (e.g.,
Yamaji and Yoshida, 1998). The volcanic front migrated ocean-
ward (eastward) during the Pliocene in southern Kyushu (Izawa
and Watanabe, 2001), probably indicating slab rollback under
Kyushu (Yamaji, 2003).

4.2. Data acquisition

We observed quartz veins on the wave-cut platform in front
of Hashima village (Fig. 6a). Their attitudes were measured at
233 points in a 100 m× 200 m area. The veins have variations
to some extent in lithology and thickness, but we deal with their
orientations equally in this work. The thickness ranged from 1
mm to 300 mm, but those thinner than 50 mm were dominant.
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Figure 6: (a) Photograph showing quartz veins (arrows) cropping out at the
Hashima site. A person for the scale of surface undulations of the wave-cut
platform in front of Hashima village. (b) Thick quartz vein including breccia
(arrows).

Figure 7: Schematic illustration showing the method of data acquisition using
a threshold length of 1 meter. Vein I is a planar vein, and its general trend is
shown by dotted line. Vein II has bends. In this case, the planar portions with
their traces on the outcrop are longer than 1 meter are used to approximate this
vein, and the attitudes of the portions are measured as independent data. Veins
III and IV have no segment longer than 1 meter. So, they are ignored. Vein V
has the bend that is not exposed, but has planar segments longer than 1 meter.
In this case, the planar portions are measured.

We saw 9 veins including breccias from the host rock (Fig. 6b),
and one from older quartz veins, suggesting the rapid passage of
thermal fluids capable of transporting the breccias. Veins gen-
erally had rough surfaces. Only one vein had slickenside on its
upper wall, which we excluded from data for paleostress analy-
sis. Other veins had neither slickenfiber lineations nor slicken-
sides. The rough surfaces and the absence of sheared structures
suggest that most of the Hashima veins were formed in mode I
or mixed-mode cracks.

It is straightforward to measure a vein orientation, if the vein
is planar and its entire length is exposed. Vein I in Fig. 7 il-
lustrates such an ideal case. Veins II through V in this figure
show other cases. There were curved veins with the radius of
curvature of the order of 10−1–100 m like Vein II. The trace of
such a vein on the outcrop was approximated by straight line
segments, each of which was longer than 1 m; and the attitude
of the vein was measured on each segment. This threshold was
chosen to deal with veins much larger than the breccias in the
host rock for diminishing the effect of the heterogeneity coming
from the breccias and their matrix. Short segments and sharp
bends like Veins III and IV were neglected. Long, curved ones
yielded two or more data. We chose such a treatment to cope
with the lack of exposure. For example, Vein V in Fig. 7 has
a bend at its center, but the central part is obliterated. We do
not know whether one or two veins exist in this case. So, we
measured the attitudes of both the planar ends. For equal treat-
ment of veins with good and poor exposures, we measured the
attitudes on the wide planar parts of veins. As a result, there
were 20 veins, each of which provided two or three orienta-
tion data. We saw dozens of veins with offshoots, from which
we obtained orientation data if they met the criteria. Stowell
et al. (1999) documented that quartz veins in North Wales had
offshoots consistently oriented anticlockwise from main veins.
We saw no such systematic relationship between main veins
and their offshoots.

4.3. Result
The stereoplot in Fig. 8 shows attitudes of the Hashima veins.

Surface undulations of the wave-cut platform with an ampli-
tude of a few meters (Fig. 6) gave us the opportunity to observe
horizontal or low-dipping veins, but there were none. There-
fore, it is impossible to attribute their absence to sampling bias.
Poles to the veins were distributed along a subhorizontal girdle,
and had the maximum concentration at the trend of 150–180◦.
The orientation of the minimum concentration along the girdle
makes more or less a right angle with this trend. Consequently,
the orientation distribution had a roughly orthorhombic sym-
metry.

The state of stress determined from the Hashima data is
shown in Fig. 8 and Table 2. We obtained a normal-faulting
regime of stress with the optimal stress ratio of∼0.2. The lower
bound of the maximum fluid pressure (Eq. 13) wasp∗ = 0.55.
It is clear from the histogram in Fig. 9 that most of the vein
minerals were precipitated on the fractures with ˆσn smaller than
0.2–0.3.

The bootstrap method resulted in the uncertainty ofΘ =
4.28◦: the solution was so precisely determined that if faults
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Figure 8: Hashima data and the result of the present method applied to them. (a) Lower-hemisphere, equal-area projection. Contours indicate the number of poles
per 0.1 steradians, corresponding to the number of poles within a small circle with the radius of∼10◦. (b) Histogram showing the frequency distribution of the stress
ratios evaluated from the data by the bootstrap method. Open circle depicts the optimalΦ value.

Table 2: The state of stress optimal for the Hashima data and its 95% confidence
limit.

Trend Plunge

σ1-axis 314◦ +57◦/−43◦ 82◦ +5◦/−6◦

σ2-axis 076◦ +13◦/−11◦ 4◦ ± 6◦

σ3-axis 167◦ ± 13◦ 7◦ ± 4◦

Φ 0.20+0.13/−0.09
κ1 −7.9 +1.8/–2.5
κ2 −1.6 +0.5/–0.9
Θ 4.28◦

are activated by the optimal stress, their slip directions can be
predicted with this level of uncertainty (Yamaji and Sato, 2006).
This solution has theσ3-axis in the region that has the largest
orientation density, and theσ2-axis at around the least density
on the girdle. The confidence region of the optimal solution is
illustrated in Fig. 8. Theσ1-axis was determined more pre-
cisely than the remaining stress axes, the confidence regions of
which were elongated along the girdle.

4.4. Robustness of the solution

The present method is not only capable of determining
stresses from veins with nebulous pole orientations, but also
works well with data sets from a limited number of veins. To
show this benefit, the method was applied to subsets with var-
ious sizes taken from the Hashima data. That is,m-element
subsets were randomly sampled from the Hashima data, where

Figure 9: Mohr diagram and histogram of ˆσn, i.e., non-dimensional normal
stresses on Hashima veins evaluated in terms of the optimal stress state (Fig.
8). Thermal fluids with various pressures passed fractures of the host rock, and
p∗ indicates the lower bound of the maximum pressure of the fluids.
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Figure 10: Semi-log plots showing convergence of the differences between the solutions determined fromm-element subsets of the Hashima data and the optimal
solution determined from the entire Hashima data with increasingm toward N = 233. Θ is the distance between the stress states represented by the solutions
(Appendix A).Φ̂ is the optimal stress ratio for the entire data. Ordinates of the lower three diagrams indicate the angles between the stress axes of the solutions.
Solid lines depict the mean differences for the 30 subsets with the same number of elements. While lines indicate their standard deviations. The convergence at
m = 20–30 indicates that the minimum size of data is 20–30 for the Hashima veins to conduct our stress inversion, and that the optimal solution from the 233 data
was numerically stable.

m is greater than 5. Thirty subsets were generated as such for
eachm value; the results of the present method applied to the
subsets were compared with the optimal solution obtained from
the entire Hashima data.

It was found that the solutions became unstable form . 20.
That is, theΘ distance between the solution of a subset and
the optimal solution gradually increased with the decreasingm,
and showed spikes form . 20 (Fig. 10). Theσ1-axis were
more precisely determined than the other axes, becauseΦ had
relatively low values. If the permissible error is∼30◦ for the
angles between the stress axes of the optimal solution and those
determined from the subsets, at least∼30 data were necessary
to estimate the state of stress for the case of Hashima veins. For
subsets withm greater than∼20, the method robustly worked,
and yielded similar solutions. But, generally, the least number
of data for the method to work depends on data.

4.5. Comparison with the Jolly-Sanderson method

The method of Jolly and Sanderson (1997) was applied to
the Hashima data for comparing results. Fig. 11 shows the
vein orientations relative to the stress axes that were determined
as the eigenvectors of the orientation matrix of the veins (Eq.
12). The eigenvectors largely coincided with our optimal stress
axes: the difference was less than 1◦. The method evaluates
stress ratio and normalized driving pressure by the formulas,
Φ = 1 − (1 − cos 2θ2)/(1 − cos 2θ3) and p = (1 + cos 2θ2)/2,
respectively (Eqs. 16 and 17 of Jolly and Sanderson, 1997),
whereθ2 andθ3 are the minimum and maximum apertures of
the elliptical cone that excludes most of the poles. The cones

with the apertures,θ2 = 56◦ andθ3 = 80◦, in Fig. 11a were
drawn to have a orthorhombic symmetry by eye. The solid cir-
cle in Fig. 11b shows the correspondingΦ value at 0.3. The
nebulous pattern made by the data points led to the ranges of
possibleθ2 andθ3 angles depicted by a stippled region in this
subfigure. The region was chosen on the stereogram by eye.
Our 95% confidence interval included the possibleΦ values de-
noted by this region.

Jolly and Sanderson (1997) assumed that a fluid with the
pressureR′ dilated fractures to form veins, but we assume that
fluids with various pressures did so. Therefore, our model does
not have a quantity corresponding top. However, the possible
range ofp between 0.22 and 0.36 (Fig. 11b) coincided roughly
with the rapid decline in the histogram of ˆσn in Fig. 9.

5. Discussion

5.1. Methodology
In order to relate the Bingham distribution (Eq. 5) to a stress

state, the exponential function was used in this work as the de-
creasing function of Eq. (4) for mathematical simplicity. That
is, taking the logarithm eliminates the exponential function in
the likelihood function to make the object function of the op-
timization problem very easy such that Eq. (10) was reduced
to Eq. (11). Unfortunately, the exact forms of the probability
distribution ofσn andv are not known, and the choice of the
exponential family of probability distributions is arbitrary.

However, the state of stress determined from vein orienta-
tions is not sensitive to the choice of the probability distribution
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of σn as long as it is a decreasing function. The distribution of
σn values on a stereogram is completely determined by stress
axes andΦ (Fig. 3). Contour lines ofP(σn) on a stereogram
coincide with those ofσn values, as long asσn has a one-to-
one correspondence withP(σn) (§2.2). Power-law distributions
can be alternatives to our exponential distribution, because vein
widths and lengths are known to show such distributions (e.g.,
Roberts et al., 1999; Bonnet et al., 2001). However, both the ex-
ponential and power-law distributions are so flexible that they
can approximate each other (Fig. 12). Therefore, the choice
from those distributions is peripheral to determine the optimal
stress state for vein orientations.

The orientation distribution of the Hashima veins was con-
sistent with the Bingham distribution. However, the Bingham
hypothesis should be challenged in future, like the Wallace-Bott
hypothesis, which is essential for the stress inversion of faults
and seismic focal mechanisms, was repeatedly challenged by
researchers (e.g., Dupin et al., 1993; Pollard et al., 1993; Pas-
cal, 2002). The effect of interaction among fractures is also a
subject of further study for paleostress analysis using vein ori-
entations.

Recently, the absolute values of fluid pressures (pf ) were
crudely estimated from the width-length ratios of clustered
veins (Gudmundsson, 1999; Mazzarini and Isola, 2007), where
the host rocks were assumed to be linear elastic bodies, and
possible values of Poisson ratio and Young’s modulus were as-
sumed for estimating the absolute values. The combination of
the technique of evaluating representativepf and our stochastic
modeling shall improve our understanding of fluid migration in
the crust.

The present method is based on the hypothesis that poles
to veins obey the Bingham distribution. Jolly and Sanderson
(1997) used the distribution as well to determine stress axes.
The Jolly-Sanderson method resulted in the possible range of
Φ from the Hashima data similar to our 95% confidence inter-
val, but the uncertainty ofΦ estimated by eye on the stereogram
in Fig. 11a inevitably includes subjectivity.

5.2. Tectonic implications
From the Hashima veins we obtained a normal faulting

regime of stress. That is, theσ2- andσ3-axes were more or
less horizontal, when the veins were formed. In addition, we
obtained a relatively low stress ratio, indicating a small hori-
zontal differential stress,σ2 − σ3. This means thatσ2- andσ3-
axes could have been easily rotated by perturbations from, e.g.,
magmatic and topographic loading (e.g., Mogi, 1958; Kervyn
et al., 2008).

Not only horizontal but also the full differential stress,σ1 −
σ3, was small as well. This is evidenced by the very rare
occurrence of sheared meso-structures. Some of the veins
had jigsaw-fitting walls, but they did not indicate displace-
ments along veins. Slickenlines and slickenfibers were not
found except for a wall of a vein in the study field. Since the
Hashima veins have various attitudes, a large differential stress
should have resulted in shear fracturing especially along frac-
tures oblique to stress axes. The low stress level suggested by
the Hashima veins is consistent with the model of the formation

Figure 11: (a) Equal-area projection of the Hashima data for the method of
Jolly and Sanderson (1997). Diamonds show the stress axes determined as
the eigenvectors of the orientation matrix of the vein orientations. Solid lines
roughly envelope the data points. Parallels centered by theσ1-axis are drawn to
measureθ2 andθ3. (b) Stress ratio (thick line) and fluid pressure (p) estimated
from the Hashima data by the Jolly-Sanderson method. Solid circle indicates
those estimates corresponding to the solid lines in (a). Stippled region indicates
possible ranges of the angles. Gray region depicts the 95% confidence interval
of Φ evaluated by the present method.

Figure 12: Graphs showing the exponential and power-law distributions that
have approximately equal values.
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of epithermal veins by Sibson (1996, p. 1040). That is, epither-
mal veins were formed from a large volume of thermal fluid
under a low differential stress at a shallow depths (< 1 km).
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Appendix A. Distance between stress states

To evaluate the uncertainty of the optimal solution, distance
between stress states have to be properly defined. The stress
tensor,σ, used in§2 was normalized to have the eigenvalues at
0,Φ and 1. In order to define distance between stress states, we
introduce another stress tensor, which was originally proposed
for fault-slip analysis. That is, we make use of the formulation
of Sato and Yamaji (2006): a reduced stress tensor is denoted
by a 3× 3 matrix of the form,

ς = E⊤
[
diag(2− Φ, 2Φ − 1, −Φ − 1)

√
3Φ2 − 3Φ + 3

]
E, (A.1)

where E is the orthogonal matrix representing the principal
axes. ς is normalized so as to have the first and second basic
invariants being equal to 0 and 1, respectively.

Let ςi j be theij th component ofς. Then, a one-to-one corre-
spondence exists betweenς and a 5-dimensional unit vectorx,
the components of which are

x1 = −
 √2

4
+

√
6

12

 ς11 +

 √2
4
−
√

6
12

 ς22 +
1
√

6
ς33

x2 =

 √2
4
−
√

6
12

 ς11 −
 √2

4
+

√
6

12

 ς22 +
1
√

6
ς33

x3 = ς23 (A.2)

x4 = ς31

x5 = ς12.

Therefore, we identifyx with a state of stress. On the other
hand, givenx, the corresponding reduced stress tensor can be
obtained through the equations,

ς11 = −
(

1
√

2
+

1
√

6

)
x1 +

(
1
√

2
− 1
√

6

)
x2

ς22 =

(
1
√

2
− 1
√

6

)
x1 −

(
1
√

2
+

1
√

6

)
x2

ς33 =
√

2/3 (x1 + x2) (A.3)

ς23 = ς32 = x3

ς31 = ς13 = x4

ς12 = ς21 = x5.

Once the components ofς are obtained, principal stresses and
stress axes are determined by solving the eigenproblem ofς.
Then,Φ is determined from the principal stresses.

Distance between stress states is defined as

Θ = cos−1
{[

x(1)
]⊤

x(2)
}
, (A.4)

wherex(1) andx(2) are the 5-dimensional unit vectors represent-
ing the stress states (Yamaji and Sato, 2006). The braces in Eq.
(A.4) contains the scalar products of the vectors. That is,Θ is
the angle made byx(1) andx(2). Therefore, the distance has a
value between 0 and 180◦. Stress states withΘ = 0◦ are iden-
tical to each other. If stress states denoted by the tensorsς(1)

andς(2) has the distance 180◦, they are opposite state of stress:
ς(1) = −ς(2). Namely, those stress states have interchangingσ1-
andσ3-orientations and the stress ratiosΦ and 1− Φ.
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