Commutativity of localized self-homotopy groups of symplectic groups

Daisuke Kishimoto, Akira Kono, and Tomoaki Nagao

May 13, 2011

Abstract

The self-homotopy group of a topological group *G* is the set of homotopy classes of selfmaps of *G* equipped with the group structure inherited from *G*. We determine the set of primes p such that the p -localization of the self-homotopy group of $Sp(n)$ is commutative. As a consequence, we see that this group detects the homotopy commutativity of *p*localized $\text{Sp}(n)$ by its commutativity almost all cases.

1 Introduction

For a group-like space G , the pointed homotopy set $[X, G]$ has a natural group structure inherited from *G*. We will always assume $[X, G]$ as a group with this group structure. This group has been studied for a long time, and there are many applications especially to the H-structure of *G*. See [1] and [9], for example. Put $X = G$. Then the group $[G, G]$ is called the self-homotopy group of *G* and denoted by $\mathcal{H}(G)$. The self homotopy group $\mathcal{H}(G)$ has also been studied extensively, especially, in connection with the H-structure of *G*, see [2], [12] and [11]. In particular, it is shown in [12] the following.

Theorem 1.1 (Kono and Oshima [12]). Let G be a compact, connected Lie group. Then $\mathcal{H}(G)$ *is commutative if and only if G is isomorphic with* T^n ($n \ge 0$), $T^n \times Sp(1)$ ($0 \le n \le 2$) or $SO(3)$, where $Tⁿ$ denotes the *n*-dimensional torus.

Then we can say that for a connected Lie group G , $\mathcal{H}(G)$ reflects the homotopy commutativity of *G* to its commutativity effectively, since we have Hubbuck's torus theorem [8].

Localize at the prime p in the sense of [7]. Then it is an interesting problem to consider for a fixed *G*, how the H-structure of $G_{(p)}$ changes when we vary *p*. Kaji and the first named author obtained a result for a Lie group *G* when p is relatively large [9], [10]. Let us turn to the self homotopy group $\mathcal{H}(G)$. Let X be a finite complex, and let G be a path-connected group-like space. Then the group $[X, G]$ is known to be nilpotent, and then we can consider its localization $[X, G]_{(p)}$ at the prime p in the sense of [7]. Moreover, there is a natural isomorphism of groups:

$$
[X, G]_{(p)} \cong [X_{(p)}, G_{(p)}]
$$

See [7]. Then if *G* is a connected Lie group, it is also an interesting problem to consider how the group structure of $\mathcal{H}(G)_{(p)}$ changes if we vary p as is considered for $G_{(p)}$. Recently, Hamanaka and the second named author obtained:

Theorem 1.2 (Hamanaka and Kono [5]). $\mathcal{H}(\mathrm{SU}(n))_{(p)}$ is commutative if and only if $p > 2n$ *except for* $n = 2$ *and* $(p, n) = (5, 3), (7, 4), (11, 6), (13, 7)$.

As is shown in [13], $SU(n)_{(p)}$ is homotopy commutative if and only if $p > 2n$. Then we can say that $\mathcal{H}(\mathrm{SU}(n))_{(p)}$ detects the homotopy commutativity of $\mathrm{SU}(n)_{(p)}$ very well.

The aim of this paper is to consider the above problem for $G = Sp(n)$, and we will prove:

Theorem 1.3. The group $\mathcal{H}(\text{Sp}(n))_{(p)}$ is commutative if and only if $p > 4n$ except for $n = 1$ *and* (*p, n*) = (3*,* 2)*,*(5*,* 3)*,*(7*,* 2)*,*(11*,* 3)*,*(19*,* 5)*,*(23*,* 6)*.*

Since $\text{Sp}(n)_{(p)}$ is homotopy commutative if and only if $p > 4n$ except for $(p, n) = (3, 2)$ by $|13|$, we get:

Corollary 1.1. $\text{Sp}(n)_{(p)}$ is homotopy commutative if and only if $\mathcal{H}(\text{Sp}(n))_{(p)}$ is commutative *except for* $n = 1$ *and* $(p, n) = (5, 3), (7, 2), (11, 3), (19, 5), (23, 6)$.

Remark 1.1*.* Let *p* be an odd prime. As is well known [4], there is a homotopy equivalence $B\text{Sp}(n)_{(p)} \simeq B\text{Spin}(2n+1)_{(p)}$, and then, in particular, we have $\mathcal{H}(\text{Sp}(n))_{(p)} \cong \mathcal{H}(\text{Spin}(2n+1))_{(p)}$. Thus the above results for $\mathcal{H}(\text{Sp}(n))_{(p)}$ implies those for $\mathcal{H}(\text{Spin}(2n+1))_{(p)}$. We also have a similar result for $\mathcal{H}(\text{Spin}(2n))_{(p)}$ when p is an odd prime [6].

2 Calculating commutators in the group [*X,* Sp(*n*)]

Throughout this section, all spaces will be localized at the prime *p*.

Put $G_n = \text{Sp}(n)$ and $X_n = G_\infty/G_n$. Let $q_k \in H^{4k}(BG_n; \mathbb{Z}_{(p)})$ be the *k*-th universal symplectic Pontrjagin class. Then the cohomology of G_n is given by

$$
H^*(G_n; \mathbf{Z}_{(p)}) = \Lambda(x_3, x_7, \ldots, x_{4n-1}), \ x_{4k-1} = \sigma(q_k),
$$

where σ is the cohomology suspension. We also have

$$
H^*(X_n; \mathbf{Z}_{(p)}) = \Lambda(y_{4n+3}, y_{4n+7}, \ldots), \ \pi^*(x_i) = y_i
$$

for the projection $\pi: G_{\infty} \to X_n$. Put $b_{4k+2} = \sigma(y_{4k+3}) \in H^*(\Omega X_n; \mathbb{Z}_{(p)})$ for $k \geq n$. We write a $\text{map } X \to K(\mathbf{Z}_{(p)}, k)$ corresponding to the cohomology class $x \in H^k(X; \mathbf{Z}_{(p)})$ by x, ambiguously. Then, in particular, since b_{4k+2} is a loop map, the map $b_{4k+2} : [X, \Omega X_n] \to H^{4k+2}(X; \mathbb{Z}_{(p)})$ is a homomorphism.

Now we recall from [15] how to determine the (non)triviality of commutators in the group $[X, G_n]$. Apply the functor $[X, -]$ to the fibre sequence

$$
\Omega G_{\infty} \xrightarrow{\Omega \pi} \Omega X_n \xrightarrow{\delta} G_n \to G_{\infty}
$$

in which all arrows are loop maps. Then we get an exact sequence of groups:

$$
\widetilde{KSp}^{-2}(X)_{(p)} \xrightarrow{(\Omega\pi)_*} [X, \Omega X_n] \xrightarrow{\delta_*} [X, G_n] \to \widetilde{KSp}^{-1}(X)_{(p)}
$$
\n(2.1)

Since $\widetilde{KSp}^{-1}(X)_{(p)}$ is abelian, commutators in $[X, G_n]$ are in the image of δ_* . We determine the (non)triviality of commutators in $[X, G_n]$ by the following proposition which is easily deduced by (2.1) . Since $\widetilde{Ksp}^{-1}(X)_{(p)}$ is abelian, commutators in $[X, G_n]$ are in the image of δ_* . We determine the (non)triviality of commutators in $[X, G_n]$ by the following proposition which is easily deduced
by (2.1).
Propositio

- 1. If there exists $\lambda \in [X, \Omega X_n]$ such that $\delta_*(\lambda) = [\alpha, \beta]$ and $\Phi(\lambda)$ is not in the image of $\Phi \circ (\Omega \pi)_*,$ then $[\alpha, \beta]$ *is not trivial.*
- *2. Suppose that* Φ *is injective. Then* [*α, β*] *is not trivial if and only if there exists the above λ.*

In order to use Proposition 2.1, we need to describe $\lambda^*(b_{4m+2})$ explicitly, where λ is as in Proposition 2.1. In [15], it is shown that we can choose λ as:

Lemma 2.1. For $\alpha, \beta \in [X, G_n]$, there exists $\lambda \in [X, \Omega X_n]$ such that $\delta_*(\lambda) = [\alpha, \beta]$ and for $k \geq n$, hown that we $(G_n]$, there exist
 $(b_{4k+2}) = \sum$

$$
\lambda^*(b_{4k+2}) = \sum_{\substack{i+j=k+1\\1\le i,j\le n}} \alpha^*(x_{4i-1})\beta^*(x_{4j-1}).
$$

We next describe $(\Omega \pi)_*(\xi)$ through the map $b_{4k+2} : [X, \Omega X_n] \to H^{4k+2}(X; \mathbb{Z}_{(p)})$ for $\xi \in$ $\widetilde{KSp}^{-2}(X)_{(p)}$ to use Proposition 2.1. Let **c**' : $G_n \to U(2n)$ denote the complexification map. We also denote the complexification $\widetilde{Ksp}^*(X)_{(p)} \to \widetilde{K}^*(X)_{(p)}$ by **c**'. Let ch_k denote the 2k- $\lim_{j \le n}$
 $\lim_{t \to \infty}$ *h*_{4k+2} :
 $\lim_{t \to \infty}$ *M*_{(X)_(p) → \widetilde{K}^*} dimensional part of the Chern character.

Lemma 2.2. *For* $\xi \in \widetilde{KSp}^{-2}(X)_{(p)},$ *we have*

$$
(b_{4k+2} \circ \Omega \pi)_*(\xi) = (-1)^{k+1} (2k+1)! \operatorname{ch}_{2k+1}(\mathbf{c}'(\xi)).
$$

Proof. Let c_k be the *k*-th universal Chern class. Then we have $\mathbf{c}'(c_{2k}) = (-1)^k q_k$, and thus

$$
(b_{4k+2} \circ \Omega \pi)_*(\xi) = \sigma^2(q_{k+1})(\xi) = (-1)^{k+1} \mathbf{c}'(\sigma^2(c_{2k+2}))(\xi) = (-1)^{k+1} (2k+1)! \operatorname{ch}_{2k+1}(\mathbf{c}'(\xi)).
$$

3 Proof of Theorem 1.3 for *p* **odd**

Throughout this section, we localize all spaces at the odd prime *p* unless otherwise is specified.

For a given positive integer *n*, let *m* be an arbitrary integer satisfying $m < n \leq 2m$. Let ϵ_{4k-1} be a generator of $\pi_{4k-1}(G_n) \cong \mathbf{Z}_{(p)}$ for $k \leq n$. Then we have alize all space
 $n, \text{ let } m \text{ be}$
 $n) \cong \mathbf{Z}_{(p)}$ for
 $(x_{4k-1}) = \begin{cases} \end{cases}$

$$
(\epsilon_{4k-1})^*(x_{4k-1}) = \begin{cases} (2k-1)!u_{4k-1} & k \text{ is odd} \\ 2(2k-1)!u_{4k-1} & k \text{ is even} \end{cases}
$$
(3.1)

where u_l is a generator of $H^l(S^l; \mathbf{Z}_{(p)})$. Define a map $\theta: S^{4m-1} \times S^{4m+3} \to G_n$ by the composition

$$
S^{4m-1} \times S^{4m+3} \xrightarrow{\epsilon_{4m-1} \times \epsilon_{4m+3}} G_n \times G_n \xrightarrow{\mu} G_n,
$$

where μ is the multiplication of G_n . Then by (3.1), we have for $k < l$:

$$
S^{4m-1} \times S^{4m+3} \xrightarrow{\epsilon_{4m-1} \times \epsilon_{4m+3}} G_n \times G_n \xrightarrow{\mu} G_n,
$$

is the multiplication of G_n . Then by (3.1), we have for $k < l$:

$$
\theta^*(x_{4k-1}x_{4l-1}) = \begin{cases} 2(2m-1)!(2m+1)!u_{4m-1} \otimes u_{4m+1} & (k,l) = (m,m+1) \\ 0 & \text{otherwise} \end{cases}
$$
(3.2)

Let $j: G_n \to G_{2m}$ be the inclusion, and let $\psi^2: BG_n \to BG_n$ be the unstable Adams operation of degree 2 [18]. We consider the commutator $[j \circ \Omega \psi^2, j]$ in $[G_n, G_{2m}]$ by pulling back to $S^{4m-1} \times S^{4m+3}$ through *θ*. By Lemma 2.1, there exists $\lambda \in [G_n, \Omega X_{2m}]$ such that $\delta_*(\lambda) =$ $[j \circ \Omega \psi^2, j]$ and sion, and let ψ^2
for the commuta
By Lemma 2.1,
 $(b_{8m+2}) = \sum$

$$
\lambda^*(b_{8m+2}) = \sum_{\substack{i+j=n+1 \ 1 \le i,j \le n}} (\Omega \psi^2)^*(x_{4i-1}) x_{4j-1}.
$$

$$
\lambda^*(b_{8m+2}) = 2^{2k} x_{4k-1}.
$$
 Then we get
\n
$$
\lambda^*(b_{8m+2}) = \sum_{\substack{j=1 \ 2^2 i \ -1}} 2^{2i} x_{4i-1} x_{4j-1}
$$

By definition of ψ^2 , we have $(\Omega \psi^2)^*(x_{4k-1}) = 2^{2k}x_{4k-1}$. Then we get

$$
\lambda^*(b_{8m+2}) = \sum_{\substack{i+j=n+1\\1 \le i,j \le n}} 2^{2i} x_{4i-1} x_{4j-1}
$$

and thus by (3.2) ,

 $\theta^* \circ \lambda^*(b_{8m+2}) = 2^{2m}(-3)(2m-1)!(2m+1)!u_{4m-1} \otimes u_{4m+1}.$

On the other hand, we have $\widetilde{KSp}^{-2}(S^{4m-1}\times S^{4m+3})_{(p)} \cong \mathbf{Z}_{(p)}$ and its generator ξ can be chosen to satisfy

$$
ch_{4m+1}(\mathbf{c}'(\xi)) = (4m+1)!u_{4m-1} \otimes u_{4m+3}.
$$

If we see that $\theta^* \circ \lambda^* (b_{8m+2})$ is not in the $\mathbb{Z}_{(p)}$ -module generated by $(4m+1)! u_{4m-1} \otimes u_{4m+3}$, by Proposition 2.1, we can conclude that $\theta^*([j \circ \Omega \psi^2, j]) = j \circ [\Omega \psi^2, 1_{G_n}] \circ \theta$ is non-trivial which implies $\mathcal{H}(G_n)$ is not commutative. Put *m* as in the following table. Then we can easily see If we see that $\theta^* \circ \lambda^*(b_{8m+2})$ is not in the $\mathbf{Z}_{(p)}$ -module generate
Proposition 2.1, we can conclude that $\theta^*([j \circ \Omega \psi^2, j]) = j \circ [$
implies $\mathcal{H}(G_n)$ is not commutative. Put *m* as in the followin
that *m* satis 4*m* $\binom{4m}{2m-1}$ ≡ 0 (*p*) by Lucas' formula, and thus $\mathcal{H}(G_n)$ is not commutative in these cases.

Recall from [13] that G_n is homotopy commutative if $p > 4n$ or $(p, n) = (3, 2)$ which implies $\mathcal{H}(G_n)$ is commutative for $p > 4n$ or $(p, n) = (3, 2)$. Then the remaining cases are:

- 1. $p = 4n 1$
- 2. $(p, n) = (7, 5)$
- 3. $(p, n) = (5, 4)$
- 4. $(p, n) = (5, 3)$

3.1 Case 1

In this case we have a homotopy equivalence [14] $G_n \simeq \prod_{k=1}^n S^{4k-1}$. Assume $n \geq 14$. We define $\alpha \in \mathcal{H}(G_n)$ by the composite

$$
G_n \xrightarrow{\rho} S^3 \times S^7 \times S^{11} \times S^{15} \times S^{4n-37} \xrightarrow{q} S^{4n-1} \xrightarrow{\epsilon_{4n-1}} G_n,
$$

where ρ is the projection and q is the pinch map onto the top cell. We also define $\beta \in \mathcal{H}(G_n)$ by

$$
G_n \xrightarrow{\rho'} S^{4n-1} \xrightarrow{\epsilon_{4n-1}} G_n,
$$

where ρ' is the projection. Then we have

$$
[\alpha, \beta] = \gamma \circ (\epsilon_{4n-1} \times \epsilon_{4n-1}) \circ ((q \circ \rho) \times \rho') \circ \Delta,
$$

where $\gamma: G_n \times G_n \to G_n$ and $\Delta: G_n \to G_n \times G_n$ denote the commutator map of G_n and the diagonal map, respectively. Now one can easily see $((q \circ \rho) \times \rho') \circ \Delta$ induces an injection $[S^{4n-1}\times S^{4n-1}, G_n] \to \mathcal{H}(G_n)$. On the other hand, we have $\gamma \circ (\epsilon_{4n-1} \times \epsilon_{4n-1}) = \langle \epsilon_{4n-1}, \epsilon_{4n-1} \rangle \circ q',$ where $q': S^{4n-1} \times S^{4n-1} \to S^{8n-2}$ is the pinch map onto the top cell and $\langle -, - \rangle$ means a Samelson product. Then since *q*' induces an injection $\pi_{8n-2}(G_n) \to [S^{4n-1} \times S^{4n-1}, G_n]$ and the Samelson product $\langle \epsilon_{4n-1}, \epsilon_{4n-1} \rangle \in \pi_{8n-2}(G_n)$ is non-trivial by [3], we obtain that the commutator $[\alpha, \beta]$ is non-trivial. Thus $\mathcal{H}(G_n)$ is not commutative.

We next assume $8 \le n \le 13$. By looking at the homotopy groups of spheres [16], the above Samelson product $\langle \epsilon_{4n-1}, \epsilon_{4n-1} \rangle$ factors as $\langle \epsilon_{4n-1}, \epsilon_{4n-1} \rangle = i \circ \alpha_1(3)$, where $i : S^3 \to G_n$ is the inclusion and $\alpha_1(2k-1)$ is a generator of $\pi_{2k+2p-4}(S^{2k-1}) \cong \mathbb{Z}/p$. Put $X = S^3 \times S^7 \times S^{11} \times$ $S^{4n-13} \times S^{4n-9} \times S^{4n-5}$. We define $\alpha, \beta \in \mathcal{H}(G_n)$ by

$$
G_n\xrightarrow{\rho} X\xrightarrow{q} S^{3p-3}\xrightarrow{\alpha_1(p)} S^p\xrightarrow{\epsilon_p} G_n
$$

and

$$
G_n \xrightarrow{\rho'} S^p \xrightarrow{\epsilon_n} G_n,
$$

respectively, where ρ and ρ' are the projections and q is the pinch map onto the top cell. Then we get

$$
[\alpha, \beta] = i \circ \alpha_1(3) \circ \alpha_1(2p) \circ q' \circ ((q \circ \rho) \times \rho') \circ \Delta,
$$

where $q': S^{3p-3} \times S^p \to S^{4p-3}$ is the pinch map. As is seen above, the maps i and $q' \circ ((q \circ \rho) \times$ ρ') \circ Δ induce injections $\pi_{4p-3}(S^3) \to \pi_{4p-3}(G_n)$ and $\pi_{4p-3}(G_n) \to \mathcal{H}(G_n)$, respectively. Since $\alpha_1(3) \circ \alpha_1(2p) \neq 0$ as in [16], we obtain that the commutator $[\alpha, \beta]$ is non-trivial. Thus $\mathcal{H}(G_n)$ is not commutative.

For $n \leq 7$, the case 1 occurs only when $n = 1, 2, 3, 5, 6$. We only prove the case $n = 6$ since the remaining cases are quite similarly proved. Note that for $n = 6$ in the case 1, we have $p = 23$. One can easily see that the dimension of cells of $G_6 / \sqrt{\frac{6}{k-1}} S^{4k-1}$ is in the set $\begin{array}{l}\n\text{For } n \leq 7 \\
\text{since the rem} \\
\text{have } p = 23.\n\end{array}$
 I = {0} ∪ \bigcup_{k}^{6} *k* = {0} ∪ $\bigcup_{k=2}^{6}$ {4(*n*₁ + · · · + *n_k*) − *k* | 1 ≤ *n*₁ < · · · < *n_k* ≤ 6}. On the other hand, Since $G_6 \simeq \prod_{k=1}^6 S^{4k-1}$, we see that the homotopy groups of G_6 in dimension $k \in I$ for all $k \in I$ are have $p = 23$. One can easily see that the dimension of cells of $G_6/\sqrt{\frac{6}{k-1}} S^{4k-1}$
 $I = \{0\} \cup \bigcup_{k=2}^{6} \{4(n_1 + \cdots + n_k) - k \mid 1 \le n_1 < \cdots < n_k \le 6\}$. On the oth
 $G_6 \simeq \prod_{k=1}^{6} S^{4k-1}$, we see that the homotopy group $\frac{6}{k=1} S^{4k-1}$ → G_6 induces an injection $\mathcal{H}(G_6) \to \bigoplus_{k=1}^6 \pi_{4k-1}(G_6)$, and so $\mathcal{H}(G_6)$ is commutative. $rac{1}{2}$

3.2 Case 2

In this case, we have $G_5 \simeq B_1 \times B_2 \times S^{11}$, where B_k is an S^{4k-1} -bundle over S^{4k+11} for $k = 1, 2$, see [14]. We first calculate $K^*(G_5)_{(7)}$. Note that $K^*(B_k)$ for $k = 1, 2$ and $K^*(S^{11})_{(7)}$ are free $\mathbf{Z}_{(7)}$ -module, we have

$$
K^*(G_5)_{(7)} \cong K^*(B_1)_{(7)} \otimes K^*(B_2)_{(7)} \otimes K^*(S^{11})_{(7)}.
$$

Let A_k be the $(4k + 11)$ -skeleton of B_k for $k = 1, 2$. Then we have $A_2 \simeq \Sigma^4 A_1$.

Let *u*' be the composite of the inclusions $\Sigma A_1 \to \Sigma G_5 \to BG_5 \to BU(\infty)$. Since A_1 is a retract of $\Sigma \mathbf{C} P^7$, we get $ch(u') = \Sigma t_3 + \frac{1}{7!} \Sigma t_{15}$ where t_3, t_{15} are generators of $\widetilde{H}^*(A_1; \mathbf{Z}_{(7)})$ with B_1 ₍₇₎ \otimes *K*^{\cdot}(*B*₂)₍₇₎ \otimes *K* \cdot (*S*^{\cdot})₍₇₎.

or $k = 1, 2$. Then we have $A_2 \simeq \Sigma^4 A_1$.

sions $\Sigma A_1 \rightarrow \Sigma G_5 \rightarrow BG_5 \rightarrow BU(\infty)$.
 $\frac{1}{7!} \Sigma t_{15}$ where t_3, t_{15} are generators of \widetilde{H}^* $|t_k| = k$ and Σ stands for the suspension isomorphism. Let *v*^{\prime} be the composite of the pinch map $\Sigma A_1 \to S^{16}$ and a generator of $\pi_{16}(BU(\infty)) \cong \mathbb{Z}_{(7)}$. Then we see ch(*v'*) = Σt_{15} by choosing a suitable generator of $\pi_{16}(BU(\infty))$. Consider the exact sequence μ generator of $\pi_{16}(BU(\infty)) \cong \mathbf{Z}_{(7)}$. Then
 $f \pi_{16}(BU(\infty))$. Consider the exact sequence $0 \to \widetilde{K}^{-1}(S^{15})_{(7)} \to \widetilde{K}^{-1}(A_1)_{(7)} \to \widetilde{K}^{-1}$ a suitable generator of $\pi_{16}(BU(\infty))$. Consider the exact sequence
 $0 \to \widetilde{K}^{-1}(S^{15})_{(7)} \to \widetilde{K}^{-1}(A_1)_{(7)} \to \widetilde{K}^{-1}(S^3)_{(7)} \to 0$

induced from the cofibre sequence $S^3 \to A_1 \to S^{15}$. Then we get $\widetilde{K}^{-1}(A_1)_{($

$$
0 \to \widetilde{K}^{-1}(S^{15})_{(7)} \to \widetilde{K}^{-1}(A_1)_{(7)} \to \widetilde{K}^{-1}(S^3)_{(7)} \to 0
$$

 $0 \to \widetilde{K}^{-1}(S^{15})_{(7)} \to \widetilde{K}^{-1}(A_1)_{(7)} \to \widetilde{K}^{-1}(S^3)_{(7)} \to 0$
induced from the cofibre sequence $S^3 \to A_1 \to S^{15}$. Then we get $\widetilde{K}^{-1}(A_1)_{(7)}$ is generated by
u' and *v'*. Since the inclusion $A_k \to B_k$ induc get

$$
K^*(G_5)_{(7)} = \Lambda(u_1, u_2, v_1, v_2, w), \ |u_k| = |v_k| = |w| = -1
$$

such that for $k = 1, 2$,

$$
ch(u_k) = \Sigma x_{4k-1} + \frac{1}{7!} \Sigma x_{4k+11}, \, ch(v_k) = \Sigma x_{4k+11}, \, ch(w) = \Sigma x_{11}.
$$

Since $\mathbf{q} \circ \mathbf{c}' = 2$ for the quaternionization $\mathbf{q} : K^*(G_5)_{(7)} \to KSp^*(G_5)_{(7)}$, we obtain: **Lemma 3.1.** $\widetilde{KSp}^{-2}(G_5)_{(7)}$ *is a free* $\mathbb{Z}_{(7)}$ *-module with a basis* $\{a_1, \ldots, a_{10}\}$ *such that*

$$
\operatorname{ch}_{15}(\mathbf{c}'(a_k)) = \begin{cases} \frac{1}{7}x_{11}x_{19} & k = 1\\ x_{11}x_{19} & k = 2\\ 0 & k \neq 1,2. \end{cases}
$$

Let α be the composite of the projection $G_5 \to B_2$ and the inclusion $B_2 \to G_5$. We consider the commutator $[1_{G_5}, \alpha]$. By Lemma 2.1, there exists $\lambda \in [G_5, \Omega X_5]$ such that $\delta_*(\lambda) = [1_{G_5}, \alpha]$ and $\lambda^*(b_{30}) = x_{11}x_{19}$. On the other hand, it follows from Lemma 2.2 and Lemma 3.1 that the image of the map $b_{30} \circ (\Omega \pi)_* : \widetilde{KSp}^{-2}(G_5)_{(7)} \to H^{30}(G_5; \mathbb{Z}_{(7)})$ is generated by $7x_{11}x_{19}$. Then by Proposition 2.1, we conclude that $[1_{G_5}, \alpha]$ is non-trivial which implies $\mathcal{H}(G_5)$ is not commutative.

3.3 Case 3

In this case, we have a homotopy equivalence $G_4 \cong B_1 \times B_2$ where B_k is an S^{4k-1} -bundle over S^{4k+7} for $k = 1, 2$ [14]. As in the previous case, we have

$$
K^*(G_4)_{(5)} = \Lambda(u_1, u_2, v_1, v_2), |u_k| = |v_k| = -1
$$

such that for $k = 1, 2$,

$$
ch(u_k) = \Sigma x_{4k-1} + \frac{1}{5!} \Sigma x_{4k+7}, \quad ch(v_k) = \Sigma x_{4k+7},
$$

and thus we obtain:

Lemma 3.2. $\widetilde{KSp}^{-2}(G_4)_{(5)}$ *is a free* $\mathbf{Z}_{(5)}$ *-module with a basis* $\{a_1, \ldots, a_6\}$ *such that*

$$
\operatorname{ch}_{11}(\mathbf{c}'(a_k)) = \begin{cases} \frac{1}{5}x_7x_{15} & k = 1\\ x_7x_{15} & k = 2\\ 0 & k \neq 1, 2. \end{cases}
$$

Let $\psi^2 : BG_4 \to BG_4$ be the unstable Adams operation of degree 2 as above. We consider $[\Omega \psi^2, 1_{G_4}]$. By Lemma 2.1, there exists $\lambda \in [G_4, \Omega X_4]$ such that $\delta_*(\lambda) = [\Omega \psi^2, 1_{G_4}]$ and

$$
\lambda^*(b_{22}) = 2^4 x_7 x_{15} + 2^8 x_{15} x_7 = 2^4 \cdot 3 \cdot 5 x_7 x_{15}.
$$

Then by Lemma 2.2 and Lemma 3.2, we see that $\lambda^*(b_{22})$ is not in the image of $b_{22} \circ (\Omega \pi)_*$. Then by Proposition 2.1, we obtain $[\Omega \psi^2, 1_{G_4}]$ is not trivial, and thus $\mathcal{H}(G_4)$ is not commutative.

3.4 Case 4

This case is very special. We first show:

Lemma 3.3. *The map* $(b_{14} \times b_{18})_* : [G_3, \Omega X_3] \to H^{14}(G_3; \mathbb{Z}_{(5)}) \oplus H^{18}(G_3; \mathbb{Z}_{(5)})$ is injective.

Proof. Note that the 23-skeleton of X_3 is $A = S^{15} \cup e^{19} \cup e^{23}$. Then since G_3 is of dimension 21, the inclusion $A \to X_3$ induces an isomorphism of groups $[G_4, \Omega A] \stackrel{\cong}{\to} [G_4, \Omega X_3]$. Since for $k \leq 23$, $\pi_k(A)$ is in the stable range. Then one can easily see that

$$
\pi_k(A) \cong \begin{cases} \mathbf{Z}_{(5)} & k = 15, 19, 23 \\ 0 & k \neq 15, 19, 23 \text{ and } k \leq 23. \end{cases}
$$

Thus we can easily deduce that $[G_3, \Omega X_3]$ is a free $\mathbb{Z}_{(5)}$ -module. On the other hand, the rationalization of the map $(b_{14} \times b_{18})_*$ is injective. Then the proof is completed. \Box As in the case 2, we have

$$
K^*(G_3)_{(5)} = \Lambda(u, v, w), \ |u| = |v| = |w| = -1
$$

such that

$$
ch(u) = \Sigma x_3 + \frac{1}{5!} \Sigma x_{11}
$$
, $ch(v) = \Sigma x_{11}$, $ch(w) = \Sigma x_7$.

Then we get $\widetilde{KSp}^{-2}(G_3)_{(5)}$ is a free $\mathbb{Z}_{(5)}$ -module with a basis $\{a_1, a_2, a_3\}$ such that

$$
ch(c'(a_1)) = x_3x_{11}, ch(c'(a_2)) = \frac{1}{5}x_7x_{11}, ch(c'(a_3)) = x_7x_{11}.
$$

Thus we obtain:

Lemma 3.4. The image of $(b_{14} \times b_{18})_* \circ (\Omega \pi)_* : \widetilde{KSp}^{-2}(G_3)_{(5)} \to H^{14}(G_3; \mathbf{Z}_{(5)}) \oplus H^{18}(G_3; \mathbf{Z}_{(5)})$ *is generated by* $5x_3x_{11}$ *and* x_7x_{11} *.*

Let $\alpha, \beta \in \mathcal{H}(G_4)$. Then for a degree reason, we have $\alpha^*(x_{4k-1}) = \alpha_{4k-1}x_{4k-1}$ and $\beta^*(x_{4k-1}) =$ $\beta_{4k-1}x_{4k-1}$, where $\alpha_i, \beta_i \in \mathbf{Z}_{(5)}$. Moreover, since $\mathcal{P}^1x_3 = x_{11}$, we have $\alpha_3 \equiv \alpha_{11}, \ \beta_3 \equiv \beta_{11}$ (5). Let us consider the commutator $[\alpha, \beta]$. By Lemma 2.1, there exists $\lambda \in [G_3, \Omega X_3]$ such that δ ^{*}(λ) = [α , β] and

$$
\lambda^*(b_{14}) = (\alpha_3 \beta_{11} - \alpha_{11} \beta_3) x_3 x_{11}, \lambda^*(b_{18}) = (\alpha_7 \beta_{11} - \alpha_{11} \beta_7) x_7 x_{11}.
$$

Since $\alpha_3\beta_{11} - \alpha_{11}\beta_3 \equiv 0$ (5), we obtain that $(b_{14} \times b_{18})_*(\lambda)$ is in the image of $(b_{14} \times b_{18})_* \circ (\Omega \pi)_*$ by Lemma 3.4. Thus by Proposition 2.1, $\mathcal{H}(G_3)$ is commutative.

4 Proof of Theorem 1.3 for $p = 2$

Throughout this section, spaces will be localized at the prime 2. We only consider $\mathcal{H}(G_n)$ for $n \geq 2$ since $\mathcal{H}(G_1)$ is obviously commutative.

For $m \geq 2$, put $N = 2^{m-2}$. Let $A = S^3 \cup e^7$ be the 7-skeleton of G_{∞} , and let $i : \Sigma A \to BG_{\infty}$ Throughout this section, spaces will be localized at the prime 2. We only conside $n \geq 2$ since $\mathcal{H}(G_1)$ is obviously commutative.
For $m \geq 2$, put $N = 2^{m-2}$. Let $A = S^3 \cup e^7$ be the 7-skeleton of G_{∞} , and le be the composite of inclusions $\Sigma A \to \Sigma G_{\infty} \to BG_{\infty}$. We write generators of $\tilde{H}^*(A; \mathbb{Z}_{(2)})$ by t_3, t_7 where $|t_k| = k$. Then by [17], we can deduce

$$
t_3, t_7 \text{ where } |t_k| = k. \text{ Then by [17], we can deduce}
$$

$$
\text{ch}(\mathbf{c}'(i)) = \Sigma u_3 - \frac{1}{6} \Sigma u_7. \tag{4.1}
$$

For a generator $\beta_{\mathbf{R}}$ of $\widetilde{KO}(S^8)_{(2)}$, let $\bar{\alpha} : \Sigma^{8N-8}A \to G_{\infty}$ be the adjoint of $i \wedge \beta_{\mathbf{R}}^{N-1} : \Sigma^{8N-7}A \to$

*BG*_∞. Then by (4.1), we get

$$
\bar{\alpha}^*(x_{8N-1}) = (4N-1)! \Sigma^{8N-7} \text{ch}(\mathbf{c}'(i)) = -(4N-1)! \frac{1}{6} \Sigma^{8N-8} t_7.
$$

Since the inclusion $G_{4N} \to G_{\infty}$ is an $(16N + 2)$ -equivalence and $\Sigma^{8N-8}A$ is of dimension 8*N* − 1, the map $\bar{\alpha}$: $\Sigma^{8N-8}A \to G_{\infty}$ factors as the composite of the map α : $\Sigma^{8N-8}A \to G_{4N}$ and the inclusion $G_{4N} \to G_{\infty}$. In particular, we have

$$
\alpha^*(x_{8N-1}) = -(4N-1)!\frac{1}{6}\Sigma^{8N-8}t_7.
$$

Let ϵ be a generator of $\pi_{8N+3}(G_{4N})$. Then we get

$$
\epsilon^*(x_{8N+3}) = (4N+1)!w,
$$

where *w* denotes a generator of $H^{8N+3}(S^{8N+3}; \mathbf{Z}_{(2)})$. Define a map $\theta : \Sigma^{8N-8} A \times S^{8N+3} \to G_{4N}$ by the composite

$$
\Sigma^{8N-8}A \times S^{8N+3} \xrightarrow{\alpha \times \epsilon} G_{4N} \times G_{4N} \xrightarrow{\mu} G_{4N},
$$

where μ is the multiplication of G_{4N} . Then by definition, we have:

$$
\theta^*(x_{4k-1}) = \begin{cases}\n-(4N-1)!\frac{1}{6}\Sigma^{8N-8}t_7 \otimes 1 & k = 2N \\
(4N+1)!\frac{1}{6} \otimes w & k = 2N+1 \\
0 & k \neq 2N, 2N+1\n\end{cases}
$$
\n(4.2)

Consider the commutator $[\Omega \psi^3, 1_{G_{4N}}]$ in $\mathcal{H}(G_{4N})$ for the unstable Adams operation ψ^3 : $BG_{4N} \rightarrow BG_{4N}$ of degree 3. Then by Lemma 2.1, there exists $\lambda \in [G_{4N}, \Omega X_{4N}]$ such that (*c*)
commutator $[\Omega_{\psi}]$
of degree 3. Then
 $(b_{16N+2}) = \sum$

$$
\lambda^*(b_{16N+2}) = \sum_{\substack{i+j=4N+1 \ 1 \le i,j \le 4N}} (\Omega \psi^3)^*(x_{4i-1}) x_{4j-1} = \sum_{\substack{i+j=4N+1 \ 1 \le i,j \le 4N}} 3^{2i} x_{4i-1} x_{4j-1}.
$$

Hence by (4.2), we get

$$
\theta^* \circ \lambda^* (b_{16N+2}) = 3^{4N-1} \cdot 4(4N-1)!(4N+1)!\Sigma^{8N-8} t_7 \otimes w,\tag{4.3}
$$

here $\delta_*(\lambda \circ \theta)$ equals to the commutator $[(\Omega \psi^3) \circ \theta, \theta]$ in $[\Sigma^{8N-8}A \times S^{8N+3}, G_{4N}]$.

In order to apply Proposition 2.1, we next calculate the free part of $\widetilde{KSp}^{-2}(\Sigma^{8N-8}A \times$ $S^{8N+3}(2)$. We know that the pinch map *q* : $\Sigma^{8N-8}A \times S^{8N+3} \to \Sigma^{16N-5}A$ induces an isomorphism between the free parts in $\widetilde{KSp}_{(2)}^{-2}$. Then we calculate $\widetilde{KSp}^{-2}(\Sigma^{16N-5}A)_{(2)}$. Consider the following commutative diagram of exact sequences induced from the cofibre sequence $S^{16N-2} \to \Sigma^{16N-5} A \to S^{16N+2}.$

$$
0 \longrightarrow \widetilde{KSp}^{-2}(S^{16N+2})_{(2)} \longrightarrow \widetilde{KSp}^{-2}(\Sigma^{16N-5}A)_{(2)} \longrightarrow \widetilde{KSp}^{-2}(S^{16N-2})_{(2)} \longrightarrow 0
$$

$$
c'=1 \downarrow \qquad c' \downarrow \qquad c' = 2 \downarrow
$$

$$
0 \longrightarrow \widetilde{K}^{-2}(S^{16N+2})_{(2)} \longrightarrow \widetilde{K}^{-2}(\Sigma^{16N-5}A)_{(2)} \longrightarrow \widetilde{K}^{-2}(S^{16N-2})_{(2)} \longrightarrow 0
$$

Put $u' = \beta_c^{8N-2} \wedge c'(i)$ and v' to be the complexification of the composite of the pinch map $0 \longrightarrow \widetilde{K}^{-2}(S^{16N+2})_{(2)} \longrightarrow \widetilde{K}^{-2}(\Sigma^{16N-5}A)_{(2)} \longrightarrow \widetilde{K}^{-2}(S^{16N-2})_{(2)} \longrightarrow 0$

Put $u' = \beta_c^{8N-2} \wedge \mathbf{c'}(i)$ and v' to be the complexification of the composite of the pinch map
 $\Sigma^{16N-3}A \rightarrow S^{16N+4}$ and a gene Then by (4.1), one sees that $\widetilde{K}^{-2}(\Sigma^{16N-5}A)_{(2)} \longrightarrow K^{-2}(S^{16N-2})_{(2)}$

Then by (4.1), one sees that $\widetilde{K}^{-2}(\Sigma^{16N-5}A)_{(2)}$ is generated by *u'* and *v'* such that

$$
ch(u') = \Sigma^{16N-5}t_3 - \frac{1}{6}\Sigma^{16N-5}t_7, \; ch(v') = \Sigma^{16N-5}t_7.
$$

Put $u = \lambda \wedge i$ and *v* to be the composite of the pinch map $\Sigma^{16N-3}A \rightarrow S^{16N+4}$ and a generator $ch(u') = \Sigma^{16N-5}t_3 - \frac{1}{6}\Sigma^{16N-5}t_7$, $ch(v') = \Sigma^{16N-5}t_7$.
Put $u = \lambda \wedge i$ and v to be the composite of the pinch map $\Sigma^{16N-3}A \to S^{16N+4}$ and a generator of $\widetilde{KO}^0(S^{16N-4})_{(2)}$. Then by the above diagram, we obtain that $\widetilde{KSp}^{-2}(\Sigma^{16N-5}A)_{(2)}$ is a free $\mathbb{Z}_{(2)}$ -module generated by u, v such that

$$
ch(\mathbf{c}'(u)) = 2\Sigma^{16N-5}t_3 - \frac{1}{3}\Sigma^{16N-5}t_7, \; ch(\mathbf{c}'(v)) = \Sigma^{16N-5}t_7.
$$

Summarizing, we get:

Lemma 4.1. *The free part of* $\widetilde{KSp}^{-2}(\Sigma^{8N-8}A \times S^{8N+3})$ (2) *is generated by u*̄ *and v̄ such that*

$$
\operatorname{ch}(\mathbf{c}'(\bar{u})) = 2\Sigma^{8N-8}t_3 \otimes w - \frac{1}{3}\Sigma^{8N-8}t_7 \otimes w, \ \operatorname{ch}(\mathbf{c}'(\bar{v})) = \Sigma^{8N-8}t_7 \otimes w.
$$

nteger k , we put $\nu_2(k) = m$ if $k = 2^m(2l - 1)$. Then in general, we have

$$
\nu_2(k!) = \left| \frac{k}{2} \right| + \left| \frac{k}{2^2} \right| + \left| \frac{k}{2^3} \right| + \cdots,
$$

For an integer *k*, we put $\nu_2(k) = m$ if $k = 2^m(2l - 1)$. Then in general, we have

$$
\nu_2(k!) = \left\lfloor \frac{k}{2} \right\rfloor + \left\lfloor \frac{k}{2^2} \right\rfloor + \left\lfloor \frac{k}{2^3} \right\rfloor + \cdots, \tag{4.4}
$$

where $|x| = \max\{n \in \mathbb{Z} \mid n \leq x\}.$

Note that $H^{16N+2}(\Sigma^{8N-8}A \times S^{8N+3})$ is a free $\mathbb{Z}_{(2)}$ -module. Then it follows from the above lemma, we obtain that the image of $b_{16N+2} \circ (\Omega \pi)_* : [\Sigma^{8N-8} A \times S^{8N+3}, \Omega X_{4N}] \to H^{16N+2}(\Sigma^{8N-8} A \times S^{8N+3})$ S^{8N+3} ; **Z**₍₂₎) is generated by $(8N+1)!\Sigma^{8N-8}t_7 \otimes w$. It follows from (4.4) that $\nu_2((8N+1)!)$ = $2^{m+2} - 1$ and $\nu_2(4(4N-1)!(4N+1)!) = 2^{m+2} - m$. Then by Lemma 2.1, (4.3) and Lemma 4.1, we get that the commutator $[(\Omega \psi^3) \circ \theta, \theta]$ is non-trivial. If $N < n \leq 2N$, the map α and ϵ factors through the inclusion $j: G_n \to G_{4N}$, and so there exists a map $\hat{\theta}: \Sigma^{8N-8} A \times S^{8N+3} \to G_n$ such that $\theta = j \circ \hat{\theta}$. Then we obtain that $[(\Omega \phi^3) \circ \theta, \theta] = j \circ [\Omega \psi^3, 1_{G_n}] \circ \hat{\theta}$ is non-trivial which implies that $\mathcal{H}(G_n)$ is not commutative.

References

- [1] M. Arkowitz and C.R. Crujel, *On maps of H-spaces*, Topology **6** (1967) 137-148.
- [2] M. Arkowitz, H. Oshima, and J. Strom, *Noncommutativity of the group of self homotopy classes of Lie groups*, Topology Appl. **125** (2002), no. 1, 87-96.
- [3] R. Bott, *A note on the Samelson products in the classical groups*, Comment. Math. Helv. **34** (1960), 249-256.
- [4] E.M. Friedlander, *Exceptional isogenies and the classifying spaces of simple Lie groups*, Ann. Math. (2) **101** (1975), 510-520.
- [5] H. Hamanaka and A. Kono, *On the commutativity of the localized self homotopy groups of SU*(*n*), to appear in Topology Appl.
- [6] H. Hamanaka and A. Kono, *A note on the Samelson products in π∗*(SO(2*n*)) *and the group* [SO(2*n*)*,* SO(2*n*)], Topology Appl. **154** (2007), no. 3, 567-572.
- [7] P. Hilton, G. Mislin and J. Roitberg, *Localization of nilpotent groups and spaces*, North-Holland Mathematics Studies, No. 15. Notas de Matemática, No. 55. [Notes on Mathematics, No. 55] North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975.
- [8] J. Hubbuck, *On homotopy commutative H-spaces*, Topology **8** (1969), 119-126.
- [9] S. Kaji and D. Kishimoto, *Homotopy nilpotency in p-regular loop spaces*, Math. Z. **264** (2010), no. 1, 209-224.
- [10] D. Kishimoto, *Homotopy nilpotency in localized* SU(*n*), Homology, Homotopy Appl. **11** (2009), no. 1, 61-79.
- [11] D. Kishimoto and A. Kono, *On a conjecture of* \overline{Ohima} , Topology Appl. **156** (2009), no. 13, 2189-2192.
- [12] A. Kono and H. Oshima, *Commutativity of the group of self-homotopy classes of Lie groups*, Bull. London Math. Soc. **36** (2004), no. 1, 37-52.
- [13] C.A. McGibbon, *Homotopy commutativity in localized groups*, Amer. J. Math. **106** (1984), no. 3, 665-687.
- [14] M. Mimura, G. Nishida and H. Toda, *Mod p decomposition of compact Lie groups*, Publ. Res. Inst. Math. Sci. **13** (1977/78), no. 3, 627-680.
- [15] T. Nagao, *On the groups* $[X, Sp(n)]$ *with* dim $X \le 4n+2$, J. Math. Kyoto Univ. **48** (2008), no. 1, 149-165.
- [16] H. Toda, *Composition Methods in Homotopy Groups of Spheres*, Ann. of Math. Studies **49**, Princeton Univ. Press, Princeton N.J., 1962.
- [17] T. Watanabe, *Chern characters on compact Lie groups of low rank*, Osaka J. Math. **22** (1985), no. 3, 463-488.
- [18] C. Wilkerson, *Self-maps of classifying spaces*, Lecture Notes in Math. **418**, Springer, Berlin, 1974.