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Abstract—A new inverse technique is presented here to separate stresses from heterogeneous fault-slip data without a priori
information on the stresses nor on the classification of faults according to the stresses. Four parameters are determined by the
inversion: one for the shape of stress ellipsoid and three for the direction of stress axes. Accordingly, the inversion is equivalent to the
projection of fault-slip data to a point in four-dimensional parameter space. The data are divided intok-element subsets to which
inverse technique is applied, wherek = 4 or 5 is the optimal choice for the stability of solutions and for the reduction of computation.
Significant solutions are identified as the clusters in the parameter space. The technique is demonstrated first by simulated fault-slip
data. And, as an example, field data obtained from Miocene fore-arc sediments in western Japan were processed by the method.

1 INTRODUCTION

Advancement in our knowledge about in-situ and paleo
stresses has revealed complicated lithospheric stresses in
space and time (Engelder, 1993). Deviatoric stresses are
calculated by inverse techniques from field observations of
the orientation of striations on exposed fault surfaces (Carey
and Brunier, 1974; Angelier, 1979; Etchecoparet al., 1981;
Gephart and Forsyth, 1984). Such techniques usually as-
sume that all faults slipped in response to the same devia-
toric stress. If this is not true, fault-slip data are called het-
erogeneous. There is a delicate problem for the techniques
to process such data. Given a certain sort of field observa-
tions allow to classify faults by the stresses that activated
the faults, inverse methods can readily identify the stresses
(e.g., Angelier and Huchon, 1987). However, such classifi-
cation is usually difficult, and can introduce a bias into the
results.

Several researchers have presented methods to separate
stresses from heterogeneous fault-slip data. If we have
a priori knowledge that faults compose a conjugate set,
Huang’s (1988) simple method is appropriate. However,
not all deformations result in simple conjugate sets. More-
over, conjugate faults result only in plane strains, but strains
are generally three-dimensional (Reches, 1978). Inverse
techniques such as Angelier’s (1979) can determine triax-
ial stresses. Armijoet al. (1982) apply inverse calcula-
tion recursively to those subset of data that show large mis-
fit from slip directions predicted from formerly determined
stresses. The first inversion is applied to the whole fault

collection and the data are subdivided into subsets several
times. Given heterogeneous data set, however, the subdi-
vision is difficult. Taking this approach Mino and Yamaji
(1999) attempted to separate stresses from Quaternary fault
data, but second inversion resulted in unstable solutions.

Inverse methods have other difficulties. The assumption
of parallelism between striae and maximum shear stress on
the fault plane is a matter of debate (Reches, 1978; Mar-
ret and Allmendinger, 1990; Pollardet al., 1993). Twiss
and Unruh (1998) show that they are parallel if fault block
rotations are negligible and if stress and strain are linearly
related. Stress inversion is useful only in limited cases in
nature. In addition, the interaction among faults causes
deviation (Pollard et al., 1993; Cashman and Ellis, 1994;
Nieto-Samaniego and Alaniz-Alvarez, 1997).

Great earthquake can leave curved fault striae such as
those on the fault plane of the 1995 Hyogo-ken Nanbu
(Kobe) earthquake (Yosidaet al., 1996; Otsukiet al., 1997).
In those cases, coseismic slip direction changes spatially
and temporarily with the change of local shear traction
across the fault plane (Guatteri and Spudich, 1998), result-
ing in heterogeneous fault-slip data. Accordingly, inverse
methods that can process heterogeneous data adequately are
needed.

The aim of this paper is to present a new technique to sep-
arate deviatoric stresses from heterogeneous fault-slip data
without a priori information on the stresses. Recently, Fry
(1999) presents a method to visualize to what extent a possi-
ble common stress tensor is constrained by a set of data. He
shows that the heterogeneity can be represented by a sort
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of clusters in six-dimensional parameter space. Possible
stresses are identified by the present method as clusters in
four-dimensional one, and are visualized as clusters on or-
dinally stereonets. In addition, the reliability of each stress
is shown by the density of the cluster. First, the method is
tested by an artificial data set, and then applied to field data.
A classic inverse method is applied to the same data and the
results are compared in the final section.

2 METHOD

2.1 Classic inverse method

The present method is based on the classic inverse tech-
nique by Angelier (1984). Let us use the sign convention
that positive and negative stresses correspond to compres-
sion and extension, respectively. The inverse method as-
sumes that faults slip in the direction of shear stress acting
on the fault plane (Angelier, 1979, 1984). Suppose that we
have a number ofN fault-slip data, and all the fault slipped
under the stressσ. Let nα be the unit vector normal to the
αth fault (α = 1, 2, . . . ,N). The vector points into the hang-
ing wall block, so that the stress vector acting on the block
is tα = σTnα, where the superscript T means matrix trans-
pose. This is equal totα = σnα because of the symmetry
σT = σ. Subtracting normal stress, the shear tractionsα is
obtained:

sα = σnα −
[(

nα
) Tσnα

]
nα. (1)

The fault slip to relax the traction acting on the fault plane.
Therefore, the slip direction of theαth fault is expected to
be in the direction−sα. On the other hand, the actual slip
direction is an observable as the slickenlines and sense of
the fault. Since the stressσ is unknown, the theoretical slip
direction−sα may not coincide with the observed one, so
that let∆α be the angle between them. The stress tensor can
be determined by minimizing the sum of the angular misfits

S =
N∑
α=1

∆α. (2)

The inverse method determines not only the direction of
stress axes, but also a parameter that was defined by Lode
(1925) is determined:

µL =
2σ2 − σ1 − σ3

σ1 − σ3
, (3)

whereσ1, σ2 andσ3 are the principal stresses. It is seen
that −1 ≤ µL ≤ 1, asσ1 ≥ σ2 ≥ σ3. Lode number
µL indicates the shape of stress ellipsoid: deviatoric axial
compression and tension are indicated byµL = −1 and+1,
respectively. Intermediate Lode numbers represent triaxial
stresses. Note that the present method introduced below is
based on Angelier’s (1984) who use Bishop’s (1966) param-
eterΦ = (σ2 − σ3)/(σ1 − σ3) rather thanµL. Lode number

Figure 1: The 256 directions ofσ3 axis used in the inver-
sion. Theσ1 axis is rotated around theσ3 axis with ca. 11◦.
Lower-hemisphere, equal-area projection.

is more convenient for this work because both of the axial
stresses have the same absolute value|µL| = 1. The param-
etersµL andΦ are linearly related:µL = 2Φ − 1.

Lode number represents the shape of stress ellipsoid,
whereas its pose is described by the Euler anglesθ, ϕ andψ
of stress axes with respect to geographic frame of reference.
Therefore, the inverse calculation is mathematically equiv-
alent with projecting a set of fault-slip data onto a point in
a four-dimensional space which (θ, ϕ, ψ, µL) are the coor-
dinates. A point in the parameter space indicates the shape
and pose of stress ellipsoid.

2.2 Multiple inverse method

The core of the present method is akin to cluster analy-
sis (Menke, 1989), utilizing a sort of self-correlation of
the data. Each stress that activated a subset of faults cor-
relate the members of the subset to each other. Suppose
that we haveN fault-slip data, and that we have no a priori
knowledge of how many nor what kind of stress fields are
recorded in the data. The problem is how to divide a set of
faults into subsets that correspond to stresses that activate
the subsets. To solve this problem, we makek-element sub-
sets fromN. It is explained later thatk should be larger than
or equal to two andk = 4 or 5 is appropriate for the present
method. The number of the subsets composed from the set
of N elements is given by the binomial coefficient:

NCk =
N!

k!(N − k)!
(4)

whereN! stands for the factorial,N! = N(N − 1) · · ·2 · 1.
Now, suppose that the faults are classified into two

groups that slipped in response to the stress states A and
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B, respectively. The states are represented by two different
points, A and B, in the parameter space. If all faults of a
subset belong to the first group, the solution of the inverse
calculation applied to the subset should indicate a point at
or close to the point A. In case that all the faults belong to
group B, the solution would plot near the point B. However,
if the subset is a mixture of faults from both groups, the
point may be randomly located in the space. Applying the
inverse technique to all the subsets, two clusters may appear
in the parameter space around the correct answers.

In this study, inverse calculations were performed using a
grid search method in the parameter space with the intervals
of 2.0/15 for Lode number. The parameter is, accordingly,
digitized into 16 = 24 grades from –1 to 1. Stress axes
should be oriented in various directions with uniform angu-
lar intervals. However, there is no straightforward way to
digitize Euler angles, because the parameter space (θ, ϕ, ψ)
is not Euclidean. There is no way to distribute hundreds
of points on a sphere with literally equal intervals (Saff and
Kuijlaars, 1997), but Rakhamanovet al.’s (1994) algorithm
provides a fairly good approximation to the distribution.
Accordingly, the algorithm was used to generate the grid
points, and set up 256= 28 directions for theσ3 axis (Fig.
1). As the area of a hemisphere with unit radius is 2π, σ3

axis is varied with an intervals of (2π/256)1/2 radians≈ 9◦.
The direction ofσ1 axis is rotated around theσ3 axis with
an interval of 180◦/24 ≈ 11◦. Consequently, a total of
65,536= 216 grid points are used in the inversion.

3 TEST BY SIMULATED FAULT-
SLIP DATA

The multiple inverse method is applied to artificial fault-
slip data to demonstrate its validity. Firstly, thirty faults
were generated with random orientations (Fig. 2). Sec-
ondly, their slip directions were calculated by the Eq. (1)
with assumed stress states. Three stresses were assumed:
the stress state A is vertical, axial compression (µL = −1),
the state B is triaxial (µL = 0) stress with verticalσ1 and
horizontal E–Wσ3 axis. The third case is the heteroge-
neous fault-slip data—a half of the faults were activated by
the stress A and the remaining 15 faults by the stress B.
Thirdly, uniform random noise within±5◦ is added to the
pitch angle of slip direction. And, finally, the multiple in-
verse method was applied to the three cases.

It is necessary to visualize clusters in the four-
dimensional parameter space. To do so, the Euler angles
θ, ϕ andψ are converted to the direction ofσ1 andσ3 axes.
The direction of one of the axes is shown by a dot on lower
hemisphere, equal-area net and that of the other axis is indi-
cated by a bar attached on the dot: the azimuth and plunge
of the other one is indicated by the direction and length of
the bar, respectively (Fig. 3). Lode numberµL is color-

Figure 2: Lower-hemisphere, equal-angle projection show-
ing the direction of fault planes used for simulation.

coded in the plot. By this projection, a solution in the pa-
rameter space is shown by a single symbol. Clusters in the
four-dimensional space are visualized as a cluster of sym-
bols with the same color, same direction and same length of
bars.

The upper panel of Fig. 3 shows the solution for the case
1: all the faults slipped in response to the stress A. The
lower panel of the same figure shows those for the case
2: all the faults slipped by the stress B. The correct an-
swers were successfully obtained for the both cases. The
purple symbols make a cluster in the upper left panel, indi-
cating axial, vertical compression. In this case, stress state
is horizontally isotropic, so that the great-circle girdle of
purple dots in the upper right circle of Fig. 3 indicates this
stress state. The present method successfully processed the
case 3 also, i.e., the heterogeneous fault-slip data generated
with the stress state A and B (Fig. 4). Both the stresses
are clearly identified. These calculations were performed
with k = 4, andN = 30, so that the number of solutions is
NCk = 27,405. It is explained later that the number of four
is preferential fork.

To investigate the density distribution in the parameter
space, letm be the number of solutions at a grid point, and
P(m) be the frequency that a grid point hasmsolutions. It is
found from the artificial fault-slip data and from filed data,
presented below, that the frequency distribution obeys the
relationship

P(m) = am−b (5)

where the parametersa andb depend on data andk (Fig. 5).
This is known as Pareto distribution in statistics that applies
to, e.g., the population of high income groups—there are
a small number of people who have huge incomes (Mood
et al., 1974). In this case, this relationship indicates that a
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Figure 3: Identified stress states by the multiple inverse method from simulated fault-slip data. A cluster in the four-
dimensional space is visualized as a cluster with the same color, same direction and length of bars. In the left panel, the
direction ofσ1 axis is shown by a dot on lower hemisphere, equal-area net and that ofσ3 axis is indicated by a bar attached
on the dot: the azimuth and plunge of the other one is indicated by the direction and length of the bar, respectively. In the
right panel, the projection of the both axes are inverted. The length is proportional to the plunge angle. The Lode number
µL is color-coded in the plot. By this projection, a solution in the parameter space is shown by a single symbol—a cluster
in the four-dimensional parameter space is visualized as a cluster with the same color and the bars with the same direction
and length. Multiple inversion was applied withk = 4, and only solutions withm ≥ 4s is shown, wheres is the standard
deviation ofm’s. The stress A is vertical and axial (µL = −1) compression. The stress B is triaxial (µL = 0.0), vertical
compression and horizontal, E–W extension. Both the stresses are successfully identified.
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Figure 4: Identified stresses from heterogeneous fault-slip data generated with the stress A and B. The inverse calculations
were done withk = 4. The upper panel shows all the solutions. There are erroneous solutions that are indicated by symbols
with warm colors. Those solutions are thinned out in the lower panel by plottingm/4ssolutions. See text in detail.
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small number of grid points have most of solutions but quite
a few points have a few or no solution—clusters appear in
the parameter space.

The relationship allows to thin out erroneous solutions
and enhance correct ones. Let the italic symbols be the
standard deviation ofP(m). Given m solutions at a grid
point, a number ofm/4s symbols were plotted in Fig. 4
(b). If m/4s < 1 at a grid point, no symbol was drawn.
The upper panel of Fig. 4 shows all the solutions for the
case 3. Erroneous solutions are plotted there, such as warm-
colored symbols. However, the correct solutions appear as
densest clusters. In the lower panel of Fig. 4, onlym/4s
solutions are plotted. The result is that the correct solutions
are enhanced, though a small number of erroneous ones still
remain.

3.1 Convergence of solutions

The choice of the parameterk is arbitrary, yet smallerk’s
may yield erroneous and unstable solutions. As data always
include noise, the inverse calculation for a small number of
faults sometimes provides improper answers. We refer this
as the stability of solution. On the other hand the amount
of computation inflates with the increase ofk in the speed
NCk ∝ Nk, if k ≪ N. A small k is preferable for the re-
duction of execution time of computation. How much is the
appropriate value fork?

Varying k from 2 to 7, the present method was applied
to the simulated heterogeneous fault-slip data. Ifk = 2,
correct solutions do not make clusters at all. However, they
do appear, ifk ≥ 3 (Fig. 6). The solutions fork = 4 and 5
are nearly identical; the gross pattern in the parameter space
shows convergence. However, those fork = 3 is slightly
different: erroneous solutions remain, such as the green dots
along the base circle. In this case, consequently,k = 4 is the
optimal choice.

4 APPLICATION TO FIELD DATA

4.1 Data

The multiple inverse method is applied to 25 reverse faults
that dislocate the Tano Formation, Miyazaki Group, west-
ern Japan (Fig. 7a). The formation is correlated to the up-
permost Miocene (Suzuki, 1987). All the faults have dis-
placements less than a few centimeters and diagonally cut a
20-cm-thick sandstone layer.

The faults were selected, because the following observa-
tions suggest that they record relatively simple stress fields.
(1) Reverse faults are rare in the area, although most of
faults in the Group have normal or oblique normal sense
of slip (Tokushige and Fabbri, 1996). (2) Only the 25
faults have calcitic slickenfiber lineations among hundreds
of meso-scale fault observed in the Miyazaki area. The

Figure 5: The log–log plot for the frequency distribution
P(m) for the simulated fault-slip data. Gray lines show
regression lines. Correlation coefficients,r, are indicated
also.
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Figure 6: Comparison with solutions calculated with variousk. The direction ofσ3 axes calculated from the heterogeneous
fault-slip data are shown by dots. Lower hemisphere, equal area projection. The length and direction of bar attached on
the dot show the plunge and azimuth ofσ1 axis. The multiple inversion withk = 2 yields no correct answer, whereas
correct ones are obtained withk ≥ 3. Solutions withk = 3 includes erroneous one such as orange dot in the SW quadrant.
A number ofm/4ssymbols are plotted.
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Figure 7: (a) Reverse and oblique-reverse faults observed at an outcrop of the Tano Formation, Miyazaki Group. Lower
hemisphere, equal angle projection. Solid circles indicates the slip direction of foot walls. (b) Theoretical slip directions
by the stress A trough D that were identifed by the multiple inverse method from the fault-slip data shown in (a).

fibers indicate that their growth was coeval with slow fault
movement (Twiss and Moores, 1992). Therefore, this and
the first observations narrows the period(s) of activity. (3)
The object data were collected at an outcrop 10 meters in
width (lat. 31◦ 50′ 20′′ N, lon. 131◦ 23′ 10′′ E), so that they
represent stress(es) at one locality.

Most of the faults are dip-slip faults with slip direction
in the NE and SW quadrants (Fig. 7a), suggesting that they
are a conjugate set. Extensional stress in ENE–WSW di-
rection is the most probable solution. Of course, there is
an apparent exception—the high angle, sinistral fault. In
addition, the trend of the faults has a large divergence, sug-
gesting that conjugate faulting alone cannot account for the
whole data.

4.2 Results

The multiple inverse method is applied withk from 2 to 7 in
order to see convergence (Fig. 8). If they are conjugate set,
theσ1 axis must lie in a NE–SW direction. The solution
with k = 2 already show such an stress state, but has a lot
of σ1 axes distributed along the base circle. The increase of
k makes clusters more coherent. The gross pattern becomes
stationary fork ≥ 5. The convergence indicates thatk = 5
is the optimal choice for the parameterk.

The stable and coherent clusters withk = 7 are labeled
in Fig. 9. The cluster C of green symbols corresponds to
the conjugate faulting. The color indicates an intermediate
Lode number atµL ≈ 0.0. Accordingly the cluster indicate
a triaxial stress with ENE–WSW trendingσ1 and vertical
σ3 axes. However, the trend of the faults has a large di-
vergence, resulting in the appearance of other clusters. The
cluster D is composed of yellow symbols, indicating a mod-

erately high Lode number. Not only these triaxial stresses,
but axial stresses A and B are identified. They are rep-
resented by blue and reddish symbols, respectively. The
stress A is ENE–WSW trending, axial deviatoric compres-
sion. The stress B is vertical, axial, deviatoric tension.

4.3 Interpretation

Four stresses were identified from the Miyazaki data. They
are equally plausible solutions. Fig. 7 (b) shows the the-
oretical slip directions of the faults by the stresses. The
directions are roughly parallel to the observed ones, how-
ever, those by the stress D have larger misfits than others.
Therefore, the stress D is the least significant solution.

The stresses A, B and C are equally significant. All
inverse methods, including the present one, cannot distin-
guish which stress was real. The fact is that the three solu-
tions are natural consequences when we process conjugate
faults by the inverse method that minimize the sum of an-
gular misfits. In order to show this, let us define a Cartesian
coordinate whosex, y, andzaxes are oriented in north, east,
and downward, respectively (Fig. 10). In addition, letδ be
the identity tensor. Even if the stress tensorσ is replaced by
pσ + qδ wherep andq are arbitrary, the slip direction pre-
dicted by Eq. (1) is not affected. Therefore, the results of
the inverse method has uncertainty corresponding top and
q. Accordingly, we assume three stress tensors:

σ(1) =

1 0 0
0 0 0
0 0 −1

 , σ(2) =

 1 0 0
0 0 0
0 0 0

 ,
σ(2) =

 1 0 0
0 1 0
0 0 0

 .
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Figure 8: Convergence of clusters fromk = 2 to 7 for the Miyazaki data (Fig. 7). The gross pattern does not change for
k ≥ 4.

Figure 9: Clusters obtained by the multiple inverse method applied to the Miyazaki data withk = 7 ande = 6. The
direction ofσ1 andσ3 axes is shown by left and right lower-hemisphere Schumidt net, respectively. Dot-and-bar symbols:
see caption in Fig. 3. The stresses A, B, and C are equally plausible solutions. The cluster of reddish symbols in the
cross-hatched area labeled as B indicates a vertical, axial, deviatoric tensional stress.
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The tensorσ(1) represents a stress withµL = 0 and N–S
compression and vertical extension. Anderson theory of
faulting predicts that this stress can give rise to E–W tending
conjugate faults that dip at about 30◦. The tensorsσ(2) and
σ(3) represent axial stresses. The former is a horizontal, N–
S trending, axial compression (µL = −1). The latter,σ(3),
represents a vertical, axial, and deviatoric tension (µL = 1).

Suppose a preexisting fracture which is subparallel to one
of the expected conjugate faults. The attitude of the fracture
is denoted by its azimuth of dip direction (Fig. 10). If the
fracture is activated by one of the stresses, the slip direction
is readily calculated by Eq. (1) such that

s(i) = σ(i)n −
[
nTσ(i)n

]
n

wherei = 1, 2 or 3. The vectors(i) stands for the slip direc-
tion of the fracture due to the stressσ(i).

Fig. 10 shows the slip directions with various fracture az-
imuth with fixed stress axes. The triaxial stressσ(1) causes
slip in thes(1) direction in the figure. This direction is nearly
parallel to the directions(2) that indicates the slip direction
due to the axial compressionσ(2). If the fault has an E–
W trend, the other axial stressσ(3) can move the fault in
the similar direction. Therefore, the three stresses activate
the preexisting fractures in a similar manner if the fracture
planes are nearly parallel to the conjugate faults. It further
means that stress inversion cannot determine which stress is
valid. The inversion provide three solutions from conjugate
faults.

Stress inversion, not only the multiple inverse method but
also the classic inverse method of Angelier (1984), can de-
termine possible stresses consistent with observed fault-slip
data. As the multiple inverse method has more resolution
than the classic method especially in processing heteroge-
neous data, the plural solutions are differentiated. A fault
collection that seems a conjugate set results in such three
stresses. We call them associated solutions determined from
conjugate faults. The cluster A and C haveσ1 axes in the
same direction, so that they are associated to each other. By
contrast, the cluster of yellow symbols has a higher Lode
number than the green one, so that the stress indicated by
the yellow cluster is independent from the other solutions.
As a result, the Miyazaki data require at least two stresses
C and D to account for the fault movements. One, two or
all of the stress A, B, and C affected the faults.

It is important that the validity of associated stresses is
determined by field observations other than the fault-slip
data used in the inverse method or by some theoretical mod-
els such as minimum dissipation principle.

When the simulated fault-slip data were processed in the
previous section, the correct solutions were determined suc-
cessfully. The processing was successful because the faults
have various orientations. By contrast, the faults observed
in Miyazaki have similar orientations. These observations

Figure 10: Slip directionss(1), s(2), s(3) predicted from Eq.
(1) by the stressesσ(1), σ(2), andσ(3), respectively. The
direction of the fault plane is indicated by the azimuth of
dip direction,a, with the dip fixed at 30◦. Note that the
stresses cause an identical slip direction ifa = 0◦.

teach us that a narrow range of fault orientations results in
a poor resolution.

5 DISCUSSION

Several researchers have presented inverse methods to sepa-
rate stresses from heterogeneous fault-slip data. Tokushige
and Fabbri (1996) attempted to identify paleo stresses from
heterogeneous fault-slip data that were collected from the
Miyazaki district. They used the right dihedra method (An-
gelier and Mechler, 1977). The method is applied to the
Miyazaki data shown in Fig. 7. The result is shown in
Fig. 11 (a). The probability distribution of stress axes deter-
mined by the right dihedra method indicates only one stress
state with verticalσ3 and horizontalσ1 axes in the NE and
SW quadrants.

Armijo et al. (1982) apply inverse calculation recur-
sively to those subset of data that show large misfit from
slip directions predicted from formerly determined stresses.
The first inversion is applied to the whole fault collection.
Mino and Yamaji (1999) applies this approach to Quater-
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Figure 11: (a) The fault-slip data shown in Fig. 7 is processed by the right dihedra and Angelier’s (1979) classic inverse
methods. The result is a NNE–SSW trending, triaxial (µL = 0.6) tension, which is identical with the stress D obtained by
the multiple inverse method. (b) The histogram of the angular misfit the observed slip direction with that predicted by Eq.
(1) with the stress, showing a unimodal distribution with a bload tail. If the histogram had a minimum, the fault-slip data
could be divided into two groups and other stresses could be determined by the classic method. The data is formidably
heterogeneous for the classic inverse method.

nary mesoscale faults in central Japan. Their first inversion
by classic Angelier’s (1979) method resulted in bimodal
distribution of angular misfits, allowing Mino and Yamaji
to divide the data set into two groups.

The same approach was taken to process the Miyazaki
data (Fig. 7) to compare the results of the multiple inverse
method. However, the Angelier’s (1979) method resulted
in the single-mode frequency distribution with a broad tail
toward large misfits (Fig. 11), suggesting that the optimal
stress alone does not account for the whole fault data. How-
ever, the distribution make the division of data set difficult.
The obtained stress has a moderately high Lode number
(µL = 0.6) and with NNE–SSW trendingσ1, and vertical
σ3 axes. This is concordant with the stress D that was ob-
tained by the multiple inverse method. Therefore, the recur-
sive method did not work well for the Miyazaki data.

In principle, the recursive method has several difficulties.
(1) Given heterogeneous data, we cannot expect to obtain
the correct solution for the first inversion. The sum of an-
gular misfits,S, or any other measure of misfits, has a lot of
local minima in the parameter space. The minimum point is
not always determined by the most significant stress. There-
fore, it is not easy to obtain the correct solution at the first
inversion. (2) It is sometimes difficult to find a trough in the
histogram of misfits to divide data for the following itera-
tion. In addition, (3) data are subdivided many times and
later inversions use small parts of them, resulting in unsta-
ble solutions. The reliability of detected stresses depend on,
therefore, the order they detected.

By contrast, solutions are treated equally in the present

method. It is fully automatic and does not require uses’
choice or decision during data processing. The present
method deals with stresses equally. The orthodox recursive
method does not. The inequality makes the latter technique
unreliable when the second or later solution is calculated.
Moreover, it is sometimes difficult for the recursive method
to obtain correct solution at the first iteration.
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