<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>楔子</td>
<td>未完</td>
</tr>
<tr>
<td>足利</td>
<td>平成28年度 研究会報告</td>
</tr>
<tr>
<td>校長挨拶</td>
<td>未完</td>
</tr>
<tr>
<td>講演</td>
<td>未完</td>
</tr>
<tr>
<td>参加者</td>
<td>未完</td>
</tr>
<tr>
<td>講演後</td>
<td>未完</td>
</tr>
<tr>
<td>その他</td>
<td>未完</td>
</tr>
</tbody>
</table>
Independence in generic structures

Akito TSUBOI
Graduate School of Pure and Applied Sciences,
University of Tsukuba

Abstract
Wagner [W] proved that in generic structures forking independence and independence defined by dimension function are essentially the same. He proved the result under the assumption that the closure of a finite set is also finite. Verbovskiy and Yoneda [VY] provided some notions for studying generic structures without this finiteness condition and eliminated the finiteness assumption from the result. Here we give a very short proof of the result.

1 Introduction
Let \(L = \{ R_i : i \in \omega \} \) and for each \(i \in \omega \) let \(\alpha_i > 0 \) be given. \(\delta \) is the function assigning to each finite \(L \)-structure the value \(|A| - \sum \alpha_i |R_i^A| \). Let \(K \) be the class of all finite \(L \)-structures \(A \) such that \(\delta(A_0) \geq 0 \) for every substructure \(A_0 \) of \(A \). \(K_0 \) is a subclass of \(K \) and \(M \) is a stable structure all of whose finite substructures belong to \(K_0 \). \(\mathcal{M} \) is a big model of \(T = Th(M) \). The following proposition is proved by Wagner [W] under the finite closure assumption. Later Verbovskiy and Yoneda [VY] eliminated the finiteness assumption from the result. Here we give a direct proof. We do not assume the finiteness condition.

Proposition 1 Let \(B, C \) be closed sets in \(\mathcal{M} \). Suppose that \(A = B \cap C \) is algebraically closed. Suppose also that \(B \) and \(C \) are independent over \(A \). Then (1) \(B \) and \(C \) are free over \(A \) and (2) \(BC \) is closed.

In section 1, we recall some definitions and state basic lemmas on generic structures. In section 2, we prove the above proposition by a straightforward method. We assume that the reader has some knowledge of stability theory. In particular, the reader is supposed to know the notion Morley sequence.
2 Preliminaries

Definition 2 1. Let $A \subset B \in K$. We say that A is closed in B (in symbol $A \leq B$) if whenever $X \subset B - A$ then $\delta(X/A)(= \delta(XA) - \delta(A)) \geq 0$.

2. Let $A \subset N$, where $N \models T$.
 (a) We say that A is closed in N if whenever B is a finite subset of N then $A \cap B \leq B$.
 (b) The closure of A (in N) is the minimum closed set containing A. (The closure always exists.) The closure of A is written as $cl(A)$.

Lemma 3 For every A, $cl(A) \subset acl(A)$.

Proof. Let $N \prec \mathcal{M}$ be a small model with $N \succ A$ and choose the closure C of A in N. Then, by $N \prec \mathcal{M}$, C is the closure of A in \mathcal{M}. Suppose that there is $c \in C$ which is nonalgebraic over A. Then we can choose an element $d \in \mathcal{M} - N$ with $tp(c/A) = tp(d/A)$. Let σ be an A-automorphism sending c to d. Then we would have two different closures C and $\sigma(C)$. A contradiction.

Lemma 4 Let $A \subset B_{0} \leq B_{1}$ and $A \subset C_{0} \leq C_{1}$. Suppose that B_{1} and C_{1} are free over A. If $B_{1}C_{1}$ is closed then $B_{0}C_{0}$ is also closed.

Proof. We assume $B_{1}C_{1}$ is closed. Let $X \subset \mathcal{M} - B_{0}C_{0}$ be a finite set and put $X_{B} = X \cap B_{1}$, $X_{C} = X \cap C_{1}$, and $\hat{X} = X - B_{1}C_{1}$. Then we have the following inequalities:

\[
\begin{align*}
\delta(X/B_{0}C_{0}) &= \delta(\hat{X}/B_{0}C_{0}X_{B}X_{C}) + \delta(X_{B}X_{C}/B_{0}C_{0}) \\
&\geq \delta(\hat{X}/B_{1}C_{1}) + \delta(X_{B}X_{C}/B_{0}C_{0}) \\
&\geq \delta(X_{B}X_{C}/B_{0}C_{0}) \\
&= \delta(X_{B}/X_{C}B_{0}C_{0}) + \delta(X_{B}/B_{0}C_{0}).
\end{align*}
\]

By the freeness and $B_{0} \leq B_{1}$, $\delta(X_{B}/X_{C}B_{0}C_{0}) = \delta(X_{B}/B_{0}) \geq 0$. Similarly, $\delta(X_{B}/B_{0}C_{0}) \geq 0$. So we have $\delta(X/B_{0}C_{0}) \geq 0$.

3 Proof of the Proposition

Let $B' = acl(B)$ and $C' = acl(C)$. If we prove $B'C' = B' \otimes_A C' \leq \mathcal{M}$, then $BC = B \otimes_A C \leq \mathcal{M}$ follows from lemma. So we can assume that B and C are algebraically closed. By $B \perp_A C$, we can choose sequences $\{B_i : i \in \omega\}$ and $\{C_i : i \in \omega\}$ satisfying the following conditions:

1. $\{B_i : i \in \omega\}$ is a Morley sequence of $tp(B/A)$;
2. $\{C_i : i \in \omega\}$ is a Morley sequence of $tp(C/A)$;
3. $\{B_i : i \in \omega\}$ and $\{C_i : i \in \omega\}$ are independent over A, so the set $\{B_i : i \in \omega\} \cup \{C_i : i \in \omega\}$ is an independent set over A.
4. $tp(B_iC_j/A) = tp(BC/A)$, for any $i,j \in \omega$.

Such sequences can be found by using an easy compactness argument.

(1) Freeness: By way of a contradiction, we assume there are tuples $\emptyset \neq \overline{b} \in B - A$, $\emptyset \neq \overline{c} \in C - A$ and $\overline{a} \in A$ with $R_i(\overline{b}, \overline{c}, \overline{a})$. By condition 4, we can find $\overline{b}_i \in B$ and $\overline{c}_i \in C$ such that for any $i,j \in \omega$, $tp(\overline{b}_i\overline{c}_j\overline{a}) = tp(\overline{b}\overline{c}\overline{a})$. So $R(\overline{b}_i, \overline{c}_j, \overline{a})$ holds for any $(i,j) \in \omega^2$. We fix $n \in \omega$. Then we have the following inequality:

$$\delta(\bigcup_{i<n}\overline{b}_i\overline{c}_i\overline{a} \leq n|\overline{b}\overline{c}\overline{a}| - \alpha_i n^2 .$$

This right value is negative for a sufficiently large n. A contradiction.

(2) Suppose that BC is not closed and choose finite tuples $\overline{d} \in acl(BC) - BC$, $\overline{b} \in B$ and $\overline{c} \in C$ with $\varepsilon := \delta(\overline{d}/\overline{b}\overline{c}) < 0$.

By condition 4 above, for all $i,j \in \omega$, we can choose $\overline{b}_i \in B_i$, $\overline{c}_i \in C_i$ and \overline{d}_{ij} such that $tp(\overline{b}\overline{c}\overline{d}_BC) = tp(\overline{b}_i\overline{c}_i\overline{d}_{ij}B_iC_j)$.

Claim A $(\bigcup_{(i,j) \in \omega^2} \overline{d}_{ij}) \cap (\bigcup_{i \in \omega} B_iC_i) = \emptyset$

Suppose otherwise and choose i,j,m and $e \in \overline{d}_{ij} \cap (B_mC_m)$. By symmetry, we may assume $e \in B_m$. So we have $e \in acl(B_iC_j) \cap B_m$. By choice of \overline{d} (and \overline{d}_{ij}), $m \neq i$. So, from $B_iC_j \perp_A B_m$, we have $e \in acl(A) = A$. So we must have $\overline{d}_{ij} \cap A \neq \emptyset$, a contradiction.

Claim B \overline{d}_{ij}'s are disjoint.
By way of a contradiction, we assume $e \in \bar{d}_{ij} \cap \bar{d}_{i'j'}$ for some pair $(i, j) \neq (i', j')$. First assume $\{i, j\} \cap \{i', j'\} = \emptyset$. Then, by the independence of B_iC_j and $B_{i'}C_{j'}$ over A, we have $e \in A$, so we have $\bar{d}_{ij} \cap A \neq \emptyset$, a contradiction. Then, since other cases are similar, we can assume $i = i'$ and $j \neq j'$. In this case, we have $e \in aclB_i = B_i$. Again, this is a contradiction.

So, as in (1), we have

$$\delta(\bigcup_{(i,j)\in \mathbb{N}^2} \bar{d}_{(i,j)} \cup \bigcup_{i<\mathbb{N}} \bar{b}_i \bar{c}_i) \leq \delta(\bigcup_{(i,j)\in \mathbb{N}^2} \bar{d}_{(i,j)}/\bigcup_{i<\mathbb{N}} \bar{b}_i \bar{c}_i) + \delta(\bigcup_{i<\mathbb{N}} \bar{b}_i \bar{c}_i) \leq n^2 \varepsilon + n \delta(\bar{b}_0 \bar{c}_0).$$

For a sufficiently large n, we get a contradiction.

Remark 5

1. In our proof of Proposition 1, we did not use the "genericity" of the structure M. If we assume the "genericity", the converse of Proposition 1 is true by the following argument. Suppose that $BC = B \otimes_A C \leq \mathcal{M}$. Let $\{C_i : i < \alpha\}$ be a sufficiently long Morley sequence of $tp(C/A)$. Then, by stability, there is i such that B and C_i are independent over A. By proposition $BC_i = B \otimes_A C_i \leq \mathcal{M}$. Then we have $BC \cong_A BC_i$ and that they are closed. So they have the same type over A, hence $BC = B \otimes_A C \leq \mathcal{M}$. (For details see [W] or [VY].)

2. The assumption that A is algebraically closed is necessary in general. But Ikeda [I] showed that the algebraicity assumption can be eliminated if $(L = \{R(*, *)\}$ and) K_0 is closed under subgraphs.

References.

