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Nonstandard arguments and the stability of generic:
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Abstract

Generic #EOMFTITBENFIELEWA TS . KB T, Wagner
H3T o 7= generic MEDREEHEDOBRIITOVWTOHE [4] IZ, BREDOET
LWHERZ{TiT 9. Wagner I saturated 72 generic &R L EIZ/2
BHDT53%MH DS & w-REICRDZAHD+7%MH DW 2EHELE. &
f&Tix DS #f#g{b L, DS & DW O OBREAS.

1 Preliminaries

Let L be a countable relational language. Let K be a nonempty class of finite
L-structures closed under isomorphisms and substructures (we consider the
emptyset as an L-structure). Suppose A < B is a reflexive and transitive
relation on elements A C B of K, which is invariant under isomorphisms.
If A < B holds, we say that A is closed in B. We also assume that (K, <)
satisfies the following properties:

1. 0 < A,
2. ACBCC,A<C= A< B,
3. A<XB=ANC<BNC.

Let (K, <) be as above. Let N be an L-structure whose any finite sub-
structure belongs to K. Note that for any A C N, there is a unique smallest
closed superset of A in N. We call this set the closure of A.

Definition 1 Let A C B. We say that B is a minimal extension of A if
the following conditions are satisfied

e ALB
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e AL B' forany AC B' C B.

Definition 2 Let < be a closed relation on K. Then we say that (K, <)
satisfies finite closure aziom if there is no infinite chain (4;)i<, of elements
of K such that A;1+1 is a minimal extension of A; for each i < w.

We assume that (K, <) satisfies the finite closure axiom in this paper.
We say that an L-structure N has finite closures if for any finite A C N,
the closure of A is also finite. Put K = {IN : L-structure |[A € K for any
A Cgpy N}

Fact 3 [2] Let < be a closed relation on K. Then the following are equiva-
lent:

1. K satisfies finite closure aziom.

2. Every member of K has finite closures.

3. Every w-saturated member of K has finite closures.
4. Some w-saturated member of K has finite closures.

Definition 4 Let M be an L-structure. We say that M is a K-generic
structure if the following conditions are satisfied:

1. M 1is countable.
2. VACgn M,A€K (ie. M €K).
3. A< M,A<BeK= 3B’ < M such that B' =4 B.

Fact 5 Suppose that (K, <) satisfies the finite closure aziom. Then a K-
generic structure is unique.

Definition 6 Let d be a function from {A: A <gz M} to R>o. We say d
is a dimension function for M if for all A,B <g, M,

1. AC B=3d(A) <d(B)

2. (Monotonicity) d(AU B) + d(A N B) < d(A) + d(B)

3. A= B=>d(A) =d(B)

For arbitrary A Cg, M, we put d(A) = d(A). We define d(A/B) the
relative dimension of A over B. For finite A, B, d(A/B) = d(AB) — d(B).
For finite A, arbitrary B, d(A/B) = inf{d(A/Bo) : Bo Cg,, B}. It is easy

to check that these two definitions has the same value in the case A and B
are finite.
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2 Nonstandard arguments

Let M be the K-generic structure and d be a dimension function for M. We
consider M to be a 3-sorted structure

(MUPUR;F,€,d <,--+)

where P, F', € are as above, d is the dimension function of M, < is the
closed relation on P x P.

We define the nonstandard model M* of M by a sufficiently saturated
extension of this structure

(MUPUR,F,e,d<, )< (M*UP*UR*, F*, e*,d*,<*--+)

Definition 7 A set A € F* is said to be a hyperfinite set. For A C M,
A* € F* is said to be a hyperfinite extension of A if

e M* =a €* A* for eacha € A, and
o M*|= A* C* A.
write A Cth*, A* thA
By saturation, a hyperfinite extension of A always exists.

Lemma 8 For any subseteq A of M, there exists a hyperfinite extension of
A.

Proof: Tt is enough to prove that the following set of formulas is satisfiable:
I'X)={a €* X|a EA}U{X C* Alu{X € F}.
But for any finite subseteq Ag of A, Ap realizes the following set of formulas:
{a €* X|a€ Ap}U{X C* A} U{X € F}.
So, by compactness, I'( X)) is satisfiable.

Let z, y be two nonstandard (or standarad) real numbers. We write
z=~yif |z —y| < 1/n for each n € w.

Lemma 9 Forr € R,a € M and A C M, the following are equivalent.
1. d(a/A) =r;



13

2. d*(a/A*) = r for any A* DpfA;
3. d*(a/A*) = r, for some A* Dht A.

Proof: (1 — 2): By monotonicity of d, there are A, Cg, A (n =1,2,...)
such that VX € F

A, C X CA—-r<d@/X)<r+1/n.

These statements hold also in M*. So if A* is a hyperfinite extension of A,
then we have
r<d*'(@a/A*) <r+1/n (n=1,2,..)
So we have d*(a/A*) = r.
(2 — 3): trivial.
(3 = 1): We assume 3 and choose a witness A*. Then (d*(a/A*) =~ r).

Suppose 1 is not the case. Then there is s # r such that d(a/A) = s. By
1 = 2, we have d*(a/A*) =~ s. A contradiction.

Note that M EVA € PIIA (AC A< MAVXACX <M — A C X).
This formula holds also in M*. For X € P*, we write X as the ”closure” of
X in M*. In this paper, M = X € F* -+ X € F* because K satisfies the
finite closure condition.

3 Main result
Definition 10 ([4])

1. Let A,B Cfin M and C C M. Then we say A and B are d-independent
over C and write A\I-/é B if the following conditions are satisfied:
e d(A/BC)=4d(A/C), and
e ACNBC =C.

2. For arbitrary A,B,C C M, we say A and B are d-independent over
C if for each Ag Cfin A, By Cfin B, Ap \L?;Bo

Note that for closed sets A, B, A and B are d-independent over AN B if
and only if for each Ao Cfn A, By Cgn B, d(Ao/By(ANB)) = d(Ao/ANB).
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Definition 11 Let A and B be closed subsets of M. Then we say A and B
are d*-independent over AN B if the following conditions are satisfied: there
exist a hyperfinite extension A* of A and a hyperfinite extension B* of B
such that

e A* and B* are both closed
e d(A*/B*) =d(A*/A* N B*)

Wagner’s definition of DS (a sufficient condition for saturated M to be
stable) is as follows:
For any closed A, B, if Vn € w,VAg Cgn A,VBg Cgn B, Ag C A" <gn
A, By C 3B’ <4, B such that

d(A") +d(B') <d(A'B') +d(A'NB') +1/n,

then A and B are free over AN B and AB is closed.
On the other hands, Wagner’s definition of DW (a sufficient condition
for saturated M to be w-stable) is as follows:

e for any closed A, B, if A L anB B, then A and B are free over AN B
and AB is closed and

e for any @ and X, there exists finite Xo C X such that d(a/Xp) =
d(a/X).

Theorem 12 For arbitrary closed A, B, the following are equivalent:

1. Vn € w, YAy Cgn A, VBg Cgn B, Ag C 3A' <gn A, By C 3B’ <g, B
such that d(A’) + d(B') < d(A'B')+d(A'NB')+1/n

2. A‘LAnBB

Proof: (1 — 2): Assume 1. Then by saturatedness, There exist a closed
hyperfinite extension A* of A and a closed hyperfinite extensmn B* of B
such that for all n € w,

d*(A*) +d*(B*) < d*(A*B*) +d*(A* N B*) + 1/n.
The other direction

d*(A*) + d*(B*) > d*(A*B*) + d*(A* N B*)
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is clear by monotonicity.
So we have

d*(A*) +d*(B*) ~ d*(A*B*) +d*(A* ﬂB*),
equivalently, _
d*(A*/B*) =~ d*(A*/A* N B*).
(2 = 1): Fix any n € w, Ag Cgn A, and By Cg, B. Let A* Dpf A and
B* Dyt B be a wittness of d*-independent. By the finite closure condition,

we can take A* and B* to be both closed. Then A* and B* satisfy the
following formula:

e Ag C JA* <gn A, By C 3B* <gp B, and
e d(A*) +d(B*) < d(A*B*) + d(A* N B*) + 1/n.

Because M is an elementary substructure of M*, we can take expected sets.

(2 = 3): Let A* and B* be witness of d*-independence. Take any A’ Cfin
A and any B’ Cg, B. Then d(A*/B*) ~ d(A*/A* N B*). By transpositon,
d(B*/A*) =~ d(B*/A* N B*). By monotonicity of d, d(B*/A’A* N B*) =
d(B*/A* N B*). By transposition, d(A'/B*) ~ d(A'/A* N B*). By Mono-
tonicity, d(A’'/B'A*N B*) ~ d(A'/A* N B*). By Lemma 9, d(4’/B'ANB) =
d(A’"/AN B). '

(3 — 2): Take a closed hyperfinite extension A* of A and a closed hy-
perfinite extension B* of B. By compactness, it is enough to prove that for
any Ap Cgp, A, the following set of formulas are satisfiable:

1. XeF
2. XCA
3. 4 C X
4. X is closed
5. d(X/B*) = d(X/X N B*)

We show Af = Ag(A* N B*) is a realization of the above set of formulas.
1, 2, 3, and 4 are clear.
5. First,

d(A4B*) — d(B")
d(AoB") — d(B*)
d(Ao/B*)
d(Ao/B).

d(Ag/B")

Q
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Second,

d(Ag/Ag N B*) d(Ap) — d(Ap N B*)
d(Ap(A* N B*)) — d(Aj N B*)
d(Ao(A* N B*)) —d(A* N B*)
= d(Ao/A* N B*)
~ d(Ag/ANB)
Finally, by the d-independence of A and B, d(Ay¢/B) = d(Ag/A N B).
Hence, d(A§/Ay N B*) < d(Aj/B*). The other direction is clear.

IA

Consequence
DS is equivalent to the first condition of DW. In particular, DW is a stronger
condition than DS.

Fact 13 [3] Let T be stable. Then the following are equivalent:
1. T is superstable.

2. For any B C M and p € S(B), there is finite A C B such that p does
not fork over A.

So, we have the following corollary.

Corollary 14 Suppose DS and that for any closed set A, B, ALY ang B if
and only if AL gsnp B. Then T = Th(M) is w-stable or merely stable.

This corollary is a partial solution of Baldwin’s problem][1].
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