<table>
<thead>
<tr>
<th>Title</th>
<th>d-primitive words and D(1)-concatenated words (Algorithmic and Computational Theory in Algebra and Languages)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>KATAOKA, Itaru; MORIYA, Tetsuo</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2008), 1604: 37-41</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/139934</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
d-primitive words and D(1)-concatenated words

Itaru KATAOKA AND Tetsuo MORIYA

School of Science and Engineering
Kokushikan University
Setagaya 4-28-1, Setagaya-ku, Tokyo 154-8515, Japan
Electric Mail: moriya@kokushikan.ac.jp

Abstract
In this paper, we study d-primitive words and D(1)-concatenated words. It is shown that neither $D(1)$, the set of all primitive words, nor $D(1)D(1)$, the set of all D(1)-concatenated words, is regular. We also show that every d-primitive word, with the length of two or more, is D(1)-concatenated.

1 Introduction

The notion of primitivity of words plays a central role in algebraic coding theory and combinatorial theory of words (See [3] [4], and [6]).

Recently attention has been drawn to $D(1)$, the set of all d-primitive words, which is a proper subset of Q, the set of all primitive words. ([1], [7])
In this paper, we study languages $D(1)$ and $D(1)D(1)$, the set of all $D(1)$-concatenated words. We consider regularity of $D(1)$ and $D(1)D(1)$, and a relation between $D(1)$ and $D(1)D(1)$.

In section 2 some basic definitions and results are presented. In section 3, the following results are proved. (1) Neither $D(1)$ nor $D(1)D(1)$ is regular. (2) For $u,v,w \in \Sigma^+$ with $|u| = |v|$, $uvw \in D(1)$ if and only if $uv^+w \subseteq D(1)$. In section 4, we consider a relation between $D(1)$ and $D(1)D(1)$. It is proved that for a word w in $D(1)$, with the length of two or more, w is in $D(1)D(1)$.

2 Preliminaries

Let Σ be an alphabet. Σ^* denotes the free moniod generated by Σ, that is, the set of all finite words over Σ, including the empty word ϵ, and $\Sigma^+ = \Sigma^* - \epsilon$. For w in Σ^*, $|w|$ denotes the length of w. Any subset of Σ^* is called a language over Σ.

For a word $u \in \Sigma^+$, if $u = vw$ for some $v,w \in \Sigma^*$, then v (w) is called a prefix (suffix) of u, denoted by $v \leq_p u$ ($w \leq_s u$, resp.). If $v \leq_p u$ ($w \leq_s u$) and $u \neq v(w \neq u)$, then v (w) is called a proper prefix (proper suffix) of u, denoted by $v <_p u$ ($w <_s u$, resp.). For a word w, let $Pref(w)$ ($Suff(w)$) be the set of all prefixes (suffixes, resp.) of w.

A nonempty word u is called a primitive word if $u = f^n$, for some $f \in \Sigma^+$, and some $n \geq 1$ always implies that $n = 1$. Let Q be the set of all primitive words over Σ. A nonempty word u is a non-overlapping word if $u = vx = yv$ for some $x,y \in \Sigma^+$.
always implies that $v = \epsilon$. Let $D(1)$ be the set of all non-overlapping words over Σ. A words in $D(1)$ is also called a d-primitive word. For $u \in \Sigma^+$, u is said to be $D(1)$-concatenated if there exist $x, y \in D(1)$ such that $xy = u$, i.e., $u \in D(1)D(1)$. (See [1] and [5]).

For $w \in \Sigma^+$ with $|w| \geq 2$, $Hlv\s(w)$ is defined as follows. If $w = xy$ for $x, y \in \Sigma^*$, with $|x| = |y|$, then $Hlv\s(w) = (x, y)$. If $w = xcy$, for $x, y \in \Sigma^*$, $c \in \Sigma$, with $|x| = |y|$, then $Hlv\s(w) = (x, y)$. For $x, y \in \Sigma^+$, if $(Pref(x) - \{\epsilon\}) \cap (Suff(y) - \{\epsilon\}) = \phi$, then (x, y) is said to be a non-overlapping pair (n-o. pair).

Lemma 1 ([2]) Let $u \in \Sigma^+$. Then $u \notin D(1)$ iff there exists a unique word $v \in D(1)$ with $|v| \leq (1/2)|u|$ such that $u = vv$ for some $w \in \Sigma^*$.

Remark 1 Let $u, v \in \Sigma^+$. Obviously $uv \in D(1)$ implies that (u, v) is a n-o. pair. The converse does not hold; for $u = abbbbba$, and $v = bb$, (u, v) is a n-o. pair but uv is not in $D(1)$. However, in the next Proposition, we show the above two are equivalent on the condition that u and v are in $D(1)$.

Proposition 2 For $u \in \Sigma^+$, the following two are equivalent.

(1) u, v, uv, and vu are in $D(1)$.

(2) u, v are in $D(1)$, and $(u, v), (v, u)$ are n-o. pairs.

The next lemma is immediate by Lemma 1

Lemma 3 (1) For a n-o. pair (x, y) and $c \in \Sigma$, with $|x| = |y|$, both xy and xcy are in $D(1)$. (2) Let $w \in D(1)$. For every $x \in Pref(w) - \{\epsilon\}$ and $y \in Suff(w) - \{\epsilon\}$, (x, y) is a n-o. pair.
3 Regularity of D(1) and D(1)-concatenated words

Proposition 4 $D(1)$ is not regular.

Proposition 5 $D(1)D(1)$ is not regular.

Proposition 6 Let $|u| = |w|$ for $u, v, w \in \Sigma^+$. Then $uvw \in D(1)$ if and only if $uv^+w \subseteq D(1)$.

Remark 2 Unfortunately, the previous proposition does not hold without the condition $|u| = |w|$. For example, let $u = babaa$, $v = ba$, and $w = a$. Then $uvw = bavaabaa \in D(1)$, but $uv^2w = (babaa)^2 \notin D(1)$.

4 d-primitive words and D(1)-concatenated words

In this section we consider a relation between primitive words and D(1)-concatenated words.

Lemma 7 Let $zxyx$ be in $D(1)$ for $z, x \in \Sigma^+$, $y \in \Sigma^*$. If z is in $D(1)$, then zx is also in $D(1)$.

Proposition 8 Let $|w| \geq 2$ for $w \in \Sigma^+$. If $w \in D(1)$, then w is a $D(1)$-concatenated word. In other words, for a word w in $D(1)$, with the length of two or more, w is in $D(1)D(1)$.
References

