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ABSTRACT  

Geopolymer concrete is seen as a potential alternative to standard concrete, and an 

opportunity to convert a variety of waste streams into useful by-products.  One key driver in 

geopolymer development is the desire to reduce greenhouse gas emissions from the 

production of concrete products.  This paper presents an examination of the life cycle cost 

and carbon impacts of Ordinary Portland Cement (OPC) and geopolymers in an Australian 

context, with an identification of some key challenges for geopolymer development.  The 

results of the examination show that there is wide variation in the calculated financial and 

environmental “cost” of geopolymers, which can be beneficial or detrimental depending on 

the source location, the energy source and the mode of transport.  Some case study 

geopolymer concrete mixes based on typical Australian feedstocks indicate potential for a 44-

64% reduction in greenhouse gas emissions while the financial costs are 7% lower to 39% 

higher compared with OPC. 

1. INTRODUCTION 

 Cement production is a significant industrial activity in terms of its volumes and 

contribution to greenhouse gas emissions.  Globally, the production of cement contributes at 

least 5-7%  of CO2 emissions [1-4], while in Australia, it is estimated that the production of 

cement accounted for approximately 1.3% of greenhouse gas emissions in 2008 [5, 6].  

Fly ash and other by-products of the energy and minerals industry that are currently 

disposed of as waste, have been the focus of much research into reuse opportunities [7-9] – 

especially as a supplementary cementitious material in cement [10, 11], and as a feedstock for 

geopolymers[12, 13]. Beneficial reuse would assist the producers of waste to reduce required 

storage and rehabilitation costs, as well as providing a minor financial benefit from sale.  A 

number of studies have examined the greenhouse emissions of concrete and cement, and the 

impact of fly ash content on the total emissions [11, 14].  The original comparisons that were 

drawn in the literature were largely on the basis of the production step of cement and 

geopolymer [15, 16].  These studies argued that avoiding the high direct emissions of CO2 

from cement production and reducing some process energy can make the geopolymer 

greenhouse emissions up to 5-6 times lower than cement [16]. However, the impacts 

associated with the production, processing and transportation of feedstocks are likely to 

contribute significantly to the life cycle emissions of the concrete. Hence a life cycle 

approach to the comparison is warranted.  The life cycle approach has recently been applied 

in a number of studies examining the life cycle impacts of Ordinary Portland Cement (OPC) 

and concrete production [11, 14, 17-20].  Geopolymer concretes have also been examined 

[21-24], however these have not addressed specifically the impacts of alternative feedstock 

combinations, transportation or energy mixes that are addressed in this paper.  

The current work seeks to build on the existing literature, by examining the life cycle 

impacts of geopolymers in comparison to OPC, incorporating the feedstock extraction and 

production impacts with an examination of the variability of data sourced from the literature. 

The recent studies that have been completed on geopolymer concretes indicate that  there is a 

potential for 25-45% [23] or 70% [21] reduction in greenhouse gas emissions. Both of these 



studies utilise the European Ecoinvent lifecycle database, and are set in the European context, 

whereas this study seeks to quantify the range of potential costs and impacts for geopolymer 

concretes in Australia.  Australia is a useful example as its large resource base, high per 

capita generation of fly ash and mineral wastes, and large distances make it ideal for testing 

the benefits of geopolymer concretes that rely on waste product streams, with particular 

interest in the transportation component.  

   

2. METHODS 

If geopolymers are to be a viable competing product to OPC based concretes, they will be 

required to demonstrate a similar financial cost to the user and / or significant functional, 

manufacturing or sustainability benefits.  In order to be able to compare geopolymers with 

OPC on a sustainability basis, three headline metrics were chosen.  In this case, the energy 

(direct fuel usage and electricity usage), greenhouse emissions and cost were chosen as three 

key metrics which are considered to form the main argument for or against the use of 

geopolymers - notwithstanding the fact that other key indicators have a significant role to 

play – such as technical performance, leaching, water usage, hazardous materials content, 

other environmental emissions of production [21] and the amount of waste volume that can 

be avoided by utilising fly ash in geopolymer or OPC concrete.  The three selected metrics 

are the ones most readily quantified for the situation where the location and exact 

characteristics of component materials are unknown, especially in these early stages of 

industrial geopolymer development.  Localised pollutants, while important in a sustainability 

sense, are not quantified here due to the dispersed nature of the system being examined, and 

the uncertainty of location of those emissions.   

Any comparative assessment of geopolymers and OPC-based concrete should ideally be 

made on the same functional unit – i.e. a concrete, mortar or paste engineered to perform the 

same key function. For the purpose of providing information that can readily be scaled to any 

application, the current work examines the production of OPC and geopolymer paste, and the 

metrics associated with key feedstocks.  Values are quoted per tonne of feedstock or per 

equivalent tonne of OPC.  These values can then be readily used to calculate the 

sustainability impacts of a given formulation of geopolymer, and compared with the 

equivalent amount of OPC giving comparable performance.  Some examples of geopolymer 

and OPC concretes are shown in this paper, based on mixes found in the literature. This gives 

an alternative comparison on a practical performance basis. 

The energy, cost and emissions metrics are derived using a life cycle approach.  For the 

purpose of this assessment, this implies the impacts for the production of required feedstocks 

as well as the manufacture of the binder, and any relevant transportation.  The importance of 

this approach is that it allows a valid comparison of the two materials - production impacts 

alone do not give the full picture of the required “embodied” energy and CO2 in feedstocks.  

The mixing, laying and curing of the geopolymer and OPC, and the operational lifetime 

emissions are not included as they are assumed to be similar for each product. The approach, 

therefore, may be considered to give a comparable life cycle impact, rather than an absolute 

impact.  This is a useful approach for similar products, as it reduces the time required for the 

assessment.   



The approach taken in this work has not considered formally the durability or service life of 

geopolymers as opposed to OPC concretes. This was omitted on the grounds that the service 

life is still yet to be clarified for geopolymers as they are an emerging product. However, the 

testing of geopolymer concrete under a variety of applications has indicated that the 

durability and service life is likely to be better than that of traditional concretes.  Hence the 

assumption of equal durability and service life is likely to underestimate the benefit of 

geopolymers over OPC-based concretes or overestimate the cost.  This is especially relevant 

in applications such as railway sleepers, where a schedule of replacement is expected. 

Recycling of end-of-life products have also been neglected for this assessment.  It may be 

assumed that, as for standard concretes, the utilization of recycled geopolymer would largely 

be in the form of aggregate. There is potential for further research to examine the full life 

cycle for particular functions (e.g. railway sleepers, sewerage applications, etc.), and with a 

closer examination of average lifetime and recyclability. The material input diagrams and life 

cycle processes included in the analysis for geopolymers and OPC respectively are shown in 

Figures 1 to 4. 

Figure 1: Schematic of production of geopolymer concrete 

 
Figure 2: Life cycle stages considered for production of geopolymer feedstock 
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Figure 3: Schematic of production of OPC-based concrete 

 

Figure 4: Life cycle production stages for OPC 

 
 

The inventories of emissions, costs and energy usage were developed through a literature 

review of reported values and some theoretical estimates where no data was available.  

Attempts have been made to ensure that the data are used on a comparable basis, so that there 

is not a distortion of the boundaries of the analysis.  Importantly, waste products (i.e. fly ash 

and silica fume
2
) are not allocated any of the emissions from the processes that produce them 

as a waste stream.  The justification for this approach is that these wastes would not be 

generated without the production of their associated commercial product (e.g. electricity in 

the case of fly ash and silicon in the case of silica fume), and hence the emissions should be 

allocated to their respective commercial products.  This assumption means that, apart from 

any post-collection processing, these materials come with no “embodied impacts”.  

Energy data have been obtained from the available literature – mostly this has been 

available as electricity and fuel or thermal energy usage.  The energy usage has been vital to 

calculating the potential greenhouse gas emissions.  Typically a high, average and low value 

have been available from the literature.  Metakaolin was the most difficult material to 

develop an inventory for, as little if any verifiable life cycle data are available [22].  In lieu of 

this lack of data, the authors estimated energy and emissions values of the mining of 

                                                 
2
 There is some debate as to whether silica fume should be allocated some of the impacts of 

the production of silicon (from which it is a by-product / waste), due to the large scale usage 

in the cement industry. The argument against any allocation is that the silicon production 

process is not run or optimised for the production of silica fume. Silica fume is merely a 

profitable waste product. If environmental impacts are allocated to the waste stream, the use 

in cement is less attractive.  



metakaolin based on energy for bauxite mining and the thermal energy for calcining 

metakaolin.  These thermal energy estimates were calculated for heating kaolin from room 

temperature to 700
o
C, assuming evaporation of all water formed by de-hydrolysis at a heat 

transfer and fuel utilisation efficiency of 65%.   

Transportation of materials at all life cycle stages leading up to the production of the binder 

is of key importance, as the cost and emissions metrics (especially for waste products) can be 

highly affected by the distance and mode of transport [11, 21].  The transportation stages 

have been separated from the data gathered (wherever possible and appropriate), and 

transportation has been modelled separately.  The transportation emissions [25-27] and cost 

data [28] are for typical Australian applications, with average distances calculated for 

feedstock delivery to the major centres of Adelaide, Brisbane, Melbourne, Perth or Sydney 

(all large users of concrete).  

Transport distances were calculated for the most direct route from the typical source 

locations to the major centres, using a “great circle” calculation from the respective latitudes 

and longitudes (see Tables 1 and 2).  The domestic locations for feedstock sources and OPC 

production and import are shown in Figures 5 and 6.  The authors recognised that under some 

conditions, for example, the longer sea routes, the transportation path might be less direct.  

For land routes, a comparison using Google™ Maps and direct measurements reported by 

mining companies has indicated that the typical tortuosities would imply a distance typically 

5 – 50% greater than the great circle distance. Typically, the shorter the distance is the less 

direct the route and therefore the higher the percentage error. This variability is incorporated 

in a sensitivity analysis for transport effect on the cost and carbon impacts. For a known 

location and feedstock source, an accurate distance should be used to obtain a specific 

comparison.  It should be noted at this point that the costs presented here are in Australian 

dollars, and representative as of July, 2009. 

Some feedstocks are reported in weight percentage of reactive material, while the actual 

form of the feedstock is a solution (e.g. – 50 wt% solution of NaOH and 37 – 40 wt% 

solution of sodium silicate).  This does not affect the production impacts of the feedstock, 

however the extra mass of water has to be taken into account in the calculation of transport 

costs and emissions.  While water content in feedstocks is acknowledged due to its impact on 

volume and therefore transport costs, the water added to the final geopolymer or OPC binder 

is not included at this stage, as it is assumed to be added at the site of use and quantification 

of associated transport is beyond the scope of this study.  Water usage is another 

sustainability metric that should be included for further research, along with the embodied 

energy and emissions for the delivery of that water. 

The OPC production flowsheet presented in Figure 4 is simplified, and does not include the 

addition of minor components such as superplasticiser or supplementary cementitious 

materials (SCMs) such as fly ash or slag. In particular, SCMs are often included in current 

cement mixes, and can have a significant impact on reducing the energy and greenhouse gas 

emissions from such cements [11]. Typical Australian cement blends contain 15 – 30% 

SCMs, hence the emissions from OPC blended cements in Australia are in the range of 760 – 

860 kg CO2-eq / t rather than the 1 t CO2-eq/ t for pure OPC clinker. 

Once the inventory data were accumulated, the data were analysed in two ways.  Firstly, 

the amount of each feedstock that would be equivalent to the entire inventory of greenhouse 



gases or cost for one tonne of OPC was calculated (refer to Figure 8).  This value is useful as 

a guide to show that there is a limit to the amount of each feedstock which can be used before 

the budget, corresponding to one tonne of OPC, is depleted. (However, if one feedstock uses 

up the budget, the emissions from other feedstocks would have to be zero to keep the overall 

emissions equal to that for one tonne of OPC,)  Secondly, some sample mixes of 

geopolymers which have been found to provide useable pastes were utilised as a case study 

(Figure 9) to examine whether the claims of significant greenhouse emissions reductions and 

potential cost parity in comparison with OPC are valid. 



 

Table 1: Geopolymer feedstock and OPC transport and emissions data and references 

Material Classification Specifications Source Location Life Cycle Steps Considered Key  References 

Fly ash Waste  Australia (coal-fired electricity 

generators) 

Collection / Separation from flue gases; [29-31] 

Slag Waste Granulated; Australia (steel-making 

facilities) 

Wet cooling; granulation; [32] 

Sodium 

hydroxide 

(NaOH) 

Product 50 wt% solution 

NaOH 

Europe, USA, Japan, Saudi 

Arabia 

Electrolysis of brine; [33, 34] 

Gibbsite 

(Uncalcined 

alumina) 

Product  Australia (Alumina refineries) Mining; Beneficiation; Bayer process 

(without calcination); 

[34-38] 

Sodium silicate Product 37 wt% solution Western Australia, China, 

India, UAE 

Soda ash production / Sand mining; Furnace 

liquor production; 

[22, 36, 39] 

Metakaolin Product  UK, USA, China Mining; Beneficiation; Calcination; [19, 22, 34, 40] 

Silica fume Waste / By-

product 

 Western Australia, China, 

India 

Collection; [31, 40, 41] 

OPC Product  Australia Mining; Grinding; Calcination; Re-grinding; [6, 11, 14, 17, 18, 

42-46] 

 

 

 

  



Table 2: Transport distances – mean of values calculated to Adelaide, Brisbane, Melbourne, Sydney and Perth  

 Distance (km)
a
 

Material Minimum Average Maximum 

Fly ash   *                   129  Average within own State;             1,408  Average across all coal-fired 

power stations in Australia; 

            3,015  Average to furthest coal-fired 

power station in Australia; 

Slag 736 Average minimum for 

Australia; 

*         1,186 Average for Australia; 1,629 Average to furthest steel-

making facility; 

NaOH                  7,799  Sea transport; *         12,258  Sea transport;          16,114  Sea transport; 

Gibbsite  *                    995  Average minimum for 

Australia; 

Rail transport; 

            2,225  Average for Australia; 

Road transport – articulated 

trucks; 

            3,201  Average minimum for 

Australia; 

Road transport – rigid trucks; 

Sodium silicate                  2,142  Average minimum for 

Australia from domestic 

sources; 

Rail transport; 

*            7,549  Sea transport;  2,142  

 (11,162)  

Road transport – rigid trucks;  

(Sea transport;) 

Metakaolin                7,589  Sea transport; *         12,367  Sea transport;          16,625  Sea transport; 

Silica fume                  2,475  Average minimum for 

Australia from domestic 

sources; 

Rail transport; 

*            6,567  Sea transport;             9,458  Sea transport; 

OPC
b
                        13 Average minimum within 

own State; 

Road transport – articulated 

trucks; 

*                 84 Average within own State; 

Road transport – articulated 

trucks; 

274 Average maximum within 

own State; 

Road transport – rigid trucks; 

a
 Maximum distances and mode of transport are selected as those which maximise CO2 emissions; * values assumed to be “typical” for Australia 

b 
Imports of cement to Australia have been growing in recent years and may contribute 10-20% of the market however, they are not included in this assessment. 

 



Figure 5: Map of domestic feedstock sources and end use destinations 

 

Figure 6: Map of OPC cement production and import centres [48] 

 



3. RESULTS 

The key results from the study are presented in Figures 7 to 9.  Figure 7 shows the 

estimated values of performance metrics (fuel, electricity and greenhouse gas emissions) for 

each of the geopolymer feedstocks. The grey bars indicate the estimated average value for 

Australian conditions. The average is not based on a weighted mean, which would be 

desirable, but is the value judged to most closely approximate the Australian average, given 

the potential sources of feedstock and location of usage. In actual fact, many of the 

geopolymer feedstocks would be sourced from as close as possible to keep transport cost 

down and thus the metric values are more likely to be closer to the minimums. Likewise, the 

OPC market is highly competitive, hence the sources of OPC would typically be those closest 

to the end user in order to reduce transportation costs (although there is emerging competition 

with imported cement that will effect this [45, 46]). The error bars indicate the range of 

values found in the literature.   

 

Figure 7: Geopolymer feedstock production metrics - error bars indicate the range of values found 

in the literature (NaOH and sodium silicate figures quoted here are on the basis of 1t of NaOH or 

sodium silicate solid, although the actual supply will most likely be as a solution. For sodium silicate 

we have used a SiO2 : Na2O weight ratio of 2.0.) 

 
 

Figure 8 gives estimates of the how much a particular feedstock could be used before the 

resulting geopolymer would have an equal greenhouse gas emissions or cost impact to that of 

OPC.  This figure can be taken as the absolute limit for a given feedstock in producing the 

equivalent geopolymer to replace one tonne of OPC.  The data are presented on the basis of 

production alone and production plus transportation.  The results indicate that the cost 

limitations – especially with the cost of transportation included – are likely to be the limiting 



factor in geopolymer performance comparison.  However, in the situation where a carbon tax 

of $20 / t CO2-eq is applied, most geopolymer feedstocks become cost competitive. 

 

Figure 8: Geopolymer feedstock limitations on amount that can be added for an equivalent 1 tonne 

OPC on the basis of cost or CO2-eq- error bars indicate the range of values found in the literature 

 
Figure 9 shows a comparison between 4 potential geopolymer mixes (see Table 3 for mix 

details) on a production basis alone and a production plus transportation basis. This indicates 

that geopolymers can range in potential cost and greenhouse gas competitiveness from much 

lower (approximately 72% reduction in cost and 97% reduction in greenhouse emissions) to 

the same or higher than an OPC mixture (up to approximately eight-fold cost increase and 

14% increase in greenhouse emissions).  On a production-only basis, the geopolymer is seen 

to be significantly better in greenhouse emissions terms, and potentially competitive on a cost 

basis. However, when transportation is included the benefits are less clear – for short 

distances there is a definite benefit but for long distances there is a negative impact. 

 



Figure 9: Example mixes - comparison of greenhouse gas emissions and cost on a dry tonne basis 

(Comparison of feedstock production only and feedstock production with transport included 

(designated “–transport”) emissions and costs) 

 
 

Table 3: Example geopolymer paste mixes (wt % without added water)
3 

 Mix 1 Mix 2 Mix 3 Mix 4 

Fly ash 84 91 85.2 78 

NaOH 11 7.2 7.6 11 

Sodium silicate 0 1.8 7.2 0 

Silica fume 5 0 0 9 

Gibbsite 0 0 0 2 

 

Given the variability in the emissions and costs for geopolymers produced from feedstocks in 

Australia, it was thought to be important to find a typical value of the emissions and cost. 

This typical value could then be used as a „first guess‟ estimate for comparison with OPC 

products. Based on an understanding of the various feedstock production drivers, it was 

determined that the transportation distances to find the “typical” value in an Australian 

context would be the minimum value for fly ash, sodium silicate, gibbsite and silica fume, 

and the average value for NaOH and metakaolin. The values for greenhouse gas and cost that 

                                                 
3
 The four mixes shown in this table are commonly used mixes with various fly ashes with a 

strength of approximately 40 MPa, made with a range of starting materials to provide a 

indication of range of cost and carbon dioxide emissions. 



would be expected for the “typical” geopolymers using the above four mixes are shown in 

Table 4.  These typical values and the corresponding equivalent for OPC are also shown in 

Figure 10, as well as the contribution that the production of each feedstock and transport 

make to the overall cost and emissions. This analysis shows that geopolymers from typical 

feedstock sources, typically in close proximity to the point of usage, could produce 

improvements of up to 64% in terms of greenhouse gas emissions over OPC.  In cost terms, 

the performance of geopolymers showed that an improvement over OPC is possible, with 

costs ranging from 7% lower to 39% higher than OPC. This indicates that geopolymers are 

likely to be disadvantaged on price performance under current pricing structures and without 

a carbon price.  Figure 10 further indicates that the key source of emissions for the 

geopolymer mixes examined here is caustic soda.  Thus one of the important research 

questions for geopolymer development to improve the greenhouse impacts of their product 

even further must be how to reduce the dependence on raw caustic soda production, or to 

source this feedstock from lower-emitting producers. 

 

Figure 10: Comparison of contributions to a "typical" Australian geopolymer paste and OPC 
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Where:  

GHGTotal = total greenhouse gas emissions 

mi = mass of component i 

di = distance transported (by a given mode of transport) 

ei = emissions factor for transportation mode 

pi = emissions per unit mass of i produced 

For the typical Australian situation this could be expressed as: 
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Where the subscripts denote: 

fa = fly ash; 

NaSi = sodium silicate; 

g = gibbsite; 

m = metakaolin; 

SiFume = silica fume; 

Also, it must be noted that this equation includes adjustments to convert from dry weight to 

total solution weight for sodium silicate and sodium hydroxide. 

 

Table 4: Typical greenhouse gas emissions and costs for four geopolymer mixes compared with OPC 

 Mix 1 Mix 2 Mix 3 Mix 

4 

GP CO2-eq (kg / t binder) 404 271 310 425 

Blended OPC CO2-eq (kg / t binder) 760 

Difference   47% 64% 59% 44% 

Cost ($ / t binder) 152 118 140 176 

OPC Cost ($ / t binder) 120 

Difference -21% 7% -11% -39% 

 

Literature mixes for geopolymers and comparative OPC concretes were examined and the 

carbon and cost factors from this research applied. It was identified that: 

1. A comparable amount of cement or geopolymer paste is used to make concrete (both 

in kg / m
3
 of concrete and in wt %)  

2. The carbon and cost contributions of aggregate were minimal and comparable (due to 

the first point), and typically made little difference to the comparative impact over a 

comparison of the binders 

3. The amount of water used in the mixtures was typically lower for geopolymers 

 

 The data obtained for these comparisons are shown in Table 5. The impact of transport for 

these mixes is in the range of 5 – 21% of the total CO2 emissions for OPC concrete and 41 – 

43% for geopolymer concrete, which is indicative of the much longer distances travelled by 

geopolymer feedstocks.  When only the binder was considered, the impact of transport fell to 



1 – 10% for OPC versus 40 – 45% for geopolymer paste, which shows the relative impact of 

transporting aggregate and other feedstocks.  A simple sensitivity analysis of the effect of 

transport inaccuracies on overall emissions is shown in Table 6.  While geopolymers will be 

affected to a greater extent than OPC concretes (due to the higher transport contribution to 

feedstock impacts), the distances for geopolymers are significantly longer, and therefore 

likely to be more accurate than the distances for OPC for the analysis in this paper.  This 

work has not included consideration of the 10-20% of imported cement that has recently 

become a part of the Australian market [45, 46] however, the additional transport involved in 

importing cement will only add to the greenhouse gas reduction argument for geopolymers. 
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Table 5: Calculations on reference geopolymer and OPC concrete mixes 

 Mass of Component (kg / m3) 

 Weil (2009) [21] Stengel (2009) [23] Prusinski (2006) [10]  

(OPC Concrete) 

Sumajouw (2009) [47] 

(Geopolymer) 

Component Cement 

concrete 

Geopolymer Cement 

concrete 

Geopolymer 1 2 3 4 1 2 

Cement 340  240  360 234 180 288   

slag  230    87 124    

fly ash  57 120 408    44 408 404 

reactive waste  83         

Na silicate (37%)  33  103     103 102 

NaOH (50%)  24  41     41 41 

de-ionised water 170 99 160 22.5 141 141 141 141 26 16.5 

Superplasticizer   6 6     6 6 

Gravel 1878 1878 1150 1294 1127 1127 1127 1127 1202 1190 

Sand   750 554 831 831 831 831 647 640 

Concrete mass (kg / m3) 2388 2404 2426 2428.5 2459 2420 2403 2431 2433 2400 

Binder mass (kg / m3) 510 526 526 580.5 501 462 445 473 584 569.5 

wt % binder  21.4   21.9   21.7   23.9   20.4   19.1   18.5   19.5   24.0   23.7  

Dry binder wt%  14.2   16.4   15.1   19.9   14.6   13.3   12.7   13.7   19.9   20.1  

SCM % of total CM  -     100.00   33.33   100.00   -    27.10  40.79  13.25   100.00   100.00  

Water mass (kg / m3)
4

 
170 131.79 160 98.22 141 141 141 141 99.567 88.278 

wt% water  7.1   5.5   6.6   4.0   5.7   5.8   5.9   5.8   4.1   3.7  

Aggregate (kg / m3) 1878 1878 1900 1848 1958 1958 1958 1958 1849 1830 

wt % aggregate  78.6   78.1   78.3   76.1   79.6   80.9   81.5   80.5   76.0   76.3  

Metrics (Feedstock only)           

kg CO2-eq / m
3 316 115 237 200 341 233 187 279 201 200 

kg CO2-eq for binder 290 89 205 170 307 199 153 245 170 169 

Cost of binder ($ / m3) 41 44 37 78 43 34 30 38 78 77 

Metrics (With transport)           

kg CO2-eq / m
3 333 201 284 339 376 279 237 320 342 340 

kg CO2-eq for binder 292 161 222 283 310 212 170 253 283 282 

Cost of binder ($ / m3) 43 98 51 157 45 45 45 44 157 156 

                                                 
4
 Water mass includes all added water in reagent solutions and mixing water. 
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Table 6: Sensitivity of emissions to transport distance underestimation 

 Relative increase in emissions 

 Geopolymer concrete OPC concrete 

5 % increase in transport distance ~2% <1% 

50% increase in transport distance ~20% 3 – 10% 

 

4. DISCUSSION 

The results of this study indicate that it is not possible to make a simple sustainability 

comparison on the use of OPC and geopolymers.  This is due to the significant impact of 

reagent transport and variability in the source of energy and technology used to produce the 

reagents.  Transport has been minimised for OPC, as it is an established product; however, 

geopolymers are yet to go through this cycle of scale-up. Large scale geopolymer use is likely 

to lead to lower costs due to large orders of reagents.  Even so, there seems to be significant 

potential for geopolymers to be cost effective and environmentally beneficial.   

This work has taken a broad approach, and the availability of better quality data would 

produce a more accurate analysis of the impacts – especially in relation to metakaolin 

production.  It is also important that research be undertaken to develop greater understanding 

of how geopolymer performance in various applications will affect the environmental and 

cost inventories.  If the lifetime and recyclability are included, the results of the current study 

may vary extensively.  Further work should also be done to incorporate further sustainability 

metrics, and give a wider picture of sustainability performance. 

This work has brought together a range of reported data from the literature, in order to 

demonstrate the potential variability in the sustainability potential of geopolymers compared 

with OPC.  The results show that it is important to assess the specific source of OPC and 

geopolymer feedstocks and transport impacts in order to be able to definitively state the 

relative sustainability performance for a given application in a given location.  This work will 

be facilitated to some degree by a geopolymer calculator that is currently under development 

by the co-authors from Curtin University of Technology.  There is also potential for 

optimisation and mapping to give an indication of the regions of applicability for most benefit 

from geopolymers from given feedstocks.  

The values for improved greenhouse gas emissions for geopolymer pastes compared to 

OPC are in the mid-range of estimates for geopolymer concrete as reported by other authors 

[21, 23].  However, this study acknowledges that there is a significant potential for variability, 

depending on the particular mix formulation and source of feedstocks.    

The examination of concrete mixes for OPC and geopolymer concretes has indicated that 

the impact of transport is higher in geopolymer concretes. Comparison of geopolymer paste 

versus OPC is found to be sufficiently valid and reasonable given the similar amount of 

geopolymer binder or cement used to create a cubic metre of concrete. 

Key challenges for geopolymer development will include the need to reduce cost by 

utilising (for example) less expensive waste feedstocks, and by optimising the amount of 

transport required to obtain those feedstocks at the point of use.  Optimisation of transport is 

of particular concern in a vast, relatively isolated country such as Australia. Geopolymers‟ 

advantage on a carbon basis may increase with the optimisation of feedstock transport and the 
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increasing reliance on imported cement [45, 46]. Additionally, there is further potential to 

reduce greenhouse gas emissions through reducing transport distances and reducing the 

dependence on high-emissions raw caustic soda for geopolymer pastes. 

 

5. CONCLUSIONS 

This paper indicates that there is great potential for geopolymers to reduce the climate 

change impacts of cement production. For the proposed “typical” Australian geopolymer 

product, there is an estimated 44-64% improvement in greenhouse gas emissions over OPC, 

while the cost of these geopolymers can be up to twice as high as OPC.  However, the paper 

also indicates that those benefits are only realisable given the most appropriate source of 

feedstock and the least cost transportation. The broad range of potential feedstock sources 

leads to a very wide range of potential impacts: compared with emissions from OPC concrete, 

emissions from geopolymer concrete can be 97% lower up to 14% higher. Each application 

for geopolymers therefore needs to be assessed for its specific location, given that the impact 

of location on overall sustainability is one of the determining factors. 
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