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Drawing the complex projective structures on
once-punctured tori

Yohei Komori (Osaka City Univ.)

1 Introduction

This report is based on my talk at RIMS International Conference on ” Geom-
etry Related to Integrable Systems” organized by Reiko Miyaoka. In my talk
I showed many interesting pictures of one-dimensional Teichmiiller spaces
and related spaces created by Yasushi Yamashita (Nara Women’s Univ.)
which were already appeared in [3]. In this report I would like to explain the
background of these pictures, which are explained more extensively in [2].
I would like to thank Yasushi Yamashita for his kind assistance with com-
puter graphics, and Yoshihiro Ohnita for his constant encouragement for me
to write this report.

2 Definition of T(X)

Let X be a Riemann surface of genus g with n punctures. Here we assume
that X is uniformized by the upper half plane H in C, which implies the
inequality 2g — 2+ n > 0. The Teichmiiller space T(X) of X is the set
of equivalent classes of quasi-conformal homeomorphisms from X to other
Riemann surface Y, f : X — Y: twomaps fi : X > Yy and fo : X — Y,
are equivalent if foo f!:Y; — Y3 is homotopic to a conformal map. If we
assume f : X — Y as a quasi-conformal deformation of X, T(X) can be
considered as the space of quasi-conformal deformations of X.

We will consider a complex manifold structure on 7(X), embed it holo-
morphically into complex affine space and try to draw its figure. For this
purpose, we give another characterization of 7'(X) due to Ahlfors and Bers
in the next section. '
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3 Complex structure on 7(X)

Let I' C PSL2(R) be a Fuchsian group uniformizing X = H/I". A measurable
function v(z) on the Riemann sphere CP' whose essential sup norm is less
than 1 is called a Beltrami differential for I' if 1 is equal to 0 on the lower
half plane L in C and satisfies

7'(2)

(2 - 55 = ()
for all z € CP! and v € I. This functional equality implies that y on H
is a lift of (—1,1) form on X. We denote the set of Beltrami differentials by
B (I', H) which has a structure of a unit ball of complex Banach space. The
measurable Riemann’s mapping theorem due to Ahlfors and Bers guarantees
that for any u € Bi(I', H) there exists a quasi-conformal map f* : CP! —
CP?! such that f* satisfies the Beltrami equation

08" 3 _ O
() = u() 5-(2).

Also f* is unique up to post-composition by Mobius transformations.

Here we have two remarks: (i) f* is conformal on L. (ii) The quasi-
conformal conjugation of I' by f#, I'* = fLI'(f#)~1is also a discrete subgroup
of PSLy(C) acting conformally on f*(H).

Now we say u1 ~ po for pa, puz € By(I',H) if I'** = I'#2. Then T(X)
can be identified with the quotient space B,(I',H)/ ~ as follows: For any
[1] € Bi(T',H)/ ~, we have a quasi-conformal deformation of X

f#: X =H/T — f*(H)/T*

which defines a point of T(X). T'(X) becomes a complex manifold of dimcT(X) =
3g — 3+ n through the complex structure of B;(I', H). We will embed T(X)
holomorphically into the complex linear space by means of complex projec-
tive structures on X, the mirror image of X which will be explained in the
next section.

4 Complex projective structures on X

Let S be a surface. A complex projective structure, so called CP-structure
on S is a maximal system of charts with transition maps in PSL2(C). Since
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elements of PSL,(C) are holomorphic, any CP!-structure on S determines its
underlying complex structure. Suppose we consider a CPl-structure whose
underlying complex structure is equal to X = /T, the mirror image of
X. For a local coordinate function of this CP'-structure, we can take its
analytic continuation along any curve on X and have a multi-valued locally
univalent holomorphic map from X to CP'. This map is lifted to IL a locally
univalent meromorphic function W : L — CP?! called the developing map of
this CP!-structure. It is uniquely determined by the CP'-structure up to
post-composition by Mobius transformations.

When we take an analytic continuation of a local coordinate function
along a closed curve on X and come back to the initial point, it differs
from the previous one by a Md&bius transformation since the transition maps
are in PSL»(C). Consequently we have a homomorphism x : ' & 7y(X) —
PS Ly(C) which is called the holonomy representation and satlsﬁes x(y)oW =
W o« for all 4y € I". Therefore the CP-structure on X determines the
pair (W, x) up to the action of PSL,(C) and vice versa. Here we show the
most basic example of CP!-structures on X: Let W be the identity map
W : L < CP! and x also be the identity homomorphism x : I' «— PSL,(R)
which induces a local coordinate function as a local inverse of the universal
covering map L. — X. We call this CP*-structure the standard CP-structure
on X.

Let P(X) = {(W, x)}/PSLy(C) be the set of CP*-structures on X. We
will parametrize P(X) by holomorphic quadratic differentials on X as follows:
A holomorphic function ¢ on L is called a holomorphic quadratic differential

for I if it satisfies
p(1(2))7(2)* = (2)

for all z € L and v € I'. It is a lift of holomorphic quadratic differentials
on X = L/T. Let Q(X) be the set of holomorphic quadratic differentials for
I' whose hyperbolic sup norm ||¢|| = sup, ¢ |S2|%¢(2)| is bounded. Q(X)
has a structure of complex linear space of dimcQ(C) = 3g — 3 + n which is
equal to the dimension of 7(X). We show that there is a canonical bijection
between P(X) and Q(X) which maps the standard CP!-structure to the
origin: Given a CP!-structures on X, take the Schwarzian deriative of W

= ("5~ 3"

which is an element of Q(X). Conversely given a holomorphic quadratic
differential ¢ for I', solve the differential equation Sy = ¢ on L. In practice
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to find the solution f, we consider the following linear homogeneous ordinary
differential equation of the second order

2n" +¢on=0

on L. Since L is simply connected, a unique solution 7 exists on L for the
given initial data n(—i) = a and n/(—i) = b. Let n; and 7, be the solution
defined by the conditions 7;(—2) = 0 and n{(—%) = 1, and 72(—i) = 1 and
n5(—2) = 0. Then the ratio f, = n:/n2 is a locally univalent meromorphic
function on L, the developmg map associated with ¢. A direct computation

shows that n('y(z))(v (z))~7 also satisfies the above equation hence there is
a matrix of SLz(C) such that

( m(v())(v'(2)) 7% ) _ ( a b ) ( m >
n2(7(2))(v'(2)) 2 ¢c dj\m
for all vy € I'. As a result we have a homomorphism x,, : I' — PSL,(C), the

holonomy representation associated with ¢. We can also consider x, as the
monodromy representation of the above differential equation.

5 Bers embedding of T(X)

Now we embed 7'(X) into Q(X) = C*—3*" by means of the identification
P(X) = Q(X). For each element [u] € T(X) = By(T,H)/ ~, fH|L is confor-
mal and I'* = f*T(f#)~! is a quasi-fuchsian group. Therefore it determines
a CP!-structure on L/T' where the developing map is W = f*|_ and the
holonomy representation x : I' — I'* is defined by x(v) = f4y(f*)~!. After

the identification P(X) = Q(X), T(X) can be embedded into Q(X), which
is called the Bers embedding of T'(X).

We will show not only the picture of 7'(X) but also other CP!-structures
on X: Let K(X) be the set of CP'-structures on X whose holonomy groups
are Kleinian groups, discrete subgroups of PSL,(C). Shiga [4] showed that
the connected component of the interior of K(X) containing the origin co-
incides with 7(X). Shiga and Tanigawa [5] proved that any CP!-structure
of the interior of K(X) has a quasi-fuchsian holonomy representation. Ne-
hari showed that T(X) is bounded in Q(X) with respect to the hyperbolic

sup norm ||p|| = sup, ¢ [S2|%¢(2)|, while Tanigawa proved that K(X) is
unbounded.
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6 Pictures of T(X) and K(X)

We will show pictures of T'(X) and K(X), all of which depends on the under-
lying complex structure of X. All picture were drawn by Yasushi Yamashita.
Figure 1 and figure 2 are the case that X has a hexagonal symmetry. Figure
3 and figure 4 are the case that X has a square symmetry. Black colored
region consists of ¢ whose holonomy representation has an indiscrete image.
For both cases, T'(X) looks like an isolated planet, while K(X) itself looks
like the galaxy: Some planets seem to bump each other... When we take
X anti-symmetric, T'(X) and K(X) become distorted, which we can see in
figure 5 and figure 6.
To draw these pictures we need

1. to calculate the holonomy representation x, for p € Q(X), and
2. to check whether x,(I") is discrete or not.

First we will explain (1). To determine x,, we must solve Sy = ¢ on L.
In general ¢ € Q(X) is highly transcendental function on L and it is very
difficult for us to handle it. Here is an idea: If dimcT(X) =3g—3+n =1,
then (g, n) = (0,4) or (1,1). Take X = CP' — {0, 1, 00, A}, then we can ﬁnd
a basis of Q(X) like Q(X) =C- w*(m). Even in this case, it is still

difficult to solve y

ww— 1)(w— )\))

where 7 : L — CP*—{0,1,00, A} and ¢t € C = Q(X). But we can push down
the above equation onto X = (ClP’l {0,1, 00, \}

Sy =m*(-

t 1 1 c(A)
w(w—1)(w—A) + (2w2('w —1)2 + 2(w — N\)? * w(w — 1)(w — )\))

Ston-1 =

where ¢()) is called the accessory parameter of w: L — X.
To get the solution we take the ratio of two linearly independent solution

of
1 1 t+ c(\)
2 " — 0
vV G T 2w T ww = D =Y
and calculate the monodromy group of this equation with respect to closed

paths of m;(X) = F3. Since the above ordinary differential equation has
rational coefficients on CP', we can use computer to get the image of 3
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generators of m(X) in PSLy(C) numerically. Here we remark that to draw
the picture of K(X) up to parallel translation, we don’t need to determine
the accessory parameter ¢(\) in practice.

For (2), we apply Shimizu lemma to check whether x,(I') is indiscrete,
and Poincaré theorem to construct the Ford fundamental domain to check
whether x,(I') is discrete. This part is so called Jorgensen theory and has
been proved recently by Akiyoshi, Sakuma, Wada and Yamashita [1].

References

[1] H. Akiyoshi, M. Sakuma, M. Wada and Y. Yamashita, Punctured Torus
Groups and 2-Bridge Knot Groups I, Springer LNS. 1909.

[2] Y. Imayoshi and M. Taniguchi, An Introduction to Teichmiiller Spaces,
Springer (1999).

[3] Y. Komori, T. Sugawa, M. Wada and Y. Yamashita, Drawing Bers em-
beddings of the Teichmiiller space of once-punctured tori,
Experimental Mathematics, Vol. 15 (2006), 51-60.

[4] H. Shiga, Projective structures on Riemann surfaces and Kleinian groups,
J. Math. Kyoto. Univ. 27:3(1987), 433-438.

[6] H. Shiga and H. Tanigawa, Projective structures with discrete holonomy
representations, Trans. Amer. Math. Soc. 351 (1999), 813-823.



Figure 2: K(X) for hexagonal symmetry
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Figure 3: T(X) for square symmetry

Figure 4: K(X) for squa.te symmnetry
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Figure 6:

distorted K(X)
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