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Abstract. Recently a new algorithm for computing singular values named the mdLVs (modified
discrete Lotka-Volterra with shift) is designed. The first part of this report is a brief survey of
the recent developments on the positivity and shifts of the mdLVs algorithm. The second part
is an exposition of the I-SVD (Integrable Singular Value Decomposition) algorithm which is a
combination of the mdLVs algorithm and the dLV-type transformation for computing singular
vectors of bidiagonal matrices. Because of the separation of computation of singular values
from that of singular vectors the I-SVD algorithm runs in O(m?) flops and is rather faster than
DBDSQR code of LAPACK.

1. Introduction

An algorithm named the dLV (discrete Lotka-Volterra) algorithm for computing bidiagonal
matrix singular values has been discussed in the series of papers [11, 12, 13, 14, 15], where such
bidiagonal matrices can be derived from arbitrary nonsingular matrices through the Householder
preconditioning process [9]. A general background is furnished in [21, 22]. See also a recent
review paper [3]. The recurrence relation of dLV itself is a discrete-time integrable dynamical
system. Convergence of the dLV algorithm to singular values is shown in [11]. See §4 of
this report. The basic fact is that dLV is a deformation equation of orthogonal polynomials
(OPs). The parameter of dLLV should be positive. Therefore the recurrence relation of dLV is
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subtraction free. A positivity of Hankel determinants is ensured whose elements are moments
associated with OPs and then all the variables of dLV are also positive [14]. This fact will be
reviewed in §3. In a recent work [15] an exponential stability of dLV in a local sense is proved
by using the existence of a center manifold around the fixed points. This implies that dLV is
robust and highly credible algorithm. The convergence rate of the dLV algorithm is linear [11].
Therefore some shifted versions of dLV have been formulated in {12, 13].

The mdLVs (modified dLV with shift) algorithm presented in [13] is shown to satisfy the
same positivity of variables and has a higher relative accuracy. Speed of the mdLVs algorithm
depends on the choice of shift of origin. The cost for computing shifts wastes more than 30% of
total execution time of the mdL.Vs code [29], where the shift is determined as a lower bound of
the minimal singular value of given upper bidiagonal matrices. Therefore a lighter shift based
on more accurate bound must be important to accelerate the mdI.Vs algorithm. The Johnson
bound [17], a Gersgorin-type lower bound of symmetric tridiagonal, has been adopted in the
mdLVs code [29]. Recently a new lower bound is found which is called the p-th generalized
Newton bound. In the first part of this report (§2~§5) we discuss the recent developments on
the positivity and shifts of the mdL.Vs algorithm.

The second part (§6~§7) is an exposition of the I-SVD (Integrable Singular Value Decom-
position) algorithm([16] which is a combination of the mdLV's algorithm for singular values and
the dLV-type transformation for singular vectors of m x m bidiagonal matrices. Namely, com-
putations of singular values and vectors are completely separated in I-SVD. Here the dLV-type
transformation performs an accurate double Cholesky decomposition of a shifted symmetric
tridiagonal matrix which gives rise to a twisted factorization of the same matrix. Each singu-
lar vector is computed from the twisted matrix within O(m) flops. Then the I-SVD algorithm
solves the bidiagonal SVD problem within O(m?) flops. It is shown in [30] for some class of
test matrices that the I-SVD code is rather faster than the standard SVD code of LAPACK.

2. Orthogonal Polynomials: Preliminary

Let us begin with Favard’s theorem [2]. Let {s;}, (k = 1,2,...) be a sequences of real
numbers. When the bilinear form 73" (3> % skyeakop is positive for any m, then {s} is
called positive. It is known that {s } is positive if and only if the Hankel determinants

So S1 Tt Sn
31 S2 *rr Sn4l

Dpi =1 . ) ] , (n=0,1,2,...)
S8n Sn41 Son

are positive forany n = 0,1,....

Theorem (Favard) Let {a;}, {bx}, (k = 1,1,...) be sequences of real numbers. Let {px(N)}
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be polynomials of A defined by the three terms recurrence relation

Pra1(A) = (A = bey1)pe(A) — ar’pr-1(N),
po(A) =1, pi(A) = A —=b,.
Then there exists a unique linear functional J such that so = J[1],J[px(A)pe(N)] = 0,(k #

4, k,£ =0,1,...) for any positive constant so. Moreover, a;? > 0 if and only if the moments
sk = J[A*],(k = 0,1,...) are positive.

The polynomial pr(A), (k = 1,2,...) takes the determinant form [27]

So Sl PR Sk
1 81 82t Sk
k(A) = —
pr(A) Dy
Sk—-1 Sk " S2k-1
1 ) S V.

Then the coefficients a;? of the recurrence relation are

akz _ Dk~1 Dk+1
D,?

It is shown from a;2? - - - ax? = D41/ Dy that Dy, > 0 for any k and the corresponding moments
are positive.

Favard’s theorem says that the polynomials {px())} defined by the three terms recurrence
relation with positive coefficients a;? are orthogonal with respect to the linear functional J.
Namely, J[px(A)pe(A)] = soa1? - - - ax®6¢. In this case the corresponding set of moments {s; }
is positive and vice verse.

OPs have some special features. One of them is the position of zeros. It is known that zeros
of OPs are mutually distinct real numbers and has an interlacing property[1]. For example,
let )\(" Y65 =12...,n—1) and /\gn),( = 1,2,...,n) be zeros of p,_;(A) and p,(}),
respectlvely Then

PP PPILPP I PRI e SOl

This leads to the following statement. The rational function p,_;()A)/p,(\) of degree n admits
a partial fraction expansion

Pn— Z PJ (n) _ Prn-1 ()‘( ))
pnm LA Ty
From the interlacing property it follows that the residues p( ™), the Christoffel coefficients, satisfy
the positivity condition p(") > 0. '
For the Hermite, Legendre and Chebyshev polynomials every moments with odd order are
zero, namely, szx—; = 0. In the linear functionals of those cases the measure du()) and the
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contour C, are invariant under the exchange A — —A\. The linear functional J satisfying
spe-1 = J[APT =0, (k = 1,2,...) is called symmetric and the corresponding OP is
called symmetric. When du(A) = w(X)d), the weight function w(\) is an even function over
the interval (—£,£). The coefficients by, of the recurrence relation are zero for symmetric OPs.
Namely, b = 0, (k = 1,2,...). In the following discussions we restrict ourselves to symmetric

OPs.
Let us consider the three terms recurrence relation of symmetric OPs
Prr1(A) = Apr(A) — an’pir-1(N),
po(A) =1, pi(A) = A

In [14] we obtain the Christoffel-Darboux formula for symmetric OPs as follows.

,
2 Pza 1(’\)P21 1()

a *Ggm-1° Z © ;12

J _ P2 1(A)p2 +1(’*) {’\z +1(M)Pam-1(x) for k=2m —1

P2j ()\)Pz ( )
4% ap? > (112—;_2 + po(A)po(x)
= P2m(A)p2m+2(k) = Pam+2(A)pam (k) for k=2
\ <2 _ A2 - om

In contrast to the case of usual OPs [1, 2, 27], a parity emerges. The Christoffel-Darboux
formula is useful, for example, to discuss the convergence of OP series.

3 Discrete Lotka-Volterra System and Its Positivity

In this section we fist define a kernel polynomial p}(A) of the original symmetric OP p, ().
To this end we assume pi(x) # 0.

4

2
A" Ggme 12 szj 1()‘ P2j- 1(’9)

P2m—1(f‘€) +A2j ~1

for k=2m —1
=1

Pi(}) == o

_a’ e’ ( Pza(A)Pza('f)
1

sz(fﬂ) ag?--

+P0()\)Po(l€)) for £k =2m

\
Then the Christoffel-Darboux formula leads to
1 Pr+2(K)
(A= —— A+ Arpr())),  Ap = 2R
P(X) = =7 (Pra2(A) + Aipi(X)) k P (%)
When k = 2m — 1, pi(A) is an odd function. When k = 2m, p;()) is even. The poles A = +«
are apparent poles. Hence pj () is a polynomial of degree k. The transformation

(N} — {pr (M)}
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is just the Christoffel transformation for the symmetric OP {p;(\)}. Let us introduce a new
linear functional J* by
S TAN)] = J[(s* = A% A(N)],

for any polynomial A()) and a suitable constant x < 0. The corresponding weight function
is w*(A) = (k* — A®)w(A). We can generalize a theorem in [2] on the positivity of linear
functional.

Theorem [14] Let the linear functional J be positive definite over the interval [—¢, ¢ ,] with
¢ > 0. The J* is positive, i.e. {s} := J*[A*] is positive over [—¢, ¢, ], if and only if x < —£.

We now consider a successive use of the Christoffel transformations

(n)
e S Sy ORI S B ¢ Gl S
Dy (K;(n))Z_)\2 (pk+2+A )7 Ak : W (n_O, 1,‘,,)

to generate a sequence of kernel polynomials

{p = pe(V)} = {0 = pr(V)} = (PP} — -

where p{™ (k")) # 0 follows from £ > —A{™
As the compatibility conditions of the Christoffel transformation and the recurrence relation

pfjﬁl) = Ap{"™Y — (a"*)2p"Y) we obtain

(@) = (o) is
Ai ’1

(a (n))zpk+2(’€(n)) P§c7i)1(’f(n))
P (k™) 7, (k)

Let us set
~(n) .__ r.(n) zpk 1(K(n))
w = @IS
(5
It follows from p™) = 0 that a{™ = 0. Let A§”), (j =1,...,k) be zeros of the OP p{™ ()). Note
that in the partial fraction expansion

PL(E™) A
in)(’c(n)) oy () — /\gn)

the residues p ) of are positive. While it follows from the positivity of the linear functional J*
that x() — ,\(”) < 0. Thus p{”, (™) /p{™ (k™) < 0 and then (™ < 0.
Inserting u( ™ into the three terms recurrence relation we derive

(@ = a2, (<) 4 30,



92

Similarly we have
(@) = ) (w7 4 a7 )

(a{"*")2 to have

We eliminate

e+ a7Y) = Al () + ).
This equation was first derived by Hirota (1997, [10]) and Spiridonov-Zhedanov(1997, [26]),
independently, where x(*) are arbitrary constant. In our case (™) should be less than or equal
to —¢ to guarantee the positivity of the linear functional, say J(® and then Hankel determi-
nants D( ). Since u( ™ is expressed as a ratio of the Hankel determinants, this property is very
important to design stable numerical algorithm. Define

1
(k)2

We can introduce a scale change u(") — 1/(E M)y} () to relax the condition 0 < §®) <1/€
to 0 < 6™ < M for some positive constant M, Then we obtain

50 = >0, wuf =k > 0.

(n+1)(1 +5(n+l)u§c“_4i1)) (")(1 +5(n)u(”)
u>0, 0<6™<M, (n=0,1,..., k=1,2...)

Let us regard uk") as the value of u; = u(t) at the time ¢t = E;‘;& 6U). Keeping ¢t to a
constant we take a limit §(® — +0 such that §"*1)/§(") — 1. We then derive the system of
differential equations

duk

dt
for the variable u; = u(t) from the recurrence relation. This process corresponds to the limit
k(™ — —oo and does not violate the positivity of linear functionals. This system is sometimes
called the Lotka-Volterra (LV) system in mathematical biology. In this section it is shown
that the successive Christoffel transformations of symmetric OPs induce a deformation of the
coefficients {afr")} of the three terms recurrence relation. The resulting deformation equation is
the dLV system having a positive explicit solution.

= Uk(Uk+1 — Uk__l), UO(t) = 0, (k = 1,2, .. )

4 Convergence of dLV Algorithm

In the series of papers [11, 12, 15] it is shown a solution of dLV converges to the same limit
as of the LV for any choice of positive §(*). Namely,

lim »!" ) =0 lim '™ =0

where o} are singular vales of B such that

o1 > 00> >0, > 0.
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It is to be remarked that the initial value setting is different from that in the LV case. We should
choose

bor <2
NO) 2k—1 (

= , =1,2,...,m),
2k—1 1+ 5(0)’“;?_2 ’ )
©) bax?
) = —2 —— (k=1,2,....m—1),
2k 1+ 5(0)Ug?c)_1 ( ’ » )
as well as u(()O) = 0 and u(zg,l = 0. We named this procedure the dLV algorithm for computing

singular values of bidiagonal matrices.

More important notion is the numerical stability. It is known [25], for example, the qd
algorithm is numerically instable because of division by a small amount. One the other hand
the Demmel-Kahan QR has been standard algorithm for a long time as a stable algorithm in
spite of slow speed. The numerical stability of dLV is proved in [12]. The starting point is a
matrix representation of dLV.

1 1
(n+1) p(n+1) _ p(n) 7 (n) _ —_

LR R™L (M 5<n+1)) I,

(n)
L(n) = ! J2 ) R(n) = L ’

. .. ‘/(n_)1

1 g o) 1
1 n n n n n n

Jlgn) ) (1 + 4 )u’gk)—2) (1 + 4 )“gk)—l) o V= 5(n)ugk)—lugk)7

where [ is the m x m unit matrix. Note that 1/6) — 1/6(*+1) gives a shift of origin for the
matrix R(™ L™, Let us introduce new nonnegative variables w™ defined as

w = u{M(1 4+ §Mu{M,)
and a tridiagonal matrix Y (*) such that

1
.= [mpm _ L
Y™ = LOR® - <1,

We derive from the matrix form of dLV
Y+ = gy ()(RM)-1,

It is not hard to see w,(c“) > 0 providing uio) >0and 6™ > 0fork =1,2,--- ,2m — 1. Thus
R™) is nonsingular for any n. This similarity transformation implies that the eigenvalues of
Y(") are invariant under the evolution n = n + 1 of the dLV system. A symmetrization of Y (")
is introduced in [11] by using a diagonal matrix G(™) as follows:

m-—1
AP = (GG GO = diag (H \/wg?z_lwg?), Y L7 SR 1) .
J=1
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Note that G(*) is nonsingular for any n and [A(™| = []7_, wé?)_l. We see that the dLV system

takes the form of similarity transformation
Al — P(”)A(")(P("))"l, P™ .— (G(n+1))—IR(n)G(n)

of the positive definite matrix A(™), which implies that the eigenvalues of A™), for all n, are
invariant under the evolution n = n + 1 of dLV.

Since the eigenvalues of A(™) are identically equal to those of Y(©), these eigenvalues are in-
dependent from the choice of the variable step size §("). Note also that A™) can be decomposed
into

AW = (BT ) .-

V wéﬁz_z
0o V wg?rz—l

Therefore the singular values of B(™) are equal to the positive square roots of the eigenvalues of
A(™), Then the singular values of the upper bidiagonal matrix B(™ are invariant under the time
evolution n = n + 1 of the dLV system.

Numerical stability of the dL'V algorithm is proved as follows. The positivity of the parameter
§™) and the variable u{® play a key role. In Ref. [12] the condition 0 < 6 < M are
assumed. As is shown in §3 of this paper the condition naturally follows from the positivity of
the sequence of kernel OPs. By taking trace of the similarity transformation we sce

2m—1

m
S up = Soert
k=1 k=1
(n) (n)

Namely w; "~ are bounded as well as positive. Consequently v, ’ are also positive and bounded.
Let k = 1 in the dLV system, then we have lim, o u{™* = w{® [T (1 + 6®™u{™). This

implies ©{¥ < (" <.--u{™ <.... Since u!™, n = 0,1, -, is monotonically increasing and

bounded, u(ln) converges to some positive constant ¢; as » — oo. Simultaneously, [T (1 +
§™u{M) converges to some positive constant p;.

Let us assume that [T°°, (148wl ) converges to some positive constant p;_;. Let 00 =
ug) (14+6@u) ) and v® > 0. Then, by using 0 < 6™ < M, we see that (v /p,_,) [, (1+
§uY) converges to ull ') as N — oo. Hence it follows that 0 < [ (1 + sMulMy < My
for some constant Ma. It is also obvious that [T"_, (1 + §™u{Y), N = 1,2, -, is monoton-
ically increasing. Therefore it follows that [1°>, (1 + §™u{?)) = p,. Simultaneously, we see

that lim,,_, o, ué’,:)_l = vé?c)_lpk/pk_l > 0, namely,

lim «{?  =¢
n—ooo 2k=1 k

where c;, is some positive constant.
Note here that 3°°° / §™u{”) converges to some constant s, > 0 if and only if [T>2,(1 +
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5(”)u(")) = p;, for 5(")u( ") > 0,n=0,1,--. Moreover lim, oo 5(")u( ) = 0 for any positive
bounded sequence 6(*), 1f S0 4 8™Mul? = s, Therefore it follows that

: (n) _
nlirn Uy, = 0.

Note here that lim,,_,, A™ = diag(c1, ¢z, - - , ¢m). This implies that ¢ is one of the eigenval-
ues of A(™), namely, the square of a singular value of B(™). Singular values of B(™ are equal to
those of B = B(®). It is concluded that the dLV algorithm converges to singular values of the
bidiagonal matrix B with nonzero diagonals and sub-diagonals in numerically stable way. The
Christoffel transformation of symmetric OPs gives rise to the positivity and boundedness of the
parameter 6(®) and the variable u( ) of the dLV algorithm. No subtraction appears in dLV. Then
a higher accuracy follows.

5 Recent Developments on Shifts of mdLVs Algorithm

On speed the ALV algorithm has a first order convergence providing that §(*) > 0. It is slow.
The shift 1/6™ — 1/6+1) for R™ L™ brings an “internal shift” of the dLV algorithm. To
accelerate the convergence an “external” shift of origin is introduced in [13] through a mapping
(B™)TB™ — (BT B™) := (BM)TB™ — (6(™)2]. If a summation of shifts (6(*))2 is less
than the square o0,,? of the minimal singular value of B, then

lim ufy) | = a? - Z«ﬂ“))z lim ufy) =

is shown. The positivity and boundedness of the variable u}c“) are not violated by the shift.
Such a stable shift is given by using the Johnson bound [17], for example. Then a new stable
algorithm with shift for bidiagonal singular value problem results which is named the mdLVs
algorithm. The mdLVs has two types of parameters. One is the internal parameter §(*). The
other is the external shift parameter 6"). The mdLVs algorithm is more accurate than the
Demmel-Kahan QR algorithm, the Divide & Conquer algorithm and the dqds algorithm which
are practically used bidiagonal singular value computing algorithms (cf. [4]) through the present
LAPACK codes [20]. The mdLVs algorithm is faster than the Demmel-Kahan QR, Divide &
Conquer the as well as the bisection algorithm. On these established algorithms see the book
[4] and references therein.

The Johnson bound has been adopted in the original implementation [28, 29] of the mdLVs
algorithm [13]. The Johnson shift is

1
o™ .= " Hllm {\/w2k-—1 3 (vVWak—2 + \/wzk)}
< Op,

where wy = 0, wyk_1 + wak_, are the (k, k)-elements and  /wzxwzr—; are the (k,k + 1) and
(k + 1, k)-elements of the tridiagonal matrix A = BT B,
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Recently the following lower bound is found by K. Kimura

om .= (trace(BTB)‘P)'ﬁ
1

1 L VP
(m+"'+;::f;)

< om, (p=12,...)

which is called the p-th generalized Newton bound. The cost for the generalized Newton shift
is shown in [18] to be only O(m). Y. Yamamoto [19] proves that the generalized Newton shift
performs a weakly (p+ 1)-th order convergence. The mdLVs code with the generalized Newton
shift where p = 2, 3, 4 is faster and more accurate than the mdLVs code with the Johnson shift.
Here

I, := trace(B" B)™?

are conserved quantities of the dLV system. This strongly suggests that e;"‘) are also expressed
only by using positive variables. Recently this conjecture is proved affirmatively for by T.
Yamashita and a subtraction free O(m) formula for computing G),(Dm) is presented in [32]. The
generalized Newton shift will be useful for the dqds algorithm [23, 24] for singular values.

6 Double Cholesky Decomposition and dLV-type Transformation

Let us assume that all of the singular values of an m x m upper bidiagonal matrix B are
positive, simple and are already computed. Let &; be the computed singular value. In this
section we introduce the dLV-type transformation for computing the right singular vector v,
and the left singular vector u; corresponding to each 6;[22]. The right singular vector v; of B
is a solution vector v; = (v;(1),v;(2), - ,v;(m))T of the system of linear equation

(BTB - 6,21, = 0.

Computed singular value &; usually contains some errors though the mdI.Vs algorithm has
a higher relative accuracy. Conversely, if v; is a correct singular vector corresponding to the
correct singular value o;, then (BT B — 621)v; # 0 for an approximant &; of o;. Therefore let
us find more accurate singular vector by solving the linear equation

(B"B —6;%I)v; = ¢

for a suitable constant vector ¢; # 0. A derivation of the residual vector c¢; will be described
later. As &; is close to o;, the coefficient matrix BT B — %] becomes singular. Thus we use a
direct method for solving the ill-conditioned linear equation (B B — 6,2I)v; = ¢;.

Any positive definite real symmetric matrix can be decomposed into the product of a lower
(or upper) triangular matrix and its transposed. This is called the Cholesky decomposition. Once
the coefficient matrix of linear equation is decomposed, the linear equation is solved through an
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inversion of the triangular factor at a lower computational cost than the Gaussian elimination. In
this case we first consider the so-called “double Cholesky decomposition” of a positive definite
matrix BT B — 6,21 as

BB —-62] = (B+)TB+’
’ (B7)"B~,
b o b 0
B+ . bf . B e b; b3
- bg-m—z’ , - e ‘ 7
O b;m—1 b2_m-—2 b;m—-

where B+ and B~ are upper and lower bidiagonal matrices, respectively. If BTB — 4,21 is
nonsingular but indefinite, namely, if 6, is greater than the minimal singular value o,, of B, the
double Cholesky decomposition of complex type can be introduced similarly.

A problem arises. Cholesky decomposition of such an ill-conditioned matrix as BT B — &;21
is liable to be numerically unstable. It is difficult to compute accurate triangular factors B+ and
B~. Note that the Cholesky decomposition takes the form of the shift mapping of the mdLVs
algorithm BT B — 6,21 =: BT B. Whereas an internal shift of the matrix representation of dLV
algorithm is caused by the difference 1/ —1/6(1), where 6(°) and §(!) are parameters of dLV.
Therefore, we divide &2 into two

. 1 1
(o3 j2 = 5__(8—)- - @

Consequently the target Cholesky decomposition can be divided into three

B"B - %I WOHYTWO

(WOHYTWO — (W(l))Tw(l)
(W(l))Tw(l) + 5(1) —I = (B*)TB*,

where

._ ® . © 0 (¢
W .= e | = uP(1+6049), (£ =0,1).
2m—2

) w_,

The first equation reads

bak—1% = 5(10) (1 + 5(0) (0)—2) (1 + JS?)ugl)c)—l) )

= 5040 O O =g

Ugk—1U2k »
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From the assumption on the given bidiagonal matrix B we see byx—; 7# 0 and by # 0. Thus
“g/)c) , #0and ug‘,? # 0. The parameter Jff) should not be equal to the inverse of any elgenvalue
of BTB. Then since eigenvalues of BT B — 1/ 6( )] are simple and nonzero, 1 + 5(0) 2k , #0
and 1 + 5(0 zk . # 0. Let ,, be a lower bound of the minimal singular value of B. We
choose a posmve number 5( ) so that 5(0) > 1/6,,%. Then u( ) are computed sequentially. Since
B™B -1/ 5( I is not ill-conditioned, in general, the Cholesky factor W(®) can be computed
stably. It follows from 1/ 6( ) < 6,2 that BTB — 1 / 5( )] is positive definite. When B has a
tiny singular values, we can choose a positive number 65,0) so that 5(+° ) # 1/642%, where 6, are
singular values of B computed by mdLVs. In this case the elements W,El) of the Cholesky factor
W) becomes pure imaginary. But there is no additional difficuity.
The second equation is written as

50
04802 = 14 ), = g, Wm0

This is a transformation from ugc) to u;

() with the parameter 5(0) Since u ) # 0 and 1+
5(0) (0) )

# 0, u(l) in the matrix W(‘) are computed sequentially from given u( ) and 55,? ) If we
set 5(1) =47 © temporarily, then u;, (1) = u(o) an identity transformation. Since the transformation
is very similar to the dLV system, the transformation is named the stationary dLV (stdLV) in
[16].
The third equation describes a process to generate bidiagonal matrix B* from the variables
(1) with parameter 6( ) through

1 1
s (1 + B )“g}c) 2) (1 + 5(1)“&) 1) = b;k 12’

5(1)ug1k) 1“21) - b+ 2 1)

The left hand side of the first equation can be regarded as a shift of origin of the ill-posed
matrix BT B — &;21. This is because BTB —1/81 = BTB — — 1/6 1. By a suitable
choice of Ji) a possible numerical instability in the Cholesky decomposmon BTB — 61 =
(B*)TB* can be avoided. On the other hand the third equation recovers the factor B+ of
the Cholesky decomposition from the transform ufcl) of usco) by the stdLV transformation. The
relationship is expressed in the following stdLV diagram.

Cholesky decomposition '
{6} (3!
59 Ts)
{u) o {u)

stdLV transformation

Fig. 1: stdLV diagram
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The other Cholesky decomposition BT B — ;2] = (B~)T B~ is also divided into three

1

B™B - ;S—@I = (WO)TWO),

ONYTWO) — (P(=1)Ty(-1)
Wwe)y'w Q20 1R AN

1
(VED)TYE 4 0= (B-)'B",
where
L, 1 1

peo | W = sgn(W?)/ul(1 + 6CuCY).

0 vioh,
The second equation leads to

- ~1) (- _ 50
uio)(l + 59))'”;21) = “i 1)(1 + 68 l)u§c+11)), &Y = —_—:(OT_,
1-— (S_ 0'j2

The mapping from u\% to u{™? is called the reverse-time dLV (rtdLV) transformation. By a
pping k A y
suitable choice of 6 a possible numerical instability in the Cholesky decomposition BT B —

;21 = (B~)" B~ can be avoided. The relationship between variables is expressed in the rtdLV
diagram.

Cholesky decomposition

{bi} {6}
62l T8t
{u? o {u)

rtdLV transformation

Fig. 2: rtdLV diagram

We name the pair of stdLV and rtdLV as the dLV-type transformation. This performs the dou-
ble Cholesky decomposition of a wide class of positive definite symmetric tridiagonal matrices
BT B in a numerical stable way [16] by choosing suitable parameters 55,? ). On the other hand,
the qd-type transformation for computing eigenvectors of symmetric tridiagonals, proposed by
Parlett and Dhillon [5, 23] has no such parameter. Indeed there is a 3 x 3 nonsingular test matrix
having a tiny eigenvalue. The qd-type transformation make a serious error though the dLV-type
with 5f V=1 gives an accurate Cholesky decomposition. Noted that v, is an eigenvector of the
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symmetric positive definite tridiagonal matrix BT B. When a relative gap of eigenvalues is very
small, both the gd-type and the dL.V-type have challenges in orthogonality of resulting eigen-
vectors and singular vectors. For example, the qd-type fails to compute accurate eigenvectors
of the glued Wilkinson matrix [7].

7 Twisted Factorization and Numerical Examples

In this section we explain a procedure for computing accurate right singular vectors v; of
B from the factors B* of double Cholesky decomposition. This part is essentially same as
the twisted factorization method by [5, 6, 23]. The residual vector c; in the linear system
(B"B — 6, )v; = c; is set as

Yik = b33+ 0512 — (bak—2® 4 b1 ? — 6;°) # 0,

C;, = 7;,€,,
2 Yip€p ep:=(0a"'909130"“’0)1-’

where 7; ;. are the residual parameters, the p-th element of e, is 1 and p is a number such that
|v;,x| takes the minimum for k& = p, namely, p indicates the “most accurate” point. Then the
so-called “twisted matrix” NV, is introduced as follows. Set

b+

2, (k=1,2,...,p 1),
N(k): bZk—l

b=

TZk_a (k‘:p,p-{-l,,m—l))

2k+1

DY(k)=b}_,% (k=1,2,...,p—1),
D= (k)y=0b5_,% (k=p+1,p+2,...,m).

If b, is real, then so is b, . If b3 is pure imaginary, so is b3; .. Therefore, N(k) are always
real. Define
() )

N(1) 1

N, i= N(p=1) 1 N(p)
;-

. Nim-1)

\ 1

D, := diag(D*(1),--- ,D*(p = 1),%j,, D™ (p + 1), -+, D~ (m)).

The coefficient matrix of the linear system (BT B — 6;2I)v; = v, ,e, takes the form

B"B — ;I = N,D,(N,)".
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Table 1: Accuracy and orthogonality of DBDSQR and I-SVD (x10~9)

||B - Uiv—r“sum ”‘7 - V”sum “VTV - I“"“m

DBDSQR I-SVD DBDSQR I-SVD DBDSQR I-SVD

0.0690 3.98 102 4.14 0.0831 0.324

Table 2: Execution time of DBDSQR and I-SVD (sec.)

m = 1000 m = 2000 m = 6000

DBDSQR I-SVD DBDSQR I-SVD DBDSQR I-SVD

44.92 1.13 432.12 491 42573.60 43.73

This is sometimes called the twisted factorization. The substitution for determining N (k) and
D*(k) can be done from the twisted point k = pask = p, p+ 1, p£+ 2, .... While
various errors may be accumulated if we compute matrix factorizations by the usual one-side
substitution. The twisted factorization for each &; can be computed by O(m) times of divisions.
Since D,e, = v;,e,, N,e, = e, D,N,e, = N,D,e,, v; satisfies the linear system (BT B —
6;2I)v; = v;,e, and is an eigenvector of BT B providing that

Ty, =
N,yv; =e,.

The solution vector v; = (v;(k)) of NJv; = e, is given by

1, (k:p)v
vi(k) = ¢ —N(k)v;(k+1), (k=p—-1,p—2,...,1),
—N(k—1)j(k—-1), (k=p+1,p+2,...,m),

which gives rise to the right singular vector v;. Since each singular vector can be com-
puted within O(m) flops, the computation of k-singular vectors costs O(km) flops for k =
1,2,...,m. The left singular vectors u; of B are given through U = BVX™! with U =
(U,.. ., Um), V = (V1,...,05), & = diag(é1,...,6mn), or by solving the system (BBT —
6;2Iu; = 0 directly.

Finally we quote some numerical examples from [30] on an implementation of the I-SVD al-
gorithm. In Table 1 the accuracy of singular value decomposition, the accuracy of right singular
vectors and their orthogonality are considered. Here ||V — V|| ,.. indicates the sum of absolute
values of every elements of the matrix V — V, where ?; in V = (04,...,0.,) are computed
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right singular vectors. The numerical numbers in Table 1 are averages of 100 1000 x 1000
bidiagonal test matrices whose singular values are randomly distributed. Here DBDSQR is the
standard LAPACK code for bidiagonal SVD where the Demmel-Kahan QR algorithm is im-
plemented. In the I-SVD code the left singular vectors are computed by U=BVE'anda
re-orthogonalization of all of the singular vectors is performed by inverse iterations once. It
takes extra O(m?) flops. The parameters & are fixed to 1. Table 1 shows that DBDSQR is
better than the I-SVD code by 1 ~ 2 digits on the accuracy of SVD and the orthogonality of
singular vectors. However on the accuracy of singular vectors I-SVD is better than DBDSQR.

Table 2 is a comparison of execution time between DBDSQR and the I-SVD code. It is
obvious that the I-SVD algorithm needs only O(m?) flops and is rather faster than DBDSQR
of O(m®) flops. I-SVD also has a better scalability. The I-SVD code with the Householder
preconditioning to bidiagonal matrices and an inverse transformation is still sufficiently faster
than DBDSQR with Householder [30].

8. Concluding Remarks

This report surveys recent developments of the mdLVs algorithm for singular values and the
I-SVD algorithm for bidiagonal SVD. The mdLVs is a shifted version of the dLV algorithm.
We first show how the dLV algorithm has a higher accuracy. The Christoffel transformation
of symmetric OPs gives rise to the positivity and boundedness of the parameter 5§ and the
variable ui") of the dLV algorithm. No subtraction appears in dLV. Positivity is also essential
in the formulation of the mdLVs algorithm. Namely, if a shift is less than the minimal singular
value, then the positivity of mdLVs follows.

The Johnson bound [17] has been adopted in the mdLVs code [29]. Recently a new lower
bound is found which is called the p-th generalized Newton bound. The generalized Newton
shift costs only O(m) flops where m is the size of given bidiagonal matrix [18]. Y. Yamamoto
[19] proves that the generalized Newton shift performs a weakly (p + 1)-th order convergence.
The mdLVs code with the generalized Newton shift where p = 2, 3, 4 is faster and more accu-
rate than the mdLVs code with the Johnson shift. Though lower and upper bounds of matrix
eigenvalues have been studied fully [31], exploring for new bound is still an important problem
in numerical linear algebra.

The I-SVD algorithm is a combination of the mdLVs algorithm and the dLV-type transfor-
mation for singular vectors. Because of the separation of computation of singular values from
that of singular vectors the I-SVD algorithm runs in O(m?) flops. Whereas the Demmel-Kahan
QR algorithm requires O(m?) flops. Thus the I-SVD code is rather faster than DBDSQR code
of LAPACK. The I-SVD code has a good orthogonality of singular vectors for the case of ran-
dom matrices. To improve the orthogonality for clustered matrices the I-SVD algorithm should
be investigated more.
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