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Abstract

Motion of a planar interface in incompressible Richtmyer-Meshkov (RM) instability with
surface tension is investigated numerically by use of the boundary integral method. It is
shown that an interface rolls up without regularization of the interfacial velocity when the
Atwood number is relatively small. The comparison between the growth rate of an interface
with and without surface tension is made, and we present that the growth rate of the interface
with surface tension is equal to the one without surface tension at the asymptotic stage when
the Atwood number is identical to each other. A phenomenon known as ‘pinching’ in the
physics of drops is found in the final stage of calculations for relatively small Atwood numbers
and it is shown that this phenomenon is caused by a vortex pair induced on the interface.
We also present that when the surface tension coefficient is relatively large, stable oscillatory
motion appears for RM instability. When the gravity is taken into account, linearly stable but
asymptotically unstable motion can appear under a certain condition of three parameters;
the Atwood number, the gravity and the surface tension.

1 INTRODUCTION
When an inhomogeneous vorticity initially distributes on an interface between two fluids with
different densities and it is driven by some external force such as a shock wave, a corrugated
interface eventually rolls up to a mushroom-like structure. This phenomenon, known as the
Richtmyer-Meshkov (RM) instability 1, 2), is important in various areas such as astrophysical
supemova 4), supersonic combustion and the inertial confinement fusion. Due to the existence of
density inhomogeneity in the system, the RM instability can be also a model of an inhomogeneous
and nonuniform turbulence, together with the Rayleigh-Taylor (RT) instability 3).

When the surface tension effect exists on the interface, the RM and RT instabilities can describe
the pure capillary wave and capillary-gravity wave 5, 6), respectively in the limit of Atwood number
$A=1$ (see Sec. 2 for the definition of $A$ ). These describe relatively low velocity flow without vortex
motion, i.e., shear velocity motion, however, there exists high velocity motion with surface tension
such as breakup of drops in two-fluid $(A\neq 0)$ inviscid systems 7). One of such systems is the impact
of meteorites on the primitive earth 8), in which meteorites in liquid state collide on the surface of
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the earth at high speed. This is an example of motion of an unstable fluid interface with density
stratification and surface tension. It seems that the surface tension effect is considerably small
in some real experiments for the RM instability, for instance, such that the interfacial instability
is generated by impulsively accelerating a tank containing two liquids reported by Jacobs et al.
$9)_{-}11)$ , however, that can be important when the liquids used in experiments are replaced another
ones in which the surface tension effect cannot disregard.

As is well-known, the surface tension term is expressed by the derivative of curvature of the
interface, therefore, it contains the highest spatial derivative in the governing equations (see Sec. 2)
and this term governs interfacial motion in the high wave numbers together with the convective
term which gives rise to vortex motion. When the surface tension term is sufficiently large, the
effect may suppress the vortex motion such as the roll-up of the interface 12, 13). Hou et al. 14, 15)

numerically examined the long-time motion of vortex sheet with surface tension for the density
matched $(A=0)$ case and observed a phenomenon called ‘pinching singularity’ in the physics of
drops 7).

Pinching or pinch-off is a phenomenon observed in capillary-driven motion of free surface
flows when the convective nonlinearity, i.e., vortex motion is taking into account in the system
7, 16). The pinching phenomenon is important for the process which a single drop breaks up into
several drops and the pinching singularity or pinch-off is observed as a phenomenon at which the
interfacial curvature and the interfacial velocity diverge to infinity. This singularity is peculiar to
surface tension driven motion and it is considered 14, 15, 16, 20) as different from Moore’s curvature
singularity 17) which is observed in the inviscid vortex motion without surface tension. Hou et al.
14, 15, 20) calculated this pinching singularity with high accurate numerical scheme and obtained
a result that the pinching region does not perfectly stick and there exists a narrow gap. This
pinching singularity is hard to appear for larger Atwood numbers (see Secs. 3 and 4).

In this article we examine the effect that the surface tension gives to the interfacial motion
in the RM instability and show the results which do not appear in the zero surface tension case
12, 13, 18, 19) or in the density matched case 14, 15). The well-known result that the linear growth
rate in the RM instability is proportional to time $t$ does not hold for finite surface tension case.
This result, which can be easily expected from the linear stability analysis, is also confirmed
in our numerical calculations. As the surface tension parameter becomes large, the roll-up of
the interface disappears and a stable oscillatory motion appears instead. The frequency of this
oscillation depends on the surface tension parameter for a fixed Atwood number and the motion
is not so regular as the standing wave motion for the RT instability 20).

When the gravity is taking into account, i.e., for the RT instability, linearly stable but asymp-
totically unstable motion appears when three parameters, the Atwood number, the gravity and the
surface tension coefficient satisfy a certain condition. This corresponds to a critical or marginally
stable state at which the system changes from stable to unstable. The existence of such critical
motion can be also expected from the linear stability analysis, however, it has never presented
how the motion is. We show that a kind of pinching phenomenon appears at the final stage of
this critical motion (see Sec. 4.3). In Sec. 2 we present governing equations which are used for
our numerical calculations. In Sec. 3 we present interfacial motion for the RM instability with
various Atwood numbers and surface tension parameters using the scheme presented by Hou et al.
14). Stable oscillatory motion in the RM instability and motion taking into account the gravity,
i.e., motion in the RT instability are presented in Sec. 4. Section 5 is devoted to discussions and
conclusion.
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2 GOVERNING EQUATIONS
We consider a two-dimensional system, therefore, the interface is assumed to be a curve between
two fluids with different densities. The governing equations are equations which describes the
interfacial position $(x, y)$ and the pressure boundary condition, i.e., the Laplace-Young condition.
Due to the strong numerical instability caused by the surface tension term, the long-time com-
putation is impossible with the explicit method which we have used for the vortex sheet motion
with zero surface tension parameter $13$ ) $18)_{-}19)$ . Instead, we adopt here the formulation which was
presented by Hou et al. 14) in order to calculate the interfacial motion with surface tension. We
briefly review the method here for convenience and completeness.

2.1 The formulation for numerical calculations
The temporal evolution of the interface $X=(x(\beta, t), y(\beta, t))$ is given by

$X_{t}=Un+Tt$ , (1)

where $\beta$ is a Lagrangian parameter which parameterize the interface, $t$ is time, $U$ and $T$ are
the normal and tangential velocities of the interface, respectively, and the subscript denotes the
differentiation with respect to the variable. The unit normal $n$ and the unit tangent $t$ are described
by the tangent angle $\theta$ to the interface as

$n=(-\sin\theta, \cos\theta)$ , $t=(\cos\theta, \sin\theta)$ .

By Frenet’s formula for plane curves, we have

$t_{s}=Kn$ , $n_{s}=-Kt$ ,

where $K$ is curvature of the interface and $s$ is arc length given by $s= \int\sqrt{x_{\beta}^{2}+y_{\beta}^{2}}d\beta$ . The
interfacial position is specified with $s_{\beta}$ and $\theta$ as follows:

$S_{\beta,t}$ $=$ $T_{\beta}- \frac{\theta_{\beta}^{2}}{s_{\beta}}$ , (2a)

$\theta_{t}$ $=$ $\frac{1}{s_{\beta}}(\frac{\theta_{\beta}}{s_{\beta}})_{\beta}+\frac{T}{s_{\beta}}\theta_{\beta}$ . (2b)

We assume that the flow is incompressible and inviscid. Then the pressure boundary condition,
i.e., the Laplace-Young condition which holds at the interface

$p_{1}-p_{2}=\sigma K$, (3)

is rewritten into the form

$\rho_{1}[\frac{\partial\phi_{1}}{\partial t}+\frac{1}{2}(\nabla\phi_{1})^{2}+g]-\rho_{2}[\frac{\partial\phi_{2}}{\partial t}+\frac{1}{2}(\nabla\phi_{2})^{2}+g]=\sigma K$ , (4)

where $\rho_{i}$ is the density of fluid $i(i=1,2),$ $p_{i}$ is the pressure in fluid $i,$ $g$ is the gravity, $\sigma$ is the
surface tension coefficient and $\phi_{i}$ is the velocity potential in fluid $i$ which is related to each fluid
velocity $u_{i}$ as $u_{i}=\nabla\phi_{i}$ . Note that $\Delta\phi_{i}=0$ holds in each fluid region by the incompressibility
condition.
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Differentiating Eq. (4) with respect to $\beta$ , we obtain the following Fredholm integral equation
of the second kind:

$\gamma_{t}=\sigma K_{\beta}+(\frac{T^{A}\gamma}{s_{\beta}}I_{\beta}+2A[s_{\beta}W_{t}\cdot t+\frac{1}{8}(\frac{\gamma}{s_{\beta}})_{\beta}^{2}-T^{A}W_{\beta}\cdot t+gy_{\beta}]$ , (5)

where $\gamma$ is related with the circulation $\Gamma\equiv\phi_{1}-\phi_{2}$ as $\gamma=\Gamma_{\beta}$ , the Atwood number $A$ is given by
$A=(\rho_{2}-\rho_{1})/(\rho_{1}+\rho_{2})$ and we normalize the surface tension coefficient $\sigmaarrow 2\sigma/(\rho_{1}+\rho_{2})$ . The
velocity $W=(W_{x}, W_{y})$ induced by the vortex sheet is given by the Birkhoff-Rott equation 21)

$W_{x}$ $=$ ${\rm Re}[ \frac{1}{2\pi i}P.V.\int_{-\infty}^{\infty}\frac{\gamma(\beta’,t)d\beta’}{Z(\beta,t)-Z(\beta’,t)}]$ ,

$W_{y}$ $=$ $-{\rm Im}[ \frac{1}{2\pi i}$P.V. $/- \infty\infty\frac{\gamma(\beta’,t)d\beta’}{Z(\beta,t)-Z(\beta’,t)}]$ , (6)

where P.V. denotes the principal value and $Z=x+iy$ . The tangential velocity $T$ is decomposed
into the form

$T=T^{A}+W\cdot t$ , (7)

where $T^{A}$ is an arbitrary tangential velocity and its choice determines the frame of reference. The
normal velocity $U$ is given by $U=W\cdot n$ in our formulations.

The arbitrary tangential velocity $T^{A}$ cannot take the same form between $\sigma=0$ and $\sigma\neq 0$ .
$Whe,nthe13,l8l9,22)$ surface tension coefficient $\sigma=0$ , the arbitrary tangential velocity $T^{A}$ is chosen as

$T^{A}= \frac{\alpha}{2s_{\beta}}\gamma$ , (8)

in our calculations, where $\alpha=\alpha(\mathcal{A})$ is an artificial parameter such that $\alpha\neq 0$ for $A\neq 0$ . When
$\sigma\neq 0$ , the arbitrary tangential velocity $T^{A}$ is chosen as

$T^{A}=W \cdot t+/0\beta(\theta_{\beta}U-\frac{1}{2\pi}\int_{0}^{2\pi}\theta_{\beta}’Ud\beta’)d\beta$, (9)

in which $s_{\beta}= \frac{1}{2\pi}\int_{0}^{2\pi}s_{\beta}’d\beta’$ is set to be everywhere equal to its mean 14, 15), i.e., $s_{\beta}$ is a constant
with respect to $\beta$ for a fixed time $t$ .

By solving Eqs. (2a), (2b) and (5), we can recover $(x, y, \kappa)$ from $(s_{\beta}, \theta, \gamma)$ using the relation

$x$ $=$ $/0^{\beta_{s_{\beta}’\cos\theta(\beta’)d\beta’+\beta}}$
’

$y$ $=$ $/0^{\beta_{s_{\beta}’\sin\theta(\beta’)d\beta’}}$
’ (10)

where $\kappa=\gamma/s_{\beta}$ is the true vortex sheet strength which is frame independent.

2.2 Spatial discretization and numerical scheme
As we stated in Sec. 1, $K_{\beta}$ in Eq. (5) causes strong numerical instability called ‘stiffness’. In order
to avoid this instability, we decompose the Cauchy integral in Eq. (6) as

$P.V$ . $/- \infty\infty\frac{\gamma(\beta’,t)d\beta’}{Z(\beta,t)-Z(\beta^{l},t)}=P.V.\int_{-\infty}^{\infty}[\frac{1}{Z_{\beta}(\beta-\beta’)}$

$+$ $( \frac{1}{Z(\beta,t)-Z(\beta’,t)}-\frac{1}{Z_{\beta}(\beta-\beta’)})]\gamma(\beta’, t)d\beta’$ . (11)
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Then the normal velocity can be expressed as

$U( \beta, t)=\frac{1}{2s_{\beta}}H[\gamma|(\beta, t)+E[\gamma](\beta, t)$ , (12)

where $H[\gamma]$ is the Hilbert transform of $\gamma$ and the Fourier component of $E[\gamma]$ is exponential decay
for high mode 23).

Expanding $(\theta, \gamma)$ with Fourier modes

$\theta=\sum_{n=-\frac{N}{2}+1}^{\frac{N}{2}}\hat{\theta}_{n}e^{in\beta}$ , $\gamma=\sum_{n=-\frac{N}{2}+1}^{\frac{N}{2}}\hat{\gamma}_{n}e^{in\beta}$ ,

and substituting these into Eqs. (2b) and (5), we have

$\hat{\theta}_{t}$

$=$ $\frac{|n|}{2s_{\beta}^{2}}\hat{\gamma}(n)+\hat{P}(n)$ ,

$\hat{\gamma}_{t}$ $=$ $- \frac{\sigma n^{2}}{s_{\beta}}\hat{\theta}(n)+\hat{Q}(n)$ , (13)

where $N$ is the grid number, i.e., the number of point vortices, and $\hat{P}(n)$ and $\hat{Q}(n)$ are Fourier
transformed remainder terms in the original equations Eqs. (2b) and (5), respectively. The equa-
tion for $s_{\beta}$ in Eq. (2a) is solved without applying the Fourier transform.

Following Hou et al. 14), we use the second order Adams-Bashforth method and the Crank-
Nicholson scheme in order to perform the temporal integration for $s_{\beta}$ in Eqs. (2a) and (13),
respectively. Applying these explicit and implicit method simultaneously, we can recover $s_{\beta},$

$\theta$

and $\gamma$ , therefore, $x,$ $y$ and $\kappa$ using the inverse Fourier transform after each temporal integration.
The spatial integrations of the first and the second terms on the right hand side of Eq. (11) are
calculated with the alternate point quadrature method 24) and the trapezoidal rule, respectively.
There also exists explicit stable numerical method with spectral accuracy 25), however, calculations
with that method break down before appearing the pinching singularity.

3 Pinching phenomenon in Richtmyer-Meshkov instabil-
ity

In this section we show some numerical results for motion of the interface in the RM instability
with surface tension. For those calculations, we normalize $\betaarrow k\beta,$ $xarrow kx,$ $yarrow ky$ and $tarrow kv\iota int$

$12,13)$ with the asymptotic linear growth rate $v_{lin^{26)}}$ and the wave number $k$ in the system. When
$\sigma\neq 0$ , we adopt the implicit scheme stated in Sec. 2.2, while we use the explicit scheme (the fourth
order Runge-Kutta scheme) which was adopted in Ref. 13) when $\sigma=0$ . For the former case, the
arbitrary tangential velocity $T^{A}$ is chosen in the form of Eq. (9), while $T^{A}$ is chosen in the form of
Eq. (8) for the latter case. All calculations throughout this paper except the calculation for $\sigma=0$

in Fig. 4 (see Sec. 3.1) are.performed without regularization 27) of the Cauchy integral in Eq. (6).
Initial conditions for all calculations in the RM instability are taken that

$x(\beta, 0)=\beta$ , $y(\beta, 0)=0$ , $\gamma(\beta, 0)=2\sin\beta$ , (14)

for both of $\sigma=0$ and $\sigma\neq 0$ , and we set $g=0$ in Eq. (5) for the RM instability. The periodic
boundary condition is imposed and the interval $[-\pi, \pi]$ is basically divided with grid number
$N=1024$ . For calculations such that the pinching singularity appears, we refine the grid number
$N$ from $N=1024$ to $N=2048$ . We set the upper fluid $(\rho_{2}, y>0)$ is heavier than the lower fluid
$(\rho_{1}, y<0)$ for all calculations including the RT instability (see Sec. 4).
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$x$

Fig. 1: Interfacial profiles, circulation $\Gamma$ and sheet strength $\kappa$ for $A=0.2$ and $\sigma=0$ at $t=(a)$ and
(d) 2.6, (b) and (e) 5.0, and (c) and (f) 6.2, where dashed and solid lines in (d) $-(f)$ denote the
circulation $\Gamma$ and the sheet strength $\kappa$ , respectively. The regularized parameter $\delta$ is set to $\delta=0.1$

here.
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Fig. 2: Interfacial profiles, circulation $\Gamma$ and sheet strength $\kappa$ for $A=0.2$ and $\sigma=0.05$ at $t=(a)$
and (d) 1.5, (b) and (e) 5.0, and (c) and (f) 7.15, where dashed and solid lines in (d) $-(f)$ denote
the circulation $\Gamma$ and the sheet strength $\kappa$ , respectively. The circled region in (c) is magnified in
Fig. 3.
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3.1 Pinching singularity with small surface tension coefficient
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comes large. When the Atwood number $A=0$ , the pinching singularity appear at four points [see
Fig. 6 $(a)]$ .

Pinching is caused due to a vortex pair which exists at the tip of the closest two points. We
show strong vorticity with plus (b) and minus (a) sign with black and white circle, respectively
in the figure, where the corresponding peaks in $\kappa$ are shown in Fig. 2 (f). This vortex pair has
slightly minus net vorticity and the other vortex pair which is in the symmetrical position with
respect to the y-axis has slightly plus net vorticity. Pinching singularity is a phenomenon which
is caused due to the competition between the inertial force and the surface tension, and it is
not observed for a vortex sheet with $\sigma=0$ , i.e., this singularity is different from the well-known
Moore’s curvature singularity 17) [see Fig.5 (a) and $(d)$ ]. When the surface tension coefficient is
large, pinching in the RM instability does not appear even though the Atwood number is small.

We show the growth rate, i.e., the velocity of bubble and spike for $\sigma=0,$ $\sigma=0.05$ and $\sigma=0.1$

with the same Atwood number $A=0.2$ in Fig. 4 (a). When $\sigma=0$ , there exists deviation from
$\pm 1$ which is the exact value of the growth rate of bubble and spike at $t=0$ . This deviation is
caused by the existence of the finite regularized parameter $\delta 18$), where we set to $\delta=0.1$ for the
calculation of $\sigma=0$ . When we set to $\delta=0$ , this deviation disappears (see Fig. 7), however,
the breakdown of computation arises at earlier time [see Fig. 5 (a) and $(d)$ ]. We see that the
asymptotic growth rate of bubble and spike coincides for three $\sigma$ when we fix an Atwood number.
This tendency is unchanged even though we choose another value of $\delta$ for $\sigma=0$ or larger $\sigma$ for
calculations of $\sigma\neq 0$ as long as the Atwood number is not close to 1. Figure 4 (b) shows the
absolute value of maximum sheet strength (peak value) $\kappa$ for the corresponding parameters with
(a). The maximum sheet strength for $\sigma=0$ has the largest value in all $\sigma$ and the value becomes
smaller as the surface tension coefficient $\sigma$ becomes large. This tendency is also true for another
Atwood numbers.

3.2 Interfacial profiles for various Atwood numbers and surface ten-
sion coefficients

Figure 5 show interfacial and curvature profiles for a fixed Atwood number $A=0.2$ and various
$\sigma$ with the regularized parameter $\delta=0$ . The time step is taken that $\Delta t=1.25x10^{-5}$ for $\sigma=0$

calculation, while $\Delta t=1.25\cross 10^{-4}$ for $\sigma=0.1$ and 0.3 calculations. The profiles for $\sigma=0$ and
$\sigma=0.1$ are the ones at just before their breakdown times, where the refinement from $N=1024$
$(0\leq t\leq 8.0)$ to $N=2048(8.0\leq t\leq 9.0)$ is performed for the calculation of $\sigma=0.1$ . We see that
the interfacial profile (a) is smooth and the amplitude of it is small, however, the curvature (d) is
very large. This is well-known Moore’s curvature singularity 17) for $\delta=0$ and $\sigma=0$ . Note that
the interface for $\sigma=0$ does not roll up unlike the case for finite $\delta$ . The circled region in (b) does
not stick perfectly as found in Fig. 3, where sharp peaks in the curvature profile (e) correspond
to closest two points in that region. When the surface tension coefficient $\sigma$ is large $(\sigma\geq 0.2)$ ,
both of the curvature and the peak values in the sheet strength $\kappa$ are small, and the circulation $\Gamma$

almost does not change its shape from the initial state. The pinching phenomenon was not found
for $\sigma\geq 0.2$ with all Atwood numbers. The calculation for $\sigma=0.3$ is stable and the breakdown of
computation does not occur even at past $t=15$ (see Sec. 4.2).

Figure 6 shows interfacial profiles for various Atwood numbers with a fixed surface tension
coefficient $\sigma=0.05$ . Time denoted in each figure caption corresponds to just before time at
which the calculation breaks down, where the time step is taken that $\Delta t=1.25x10^{-4}$ for all
calculations. A refinement from $N=1024$ to $N=2048$ is performed for $A=0$ and $A=0.5$
calculations, where the former grid number is taken over $0\leq t\leq 4.0$ for $A=0$ and $0\leq t\leq 10.0$

for $A=0.5$ , while the latter grid number is taken over $4.0\leq t\leq 4.9$ for $A=0$ and $10.0\leq t\leq 11.5$

for $A=0.5$ , respectively. When $A=0$ , the pinching singularity appear at four points (circled
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(e)

$- 3$ -2-lOi $2$

Lagrangianpara$\mathfrak{n}\epsilon$ter $\beta$

3

Fig. 5: Interfacial profiles for $A=0.2$ with various $\sigma;(a)\sigma=0$ and $t=0.93,$ $(b)\sigma=0.1$ and
$t=9.0$ , and (c) $\sigma=0.3$ and $t=12.0$ , where (d) $-(f)$ are curvature profiles corresponding to (a)
$-(c)$ , respectively. The regularized parameter $\delta$ is set to $\delta=0$ for all calculations.

(b)

$-3$ $-2$ $-1$ $0$ 1 2 3
$x$ $x$ $x$

Fig. 6: Interfacial profiles for various Atwood numbers; (a) $A=0$ and $t=4.9,$ $(b)A=0.5$ and
$t=11.5$ , and (c) $A=1.O$ and $t=1.1$ , where $\sigma=0.05$ for all calculations. The circled regions in
(a) and (b) do not stick perfectly.
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regions in $(a))$ . The closest two points of the interface do not stick perfectly at all pinching points
as found in Fig. 3, however, the gap between two points is narrower than that for $A=0.2$ . The
profile (b) for $A=0.5$ is similar to the one in Fig. 5 (b), however, the gap between the closest two
points of the circled region is wider than the gap for $A=0.2$ .

4 Linear stability, stable oscillatory motion in Richtmyer-
Meshkov instability and unstable motion in Raighley-
Taylor instability

4.1 Linear stability analysis
When the surface tension coefficient becomes still larger, motion of the interface becomes stable.
Linear stability analysis suggests this fact. The linear growth rate of this system is calculated by
equation (4) and the kinematic boundary condition

$\frac{\partial\eta}{\partial t}+\frac{\partial\phi_{i}}{\partial x}\frac{\partial\eta}{\partial x}=\frac{\partial\phi_{i}}{\partial y}$ , $(i=1,2)$ (15)

where $y=\eta(x, t)$ is the deviation of the interface. Within the linear approximation, the deviation
$\eta$ is given as

$\eta\propto e^{i(\omega t-x)}$ , (16)

in our normalization, in which

$\omega=\sqrt{\frac{\sigma}{2}-Ag}$ , (17)

[if we do not normalize the length with wave number $k$ , Eq. (16) and Eq. (17) are given as
$\eta\propto e^{i(\omega t-kx)}$ and $\omega=(\sigma k^{3}/2-Agk)^{1/2}$ , respectively].

Equation (16) indicates that when the surface tension exists, the well-known linear growth
rate in the RM instability $(g=0)$ which is proportional to time $t1,12,26$) does not hold any
longer and motion is stable within the linear stability analysis. When the surface tension is finite
but sufficiently small, the inertial force which produces the vorticity and governs the nonlinear
stage is more effective in the system, therefore, the linear solution (16) does not affect in the
asymptotic stage. For that case, the interface becomes unstable and the roll-up or pinching
phenomenon appears at the final stage as we found in the previous section. On the other hand,
stable oscillatory motion is possible for large surface tension coefficients. We show this stable
motion in Sec. 4.2. As we see from Eq. (17), the system can be unstable when $Ag>\sigma/2$ for $g\neq 0$ ,
where we always assume that $Ag>0$ in our calculations. Motion of the interface for this case is
shown in Sec. 4.3. When the marginally stable case that $Ag=\sigma/2$ , there appears strange motion
that is at rest for a long time and occurs a weak pinching phenomenon at the final stage. This
critical motion for the RT instability is also described in Sec. 4.3.

4.2 Asymptotic oscillatory motion in Richtmyer-Meshkov instability
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Figure 7 shows the growth rate of bubble and spike 15

at the linear stage $($ up to $t=0.5)$ for various At-
wood numbers. We do not use the regularized pa- $\overline{>-}$

rameter $\delta$ in the calculation for $\sigma=0$ here, there- $\frac{g}{\Phi}0_{-}5$

fore, the deviation from $\pm 1$ at $t=0$ observed in $\underline{\geq\omega}$

$018Sbbi^{-A-}\overline{|}\sim^{-A^{-02(0^{-- 0_{0.4}}}}e^{--------}\ovalbox{\tt\small REJECT}_{---\sim\sim--}^{u_{\theta k_{6}^{--A^{-02}}}}A---05$

)

$0\wedge^{--}t0.20.3t0$

Fig. 4 does not exist in Fig. 7. Each line for $\sigma\neq 0$
$\underline{\varpi}$

$\Sigma^{-0.5}$

represents the growth rate for all $\sigma$ from $\sigma=0.05\ovalbox{\tt\small REJECT}$

$\Leftrightarrow-1$

to $\sigma=1.0$ at the Atwood number which is denoted
in the figure except $A=1.0$ , i.e., the growth rate $-1.50$

does not depend on the surface tension coefficient $T_{\dot{t}}met$

when an Atwood number is fixed. When $A=1.0$ ,
slight deviations begin to appear in the growth rate Fig. 7: Growth rate (velocity) of bubble and

of spike from the neighborhood of $t=0.2$ for var- spike at the linear stage, where the solid,

ious $\sigma$ . We choose $\sigma=0.1$ for $A=1.0$ in the dashed and dot-dashed lines denote $A=0.2$ ,

figure, however, the growth rate of spike becomes 0.5 and 1.0 with finite surface tension param-

smaller in its absolute value if we take larger $\sigma$ . The eters, respectively. The solid line with circle

growth rate of bubble is larger for smaller Atwood denotes $A=0.2$ with $\sigma=0$ .

numbers, while the growth rate of spike is larger for larger Atwood numbers (in its absolute value)
regardless of the value of surface tension coefficient. This tendency is also observed for $\sigma=013$ ).

When we compare at the same Atwood number $A=0.2$ , the growth rate of bubble for $\sigma=0$

is larger than the one for finite $\sigma$ , while the growth rate of spike for $\sigma=0$ is smaller than that
for finite $\sigma$ in its absolute value. This deviation and Eq. (16) suggest that the linear growth rate
of an interface with finite $\sigma$ does not obey the well-known result in the RM instability that it is
proportional to time $t12,19$ ) at the linear stage. The calculation for $\sigma=0$ with $\delta=0$ breaks
down at $t=0.93$ (see Fig. 5) due to the appearance of curvature singularity, therefore, we cannot
compare two lines of $\sigma=0$ and $\sigma\neq 0$ for $\delta=0$ up to the fully nonlinear stage such that the
roll-up appears. However, the asymptotic growth rate for $\sigma=0$ coincides with that for finite $\sigma$ in
the long-time computation when we use the regularized parameter $\delta$ as found in Fig. 4.

From equation (16), we see that the interface in the RM instability $(g=0)$ can oscillate with
frequency $\omega=\sqrt{\sigma}/2$ for $\sigma\neq 0$ . When $\sigma$ is small, the inertial force exceeds the surface tension
effect and concentration of vorticity arises to the roll-up of the interface. When $\sigma$ is large, the
surface tension stabilizes the system and as a result, a kind of periodic motion appears. Figure
8 (a) and (b) show this oscillation for $A=0.2$ with $\sigma=2.0$ . The spike which continues to grow
downward turns over at $t=2.0$ , starts to grow upward and turns over again at the neighborhood
of $t=6.0$ . This oscillation is also confirmed by motion of bubble and spike in (b). The velocities
of bubble and spike are equal to zero at $t=2.0,5.8$ and 9.5, those correspond to times at which
the amplitudes of bubble and spike become maximum in their absolutes values and the turning
over occurs. The maximum sheet strength $\kappa$ with various surface tension coefficients is depicted
in Fig. 8 (c), where we take the time step $\Delta t=1.25\cross 10^{-4}$ for calculations of $\sigma<1.0$ and
$\Delta t=6.25x10^{-5}$ for calculations of $\sigma\geq 1.0$ , respectively. As we see from the figure, the period
of oscillation is longer for smaller surface tension coefficients. Time at which the maximum sheet
strength $\kappa$ takes the minimum value corresponds to the turning over time of bubble and spike and
the time interval, i.e., the period which the minimum value appears, is almost constant when we
fix a surface tension coefficient.

Every motion for $\sigma\geq 0.2$ was stable and sharp concentration in the sheet strength $\kappa$ or the
growth of high wave number components in the Fourier mode of the interfacial amplitude, which
are signs whether the calculation breaks down or not, were not found. We add that the frequency
of oscillation is little affected by the Atwood number, i.e., we obtain ‘similar’ motion with the same
frequency for larger Atwood numbers for a fixed surface tension coefficient when it is sufficiently
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large $(\sigma\geq 0.2)$ , where ‘similar’ indicates that time at which the turning over of an interface
occurs is almost the same, however, the profile of the interface or sheet strength $\kappa$ is different for
each Atwood number. The oscillatory motion in the RM instability is not so regular as found in
the standing wave solution $(Ag<0)$ for the RT instability 20) and the frequency of oscillation is
not constant even though when $A=0$ . The period of oscillation depends on the surface tension
parameter and it becomes shorter as the surface tension parameter becomes larger.

4.3 Unstable and critical motion in Raighley-Taylor instability
In this subsection we present some interfacial pro-
files for the RT instability for the comparison with
the RM instability. Initial conditions for the RT
instability $(g\neq 0)$ are taken that

$x(\beta, 0)=0$ , $y(\beta, 0)=-0.l\cos\beta$ , $\gamma(\beta, 0)=0,(18)$

for various $g$ , where the gravity $g$ is normalized as
$garrow g/(kv_{lin}^{2})$ with the wave number and the linear
growth rate in the system 13).

Figure 9 (a) shows the temporal evolution of
the interface for $A=0.2$ with $g=10$ and $\sigma=1.0$ ,
where the time step is taken that $\Delta t=6.25\cross 10^{-5}$

and the refinement from $N=1024(0\leq t\leq 4.0)$

to $N=2048(4.0\leq t\leq 5.0)$ is performed. We see
that the roll-up appears in spite of that the sur-
face tension coefficient is sufficiently large, where
the circled regions which the pinching phenomenon
appears do not stick perfectly. Motion in the RM
instability with the corresponding parameters ex-
cluding $g$ is stable oscillation depicted in Fig. 8 (c)
and the roll-up or the pinching phenomenon does
not appear. This suggests that the gravity is ef-
fective for concentration of vorticity. The roll-up
gradually disappears as the gravity $g$ becomes small
when the Atwood number and the surface tension
coefficient are flxed.

Figure 9 (b) shows interfacial profiles for $A=$

1.0 with $g=0.5$ and $\sigma=0.5$ , where the time
step $\Delta t$ is taken that $\Delta t=1.25\cross 10^{-4}$ and the
refinement from $N=$ 1024 $(0\leq t\leq 12.0)$ to
$N=2048(12.0\leq t\leq 13.0,$ $t=13.0$ is the break-
down time here) is performed. The Atwood number
$A=1.O$ with finite $g$ indicates that the considered Fig. 8: Stable oscillatory motion in the RM
system is a drop rather than a vortex sheet. The instability for $A=0.2$ with large $\sigma;(a)$ the
single-valuedness of the interfacial shape breaks at interfacial profiles and (b) the growth rate
$t=13.0$ , however, the roll-up does not appear. (velocity) of bubble and spike for $\sigma=2.0$ ,
Generally, the roll-up does not appear for $A=1.0$ where the solid and dashed lines in (b) de-
regardless of the value of $g$ (including $g=0$) or the note bubble and spike, respectively, and (c)
surface tension coefficient. When we rise the value the maximum sheet strength $\kappa$ for various

surface tension coefficients $(\sigma=0.05-2.0)$ .
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of $g$ fixing the Atwood number and the surface ten-
sion parameter, the spread into the lateral direction of the ‘head’ part at the final stage gradually
disappears as found in the line at $t=10.0$ in the figure, and the breakdown of computation occurs
at earlier time.

The profiles presented in Fig. 9 are examples
of unstable motion which satisfies $Ag>\sigma/2$ in
Eq. (17). When $\mathcal{A}g<\sigma/2$ , interfacial motion is sta-
ble oscillation and the oscillation can be regarded as
a kind of standing wave which appears for $Ag<0$ .
When the critical situation that $Ag=\sigma/2$ , there
appears motion which does not almost move for a
long time and grows rapidly at the final stage. We
show this critical motion in Fig. 10, where the time
step is $\Delta t=1.25\cross 10^{-4}$ and we refine $N=512$
$(0\leq t\leq 28.0)$ to $N=1024(28.0\leq t\leq 32.0)$ ,
and further to $N=2048(32.0\leq t\leq 34.2)$ . The
interface and the sheet strength $\kappa$ (therefore, also
the circulation $\Gamma$ ) do not change their initial shapes
Eq. (18) up to the neighborhood of $t=28.0$ , and af-
ter this long linear stage, the interface grows rapidly
as found in Fig. 10 (a) and (b). The maximum sheet
strength $\kappa$ or the growth rate of bubble and spike
at the linear stage grows with some oscillation lit-
tle by little as found in (c). We take parameters
$A=0.2,$ $g=5.0$ and $\sigma=2.0$ here, however, such
motion stated above appears for any parameters
which satisfy the relation $Ag=\sigma/2$ , although the
interval of its linear stage differs by the value of $g$ .
Generally, the interval of the linear stage is longer
for smaller $g$ .

5 Discussions and conclusion
We have investigated motion of the density strat-
ified interface with surface tension. Calculations
performed here have spectral, i.e., exponential ac-
curacy and we can regard obtained results as ex-
act solutions of the Euler equation within machine
accuracy. We presented with the accuracy that
the roll up of the interface can occur for relatively
small Atwood numbers without the regularized pa-
rameter $\delta$ in both of the RM and RT instabilities.
We have also shown that the pinching phenomenon Fig. 9: Temporal evolution of an interface in

caused by a vortex pair induced on the interface the Rayleigh-Taylor instability for (a) $A=$

appears for both instabilities and the gap between 0.2, $g=10$ and $\sigma=1.0$ , and (b) $A=1.0$ ,

closest two points becomes wider as the Atwood $g=0.5$ and $\sigma=0.5.$ ’ where the solid, dashed,
dot-dashed and solid with circle lines in (a)number becomes large.

For large surface tension coefficients, we have denote $t=2.8,3.6,4.0$ and 5.0, respectively,
while those lines in (b) denote $t=6.0,8.0$ ,
10.0 and 13.0, respectively.
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shown that there exists stable oscillatory motion for the RM instability. Such oscillatory motion
is also possible for the RT instability if the relation that $Ag<\sigma/2$ is satisfied for the Atwood
number $A$ , the gravity $g$ and the surface tension $\sigma$ , however, the motion is more regular than the
one for the RM instability, as found in the standing wave motion for $Ag<0$ . When $\mathcal{A}g=\sigma/2$ , we
have found marginally stable motion which needs a very long time in order to reach the nonlinear
growth appears. This marginally stable motion is possible for any parameter values of the Atwood
number $A$ , the gravity $g$ and the surface tension $\sigma$ , and the length of the linear stage depends on
the value of the gravity $g$ . We mention here that the oscillatory motion in the RM instability is
not linear motion and the stability of the system is determined due to the competition between
the surface tension and the inertial force which effect should appear in the higher order. Detailed
nonlinear analysis will be presented elsewhere.
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Fig. 10: Temporal evolution of an interface
(a), sheet strength $\kappa(b)$ and the maximum
sheet strength at the initial stage (c) for $A=$

0.2, $g=5.0$ and $\sigma=2.0$ , where the solid,
dashed, dot-dashed and solid with circle lines
in (a) and (b) depict $t=22.0,28.0,32.0$ and
34.2, respectively.
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