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Construction of a limiting Carleman weight

Hideki TAKUWA

1 Background and motivation

Let n be an integer greater than or equal to 2 and z = (z?, - -- ,x’i) € Q,
where Q2 is a bounded domain in R™. For A(z) = (4;(2))1<j<n € C?*(2,R™),
and g € L (2, C), the linear operator of second order is defined as

(1. 1) L(z,D;) =Y (D + 4;(2))* + q(2),

Jj=1

where D, = —i1 0, (1 = v/—1). We assume that 0 is not an eigenvalue of the
operator L(z, D) : H*(Q) N H3 — L?(Q). For f € HY/?(8(Q), there exists a
unique solution u € H'(Q) to the boundary value problem

(1. 2) L(z,Dy)u=0 inQ,
ulpo=f ond.

For A € C?(},R") and ¢ € L*(Q), the operator Na, : H/2(6Q) —
HY2(8Q) is defined by Na (f) = (£ + iA - v)ulpq for f € HY2(8Q),
where v = v(z) is the unit outer normal vector on §Q2. The map Ny, is
called Dirichlet-to-Neumann map.

The inverse problem is that the potential dA and g are determined from
the map Dirichlet-to-Neumann map N4 ,. Since Calderén first proposed and
gave a method to solve this problem, this problem is often called Calderén
problem.

For the operator L(z, D;), Green formula gives

([:(:U, Dx)u, v)Lz(Q)_ (’LL, £($7 DI)'U)LQ(Q)

(1. 3) . |
= (0 (55 + - 4)0) ey = (55 + - A)00) e,
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for u,v € H'(Q) with Au, Av € L*(2), where (f,9)r2¢) = [, f(z)g(z)dz
and (f, )L2(ag) = [0 f(2)g(x)dS(z). Calderén proposed that the special
solution is useful to our inverse problem. After the pioneering work by
Calderdn, the many improvements were done in this topics. The brief history
can be found in [5] and its references.

We study the construction of the special solution for the equation in (1.2).
Let A > 0. The special solution u = u(z; h) has the form

(1. 4) u(z; h) = eh®@ (ag(z) + hr(z; h)).

Roughly speaking, Calderén and Bukhgeim-Uhlmann used the linear phase
function ®4(z) = (a + ib) - = for a,b € R™ with |a|] = |b| and a - b = 0. Since
the equality

A(ekerre) = %{(|a[2 — |b?) + 2ia - b}ek(arv)z

The importance for the linear complex valued phase function ®,(z) is ex-
plained.
For ®(z) € C*>(£,C)

(1. 5)
e **@) L, (2, D )(e—-};@(m) (ao(z) + hr(z; h)))

= {Z( i+ — zhﬁ J@(a:) + Aj (x)) + q(:v)} ao(x) + hr(z; b))

= { ( axa)z + %Ll(a:, D,) + Lag(z, Da) } (ao(z) + hr(z; h)

where L, (z, D,) is the linear operator of first order with complex coefficients.

Kenig-Sjostrand-Uhlmann [3] showed the strategy to construct the spe-
cial solution (1.4). this idea had already used in the previous results (for
example, see [1]). The strategy consists of three steps. The first step is to
solve the eikonal equation p2(V®(xz)) = 3_7_; (055 ®(x))? = 0 and determine
the complex phase function ®(z) = ¢(x) + itp(z). The second step is to
determine the amplitude function ag(z) by solving the transport equation
Ly(z, Dz)ao(x) = 0. Since the phase function ®(z) is complex valued, the
transport equation of principal type should be satisfied a condition for bichar-
acteristics. The final step is to determine the lower order term r(z;h). The
combination between Carleman estimate, that is, a weighted L? estimate,
and Riesz representation theorem, gives the existence of the function r(z;h).
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In Carleman estimate, the real part ¢(z) of the phase function ®(z) is the
weight function for the estimate.

Green formula (1.3) and the special solution (1.4) show the information
of some transformations of the potentials dA and ¢q. The support theorem
for them implies the uniqueness results. The original works as [1] used the
linear phase functions ®q(z) = (a+1b) -z, so the support theorem for Fourier
transform gives the uniqueness.

Kenig-Sjostrand-Uhlmann [3] proposed the new phase function Re ®(z) =
o(z) = log|z|. They call this function a limiting Carleman weight. This
name came from the third step as above. To show Carleman estimate, Pois-
son bracket vanishes identically on the zero set of the symbol. The limiting
Carleman weight will be defined in the next section.

2 Construction of a limiting Carleman weight
of radial type

The solvability of the eikonal equation is discussed in this section.

Let © be a domain in R™ with Q¢ = R"\Q # 0, z = (z!,-,2") € Q and
xo € Q°. Let G = (gjk)1<jk<n be a real constant matrix with gjx = gx; € R
and det G # 0. Its inverse matrix is denoted by G=! = (¢g?%). The matrix G
define the pseudo-Riemann metric g on R™ and the pseudo-distance function
d(x,z¢) between x € Q and zo € Q° on (R, g) by

g = Z gjkdl'jdl'k

gk=1
{d(z,20)}* =|lz — 2ol = Z gin(z’ — z3)(c* — z5)
J,k=1

respectively. We shall construct a solution ®(z) = ¢(z) + iv(z) € C*(Q2, C)
to the eikonal equation

(2. 1)

. . ,00(z)0d
0= pa(VO(@) = Y 2T DO

dk=1

-y ggk(899($)890(x) 5¢(w)3¢(fv)>

(2. 2) _ Oxi Ozxk oxi Ozx*
Jyk=1
~— x0p(x) dy(x)
Jjk
+% Z 9 "o 8zF

Jk=1
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where V = (9;,-92™). The eikonal equation (2.2) appears if we construct a
special solution (1.4) to the linear equation of second order

P(z, Dy)u = {Z ¢ (Dys — A;(2)) (D — Ak) + q(x)}u(cc h) = 0.
Jk=1

The eikonal equation (2.2) is obtamed as we get it as the top term in (1.5)
for the flat Laplacian A = Z 1 02,. The solvability of the eikonal equation
p2(V®(x)) = 0 is equivalent to find two functions ¢ and 1 that satisfy

~ (0p(x)Bp(x) OY(z)dy(z)y _
j%;gk( oz dzk  Hzi dzF )“0’

(2. 3)
=0.

— x0p(x)dy(z)
Zg]k Oxi dzxk

Jik=1

Let the real part ¢(z) = Re®(z) be fixed. The symbols a(z,£) and b(z, €)
are defined by

a(z,§) = Z g]k(agoa(;c) 8;;,;6) — fjfk),
(2. 4) 2=

bz, ) = 3 2P,

J:k'__l

Imaginary part ¢¥(z) = Im ¥(z) is the solution to the system of nonhnear
partial differential equations of first order

(2. 5) a(z, Vi(z)) = b(z, Vzb(x))‘= 0 in €.

A class of phase functions is defined to guarantee the solvability of the system
of equations (2.5):

Definition 2.1 The function ¢(z) € C*(Q, R) is called a limiting Carleman
weight for P(Dg) = 3%, ¢°*D_; D on Q if and only if

“./8a &b Da 9b
(2. 6) {a,b}(:c,a:}j(agaxj ~ axjagj)(x,ého
j=1 J

on J = {(z,€) € T alz,£) = b(z, ) = 0}
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If the set J is a submanifold in T*(, this condition means that the manifold
J is involutive. This condition is well known for the solvability of the system
of first order equations.

For the flat Laplacian A, that is, (G = Id), Poisson bracket is calculated
as

27  {ab}e©)= —828w,axk o) (22 (@) 24 (@) - £16)

Poisson bracket for the linear phase ¢;(z) = a - = vanishes identically for all
part of 7*. Another example is the radial function ¢;(z) = log|z — xol-
where |z — xo| is the usual distance in R™. This function was given by Kenig-
Sjoéstrand-Uhlmann [3]. When the spatial dimension n is equal to. 2, there
are plenty of limiting Carleman weight. For n = 2, set z = z' + iz? and
f(z) = p(at, 2?) + ip(z}, z2) for ,9 € C*(D,R), where D is a domain in
R2. If the function f(z) is holomorphic, Cauchy-Riemann equations

o} o}
a—;ﬁ(azl,xz) = é—gg(xl,mz), 83:2( 1 2% = —a—;(xl,xz).

The properties in (2.3) for n = 2 and G = Id are easily obtained from
Cauchy-Riemann equations. Uhlmann-Wang [6] used polynomial functions
@(x1,22) = Re(z1 +iz2)* and applied this weight function to an inverse
problem.

Kenig-Sjostrand-Uhlmann [3] proposed the limiting Carleman weight ¢,
and its counter part 1); as

p1(z) =log|z — o,

¢1(33) = dist gn-1 (-:-B-—_—_—-I—O"w) =60, we€ gn—1

ICL'—ZIJQ

(2. 8)

where s ! = {w € R"| |w| = (3 -, w2 = 1} and distgn-1(p, q) is the
distance for p,q € S* 1. The exact expression of ¢ is calculate from the
property '

r — g

n 1 ' . ;
COSO——<|$_-$0| >=;m(zﬂ——xﬁ)w

Since there are plenty of holomorphic functions, the limiting Carleman
weights should be much. One of the motivations of this article is to explain
the meaning of the limiting Carleman weight of the radial type as ¢:(z) =
log |z — zo|. In fact, the limiting Carleman weight of radial type can be
constructed even for non-elliptic case.
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Theorem 2.1 Let f = f(t) € C*(R\{0},R) with f'(t) # 0 fort # 0. Set
the function o(z) of radial type associated with G by

(2. 9) p(@) = fOlmjio—soliz, = Fllz — 20ll3).

Then (A) and (B) are equivalent:

(A) The function o(z) is a limiting Carleman weight for P(D,).

Cilogt+Cy t>0
(B) f@)=4 o
03 log (—t) +Cy t< 0, Cl, 02, 03, Cs € R.

The sketch of proof is given in Section 3.
Once the limiting Carleman weight of radial type ¢ is constructed, any
spherical functions ¥ = ¥(z) are orthogonal to the function ¢ with respect

to G.

Lemma 2.1 Let M be a real symmetric matriz with det M # 0 For the
function of radial type p(x) = f(||x — zo||%) with respect to G, the spherical
Junction ¢¥(z) = g(st, - ’Sn)ls=l|zi;:?M for M 1is orthogonal to ¢(x) in the
following sense ‘

(2. 10)

(2. 1) (ot)e = 3 22 @) 2% @) = bia, Vu) = 0

g, k=1
forx € {z € Q| ||z — xo||p # 0}.

To satisfy the distance condition 0 = a(z, V¢) = ||Vy||Z — |[Vel||%, the
matrix M is taken as M = G.

Lemma 2.2 Let o(z) = 3log||z — 20||%. For w € R™ with ||w||4 = 1, set
the family of functions h = h(s,w) that are obtained by

BY

o) =
05 = T (or

Set the matrizx M = G in Lemma 2.2. Then the function

(2. 12)

b Py, <)
satisfies
(2. 14) a(z,Vip(z)) =0 z €9,

It follows from Theorem 2.1, Lemma 2.1 and 2.1 that the special solutions
®(z; xo,w) = ©(z) + iy(x) to the eikonal equation (2.2) is obtained as

“~

(2.15) @) =jloglle—aolls @) =l ey

where the function A is defined in Lemma 2.2.
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3 Idea of proof for Theorem 2.1

In this section the proof for Theorem 2.1 is given. The proof of the others
are given in [4].

Sketch of proof for Theorem 2.1: For the distance function d(z,z) =
||z — zol|G, we have

,Hl’ zoll&: = 52 lzgak (@@ — zh)(e* —zf) =2 gu(a' — z}).
7j=1

7k=1

Since we have obtained

e, _df

(3. 1) %) = () s, ™ Zg,a(x — 2),

and

(3. 2)

0% o f
6;1;]. axk( ) ( ) t Ilw—mollégjk
&2 f n n q
T4 O] e (; 950" = “’g)) (?L:T Gia(2? — %)),

the symbols a = a(z,&) and b = b(x, &) are expressed for the limiting Carle-
man weight of radial type as

w6 =3 gjk(ag;? 200) _ g,

jk—l
3.3 SN
( ) =4 Z gpq xg)(xq - :Eg) - Z gjkfjfk
pa=1 jk=1
=4(f")?|lz — o|l& — lI€1I%&-1,
and

x k9 = T — Xo x’ —xd)E;
. 4 b(z,€) = ;;19] =21 nG)Z( )€

'—2f <"D - $0a€>'
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Since Poisson bracket between a and b for the general case are obtain as

{abﬂxﬁ)—]~zﬁié%wﬂi(§:‘”5;)(5: “aﬂﬂ

(3. 5) i

— (; gj”ﬁp) (; gkqéq)] ,

we obtain Poisson bracket for function ¢(z) = f(||z — zo||2) of radial type
as

~1{,03(w,8) =4(FYllo — wolf’ + £l
+8(f)2f"|lx — zo||% + 27" (z — @0, &)
=4(£Plla = zol % + £ (47l - 2ol - a(z, ©))
+ 8l = molll + 55 (b(, 6))°

Since the limiting Carleman weight satisfies {a,b}(z,£) =0on J = {(z,£) €
Q| a(z,&) = b(z,£) = 0}, we have

(3. 6)

1
0=-+5la,b}(z,8)
(3.7 =8|z — 2ol|& (f'(I|lz — zo|[3))’
(£lz = 2ol1Z) + llz = zoliZ " (Il — zoli2))
for (z,£€) € J. Since f’ # 0, the differential equation for f is obtained

df d*f

(3. 8) ZO+=20)=0 >0

Since %(tj—‘(z) =0 for £ # 0, the solution to (3.8) is obtained as f(t) =
Cilog |t| + C, for C1,Cy € R.
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