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CONNECTION OF WKB SOLUTIONS AT A HYPERBOLIC
FIXED POINT

SETSURO FUJIIE AND MAHER ZERZERI

1. Introduction
We consider the semiclassical Schrédinger equation
(1) ~W2Au+ V(x)u = Eu,

where h is the semiclassical small parameter, V € C®(R%R) and F is an
energy parameter possibly depending on h.
An asymptotic solution of the form

o0 l
2) u(z, h) = er¥@b(z,h), bz, h) ~ Y (1:-) bi(z).
' =0
is called WKB solution. The functions ¢ and b are called phase function
and symbol (or amplitude) respectively.

Suppose we are given a WKB solution u of the form (2) locally near a non-
singular point x°, see §2. This means that 1(x) and each bg(x) satisfy there
the eikonal equation and the transport equations respectively, see (6) and (7)
below. Then it is well known that we can continue them along the Hamilton
flow v passing through (z°,&0), €0 = %(xo), so long as v is defined and
the associated Lagrangian manifold A = {(z,£) € R?%; ¢ = g%(x)}, which
carries the curve, projects diffeomorphically to the z-space.

A connection problem arises when ~ converges to a fized point or when A
presents a caustics.

In this text, we assume that + converges to a hyperbolic fixed point that
we assume the origin (x,&) = (0,0) of the phase space. In our Schrodinger
setting, this means that a wave reaches a local non-degenerate maximum
of the potential at x = 0. The aim of this text is to describe the reflected
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wave at an arbitrary point near (0,0), under the condition that (2) holds
microlocally on the incoming stable manifold associated to the fixed point.

More precisely, there exist incoming and outgoing stable manifolds A _,
A respectively associated to the hyperbolic fixed point, see §3.1. It is
proved in [BFRZ] that if a distribution solution to (1) is microlocally 0 on
A_, then it is microlocally 0 in a full neighborhood of the fixed point, and
in particular on Ay. Here a h-dependent distribution u(z,h) € S'(RY) is
said to be microlocally 0 in an open set in the phase space if its Bargmann

transform
(x —y)2

Tulw,&h) = [ eHee Sy, 1) dy
JR

is O(h*) there. For more details see [BFRZ|, page 72, §2.2. Microlocal
terminology in the C° category.

Our problem is formulated as follows:
Problem: Assume that u(xz,h) — ex¥@b(x, h) is microlocally 0 on A _.
Find the asymptotic form of u on AL.

The rest of the paper is organized as follows. First of all, we recall the
standard construction of WKB solutions at a non-singular point. For more
details, see for example [Ma-Fe]. In the second part, we expose some geo-
metric properties about a hyperbolic fixed point, and we write the WKB
solution u as superpositions of time-dependent WKB solutions near A_ due
to the idea of [He-Sj]. See (21) below. In the third part, we review the theory
of expandible solution introduced also in [He-Sj]. Finally we calculate the
large time asymptotic expansion of the phase and the symbol, to obtain the
main results Theorem 5.1, Proposition 5.5 on the outgoing stable manifold.

2. WKB solution at a non-singular point

Consider a partial differential equation on R :
(3) P(z,hD;h)u =0,
where
P(z,hD;h) = Y (~ih)*pi(z,hD), pir(z,hD) = > aka(z)(hD)*.
k>0 lal<m
o

Here D = (—t—, - , —i—=—), the coefficients aj o are smooth, and A is a
oz, Ozg ’

small positive parameter. We have in mind the Schrodinger equation (1),

B 2
with F depending on h: F = Ey + gEl + (—;) Eg+---.

We look for a WKB solution of the form (2).
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The action of P on u of the form (2) is given by
; h\’
[P(z,hD;h)u](z,h) = en¥(@) Z (7> [R;j(z, V)b (z. h),
j=0

where R;(z,V ) is a jth order real differential operator. In particular,

Rg = po(z, V1)
and
1
Ry = (Vepo)(2, Va) - Vo + 5Tr (Vipo(z, V) Vi) + pi(z, Vo).
62
H ® 2 = Y = .
ere V2, (awja‘wk)lsj,kgd’ w==zxor

If the symbol b has the development of the form (2), then we are led to
E Rjby=0forall ke N={0,1,2,...}, ie.

j+l=k
(4) pO(xa v:rl/)) = Oa
k
(5)  [Ri(w, Vo)be](w,h) = = > [Ri1(, Va)br_j] (z, ), k > 0.
J=1

Here the right hand side of (5) is 0 when k£ = 0.

The equation (4) is called eikonal equation or Hamilton-Jacobi equation
and (5) is called transport equation. In the Schrodinger case, these equations
reduce to

(6) |Vep|? + V() = Ey,

k
(7) Vot - Vabg + (A — Ey) by = —Abe_y + > Eppibey.
=1
Here the right hand side of (7) is 0 when k£ = 0.

Remark 2.1. The differential operator P(xz,hD;h) can be generalized to
h-pseudo-differential operator P = Opy(p) :

Opu (e ) = iy [ [ FE iz, Outy) dy e,

where p = p(x,€) is a symbol belonging to a symbol class Saq({(x,&))™), i.e.
p(x, &) € C®(R?%;R) and for any multi-indices «, 3,

|020F p(x,€)| < Cap((, )™ ((,6) = (1 + 2>+ |gHV2.

Furthermore, p can depend on h:

p(x,&h) ~ > Wp;(x,8)

=0
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with p;(z, &) € Saq({(z,£))™), in the sense that
N .
020¢ | p(x, & 1) = 3 pj(x, O || < Craph™N T ((z,€))™.
: =0

2.1. Eikonal equation. First we solve the eikonal equation (4). Set z =
(1,7') € R x R4~1 = R4,

Proposition 2.1. Suppose po(z,£) is smooth in a neighborhood of a point
(a,b) € R and that po(a,b) = 0, —g—gg(a, b) # 0. Then for any yo(z’)
1

smooth near o’ satisfying V1o(a’) = V', there exists unique solution to the
Cauchy problem

(8) {pO(xavx’lrb) =0,

l/)l = ’(ﬁo (:I',)

r)1=ai
Proof. Let Ag be the (n — 1)-dimensional manifold

Ao = {(=,€) € pg ' (0); 21 = a1,£ = Viho(z)},

and A its evolution by the Hamilton flow

A= | exptHp,(Ao).
[ti<e
Here Hp, = Vepo - Vi — Viapo - V¢ is the Hamilton vector field. Notice that
H,, is transversal to Ag by the assumption gfgf(a, b) # 0.

We see that, for € small, A is a Lagrangian manifold, the projection of
which to the z-space is diffeomorphic and that A C pg*(0)(conservation of
energy). These facts mean that A is represented by a generating function
Y(z),

A= {(.’L’, 5) € R2d; &= v:"/’(-l;)}

and that this ¢(x) is the solution to (8). O

Remark 2.2. In the Schrédinger case, the domain {x € R% V(z) < Ep}
is called classically allowed region. If a point a € R® belongs to the clas-
sically allowed region, there exzist real b’s such that |b|? + V(a) = Eg and

Vepo(a,b) = 2b % 0.

Definition 2.1. For a Lagrangian manifold A, a point (z,€) € A will be
called non-singular (with respect to the projection on Rfj ) if it has a neigh-
borhood admitting a diffeomorphic projection on R3. It is singular in the
opposite case.
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2.2. Transport equation. Next, we study the transport equations.
Let us parametrize Ag by v’ € R 1:

= {(x(¥),£()) € pg1(0); w1 = 27, 2’ =4/, € = Voio(y)}.
Put
oz(t,y')
ot,y)
Notice that the fact that (a, b) is a non-singular point of A means J(t,y’) # 0
for small t.

(z(t,y"),E(t,y")) = exptHpy (z(y'),€(¥")), J(t,y') = det

Proposition 2.2. On the curve = = z(t,y’), the first order differential
operator R; can rewritten as

(Vgpo)(x, vxw) Vb + Tr (v2po<x, Vo) V2y) b

(9
) (\/U(t Y bk) - ~Tr(V Y epo)bi.

- T

Hence in particular

J(O, y') / 1 [t
L0 @) ex (5 [ TV Terrar ).

Proof. Differentiating by (¢,y’) the canonical equation

bo(z(t,y)) =

%x(t,y') = Vepo (z(t,y), Vz(z(t,y"))),

one obtains
G aty) ~ VPV Gy Ve
and taking the determinant one gets
d
57 (ty) = Tr(VaVepo + V 2poV2Y)J(t,y),
that is J
Tr(V,Vepo + Vipo Vi) = = (log[J1).

The left hand side of (9) is equal to

d
dt

= %bk + ( log \/|J| ) b — 2Tr(V.Vepo)by
£(V1T1bk) = 3Tx(V 2 Vepo)be.

1
—by + ﬁ(v Vepo + VepoVath) bk — 5 Tr(VVepo)bi

I

B
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Remark 2.3. In the Schrédinger case, ViVepg = 0. In case d = 1, in
particular, J(t) = &(t) = 2£(t) = 24/ FE — V(x(t)) and hence bp(x) = (E —
V(z))~1/4.

Remark 2.4. Let (a,b) be a point in p3*(0) C R?4. In the one-dimensional
case d = 1, there exists only one Lagrangian manifold A which carries (a,b).
This is just the Hamilton flow {exp tHp,(a,b) her. The point (a,b) is sin-
gular if and only if d¢po(a,b) = 0. If, moreover, po = &2 + V(x), this means
£=0.

If Ozpo(a,0) = V'(a) # 0 then x = a is a simple turning point.

Otherwise, i.e. 9zpp(a,0) = V'(a) = 0, z = a is a double or multiple
- turning point. In this case, the point (a,0) is a fized point of the Hamilton
vector field.

3. Hyperbolic fixed point

3.1. Stable manifold. We suppose that the function py(z, ) defined in a
neighborhood of the origin in RY x R¢ behaves like

/\2

d .
(10) po(z,8) =€ = 3 _ Tai +O((,6)°) as (2,6 —(0,0),
j=1

where 0 < A1 < Ay < --. < )4 are constants.
Let us consider the canonical system of pg:

(11) _‘_j_ ( z(t) ) — ( VEPO(x(t):é(t)) )

dt \ &(t) —Vzpo (z(t), £(t))
The origin (z,£) = (0,0) is a fixed point of the Hamilton vector field Hy,.
The linearization at the origin is

d [ z(¢t) z(t)

1 —_— =

(12) a ( £(t) ) B (g )

where F, is the fundamental matrix
82 92

o %g% gg%g B 0 21d
Po =7 52 5?2 - 1 1 N2

—?.’L‘%Q - 8{52‘ I(xaé)=(0»0) §dla’g ()‘J) 0

This matrix has d positive eigenvalues {Aj}‘le and d negative eigenvalues
{=2; };.lzl. The eigenspaces AY corresponding to these positive and negative
eigenvalues are respectively outgoing and incoming stable manifolds for the
quadratic part gg of pg, see Example 3.1 below :

AL = {(2,6) € R exptHy(z,€) — (0,0) as t— Foo}
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By the stable manifold theorem, we also have outgoing and incoming stable
manifolds for pg:

Az = {(z,8) € R*; exptHy,(z,€) — (0,0) as t— Foo}.
These are Lagrangian manifolds and written in the form

0
A= {8 e®Y = 2],

where the generating functions ¢4 behave like
d
)\ .
(13) di(@) =x) Tai+0(a) as z—0.
Jj=1

Now suppose (z°,£%) € A_ \ {(0,0)}. Then of course by definition
exp t H,y(20,£%) — (0,0) as t — +oo. More precisely,

Proposition 3.1. For (z°,£%) € A_\{(0,0)}, one has

o<
exp tHpy(2°,€%) ~ Z’y,c(t)e—“"" as t— +00,
k=1
where 0 < py < pg < --- are linear combinations over N of {A; }‘jzl, and in
particular 111 = A1. Yi(t) are vector valued polynomials in t, and in partic-
ular 71 is an eigenvector of Fy, corresponding to —A, and independent of t.
Remark that y1e~*" is a solution to (12).

For the proof, see Remark 4.2 at the end of section §4. In fact, we prove
that exp tHp, (20, €°) is expandible in the sense of Definition 4.2.

Remark 3.1. If the remainder term of pg in (10) is independent of &, then
po is a classical Hamitonian associated to a Schrodinger equation (1) :

d. A2 ,
(14) po(z,§) =€l +V(@), V()=-) 2} +0(zl’) asz—0.
2

The potential V (x) attains its local non-degenerate mazimum 0 at the origin.
In this case, by the symmetry with respect to £, one has

$_(z) = —¢+(z) and A_={(z,~€) € R*%; (2,6) € A,}.

The vector v, depends on (x0,£0). Let X~ (20,£°) be the z-component of
v1. We assume that

X~ (2%,¢% #0. (A1)
Then we can assume, without loss of generality, that
(15) X~ (z%,€% =c(1,0,--- ,0), c¢>0,

i.e. the Hamilton flow passing through (z2,£%) converges to the origin tan-
gentially to the z1-axis. Indeed it is necessarily the case when the eigenspace
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of —\; is one-dimensional, and it suffices to rotate the coordinate axes when
the eigenspace is multi-dimensional.

Example 3.1. Let us calculate the stable manifolds and the Hamilton flow
in the case where pg is quadratic :

d 22
16) (9 =~ 3 23

The canonical equation is (12) itself and the solution with the initial condi-
tion (z(0),£(0)) = (29, £9) is given by

.( (t) ) cosh A;t —)\—z—sinh Ajt ( 20 )

_ P 2
0 2 sinh Aj;t  cosh A;t 3

2
0 0 20

[ G g )
= i o

0+ Dy s (<2, e Gy

for each 1 < 5 < d. The stable manifolds are

‘ N
AL = {(iv,é') € R%*, &= j:—éj—xj 1<j5< d},

0
T
and for (z9,£%) € AQ | i.. 59 = —)\j-—QJ—, one has
z;(1) ) gt 2 -
= e N , j=1,---.d.
( &(t) 3
If there are m smallest eigenvalues of Fyi; A\ = -+ = Ay < App41, then
(z(2),£(t) = (2%,...,25,,0,--- ,O;—%z?,--- ,—Agla:gl,O,--- ,0)

+ O(e“kmﬂt).

3.2. WKB solution on the incoming stable manifold. In what fol-
lows, we assume that pg is of the form (14) and consider the corresponding
Schrodinger equation (1) with Eg = 0, i.e. writing now E = hz, consider

a7 —h2Au+ V(z)u = hzu.

Fix a point (z°,£%) on A_ sufficiently near the origin. Suppose we are
given a WKB solution near (29, £9).

(18) u(z, h) = ef¥@b(z,h), bz, h) ~ > (~ih)Ib;(z).

Jj=0
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This means that 1(z) and b;(z) are defined near z = z" and satisfy respec-
tively, the eikonal equation (6) and the transport equation (7) with Eg = 0,
E; =iz, and that €0 = V_ 4 (z0).

The last condition is equivalent to saying that (22, £0) is on the Lagrangian
manifold associatetd to ¥, Ay = {(z,£) € R?%4; £ = wa(a:)}.

The eikonal equation (6) means Ay C p; *(0).

The curve v = {exp tHp,(z%,&%); t > 0} is included in A_ and Ay. We
assume the following condition :

A_ and A, intersect transversally along ~. (A.2)

The phase ¢ and the symbol b of the WKB solution u can be continued
so long as the Lagrangian manifold Ay is defined, i.e. in a neighborhood of
~, but they have, in general, singularities at the origin (0,0). We will then
have to represent it in another way.

Example 3.2. We return back to the example (16). We take

(‘,1;0,60):(6,0’_” O /\2160 )
A
on AY. Any phase function of the form y(z) = —ﬁx% 22 T3+ -+

4 4
A
—45353 satisfies the eikonal equation go(z, Vz%) = 0 and the condition ¢° =
V. (z%). But among these, only when

d
¥(@) = vol@) = - L} _Z 2,

the two Lagrangian manifolds

{(217,6) € Rgd; &= —')—\21:1:1, §2 = ')\ﬁerQa"' y €d = %ixd}a
A= {(z,6) eR¥; & = —%5131, &2 = —52“332,"' y €d = —%“xd}
intersect along
A
Ay NA_ = {(z,€) € R%; ¢ = ““21—131, To=§ = - =1xq=§ =0},

which is the Hamilton flow v = U, exp tH,, (20, £%) passing through (2°, £°),
and the intersection is transversal.
Let us calculate the principal term by of the symbol b. We take {z1 = €}
as initial surface.
A by
Awo M {331 = 6} = {(C,yl; ‘%6, —2— . y') (S de; y' c Rdﬁl},
where M = (X2,--- ,Ag). Then

d .
.’E(t, y,) = (66_)‘“7 y26>\2t7 T ydexdt)a J(t3 y,) = “Alee(‘Al+2j=2 Aj)t-
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Remark that lim J(t,3) =0 when d =1 and lim |J(¢,3')| = +o0o when
l—400 l—+00
d=2,X > M ord>3.
The solution of the transport equation ji;bo + (Ao — iz)bg = 0 on the
curve x = 2(t,y’) is given by bg(z(t,y")) = e (S~M)tpy(e,y), where S :=

d
Iy
E -2—7 — iz, remark that S — A\, = Ay — iz. Putting z(¢t,v') = z, we obtain
Jj=1

S 22 2d
T\t T1\Xx T1\x
(@) = (Z) b (“‘2 ()7 e () )

Hence bo(x) has a singularity along {x; = 0}, which is in fact the projection
to RZ of the set Ay, N Ay = {(z,¢) € R¥; z; = £ = 0}.

3.3. Time evolution equation. The main idea to continue the WKB so-
lution to a neighborhood of the origin is to consider the corresponding time-
dependent Schrédinger equation. Let us write u as inverse h-Fourier trans-
form of a time-dependent function v(¢,z; h) :

u(z; h) = '7:}:,}—»13“ = \/21_71_]_1. [Z citE/hv(t,m; h)dt.
Then v should satisfy the time-dependent Schrodinger equation :
(19) _ (hD, — h2A + V(z))v=0.
Since E' = hz, we look for a time-dependent WKB solution
(20) ety = en?(h®) (¢, 13 h),
with

a(t, o5 ) ~ i (g)l alt, z).

=0
Then u is represented in the integral form

! / e%"o(t’m)a(t, x; h)dt

(21) u(z,h) = NoTA

and the WKB solution should now satisfy
(22) (hD; — h?A + V(z) — hz) (ek¥a) = 0,

which leads, as in §2, to the following eikonal and transport equations re-
spectively :

(23) dup + |Vapl® + V(z) =0,

(24) Oa; +2Vzp - Vaea + (Ap —iz)ay = —Aaj—1, [2>0.

Here we use the convention a_; = 0.
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4. Expandible solution

Let v(x,V,) be a vector field of the form

(25) v(r,Vy) = A(z)z - Vg, A(0) =diag(A1,..., ),
where 0 < A\; < ... < )4 are positive constants, and consider the Cauchy
problem

{ Su +v(z,Vy)u= vt ),
(26)

U= = w(x)-

We denote by exp(tv)(zo) the solution to the system of ordinary differential
equations

o { 2(t) = A((®)z(),
xlt:O = xp.
Then
Zc{.ii [u(t,exp(tv)(azo))] = [0+ v(z, V) |u(t,exp(tv)(zo))
= v(t,exp(tv)(zo)).
Hence

u(t, exp(tv)(zo)) = w(zo) + /0 v(s,exp(sv)(zo)) ds.

Put now 2 = exp(tv)(xo). Since 1o = exp(—tv)(z), exp(sv)(xo) = exp(—(t—
s)v)(xz), we get

(28) u(t,z) = w(exp(—tv)(z)) + /OL v(t — s,exp(—sv)(z)) ds.

d
When v =1y = Z)\jxj 0

Do in particular,
.’I,J

j=1
exp(—tyg)(z) = (e"’\ltxl, e ,e”)“‘t:cd).
Let Q be a suitable neighborhood of 0 in R4
Definition 4.1. We write u(t,z) € O (e #t|z|M) if for every e > 0, k €
N,a € N¢,
DFDgu(t,z) = O (e~ (=9t |g|(M=leb+)
in [0,00) x Q.
The map exp(—tv) : Q@ — Q is well defined and
|exp(—t0)()| = O(e~[al), |DFDZ exp(~tv)(@)] = O(e™*)

for z € Q,t > 0 and for all k € N,a € N%. It is easy to check the following
lemmas:
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Lemma 4.1. If v € O®(e™|z|V), w = 0, and if NA; > A, then u €
O=(e™|z|V).
Lemma 4.2. If w € O(|z|") and v =0, then u € O (e~ N 1¢|g|N).

We will see that the solution u to the Cauchy problem (26) is expandible
in the following sense:

Definition 4.2. Let u; < pa < --- be the series of linear combinations over
NofAr,-++, Ag. 4 function u(t,z) € C*([0,00) x Q) is said to be expandible
if there exist ug (k = 1,2,...) polynomials in t with smooth coefficients in
x € Q such that for any N € N, one has

N
ult,z) — Y e Hu(t,z) = 0% (e7Hn+1t)
k=1

First let us look for the homogeneous solution of the Cauchy problem

d
Ou
S + Z MNTj— = e M Z ca(t)z®
(29) Pl =N
Up=o = 0,

where c,(t) are polynomials in t.
First put ui(t,z) = e 4 Z an(t)x®. Then u; satisfies
lal=N

d d
du |
Byur + ) :)‘jxj'é%- =eH 3 {a;(t) + (D Moy —u)aa(t)}xa-

J=1 la|=N j=1

Hence if u; satisfies the first equation of (29), a,(t) should satisfy
d
(30) ap(t) + 6aaa(t) = calt), 6a= Y Xjaj —p.
i=1

Equation (30) has a polynomial solution a,(t) with
deg co if 64 # 0,
degay =
degecy,+1 if 6, =0.
Now, set ug := u — uy, ug satisfies

d
O
at’UQ + Z )\ija—u—j- = 0
-1

J
U2|t=0= - Z aq(0)z?,

|a|=N
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which leads to
uz = — Z aa(O)xae—(E?:l’\jaj)t.
la|=N
Thus the solution to (29) is given by

u(t,z) = Z {e‘“taa(t) — e—(zg'l=1 ’\fo‘f')taa(O)}.ra.

la|=N

Proposition 4.1. Suppose v(t,x) is expandible and v = O(|z|V) with N >
1. Then the solution u(t,z) of the Cauchy problem

Opu + U(:‘C’ Vx)u = ”U(t, ZE),

(31)
U|t=0 = 0

is also expandible.
Proof. Put v~ o) 4 oW+ 4 ... where v™) is homogeneous of order
A

o o]

oM = Ze—“"" Z cf;(t)x“.
k=1 |la=M

In the case where v = v, Proposition 4.1 holds by the preceding argu-
ment.

In the general case, let v ~ v©® 4 M 4+ ... where v*) is homogeneous of
order k + 1. Expanding also u ~ uV) 4 (N+1) 4 ... the equation becomes

= 0 0o
Z a,uM 4 (U(O) + 0 4. ) [ Z u(M)] _ Z S

M=N M=N M=N
which leads to
6t‘lL(N) =+ I/(O) ’U(N) = 'U(N) ,

(‘)L‘u‘(N“Ll) + @y (N+1)  — ((N+1) I/(l)u,(N),
and in general for Al > N,
3tu(“) + (0, (A1) D (D (M=) o (M=N) (N

Hence we can check inductively that

0o
u(M) — Ze—ukt Z al(;(t)ma’
k=1

|aj=M
with
deg ak (1) < max <deg ck(t), max deg a’;(t)(—i-l))
lal<M

where (+1) occurs only for a finite number of a for each k. Therefore, for
each k, dega® is uniformly bounded with respect to M, since it is so for

ck(t).
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For each M, we have
oo
uM) ~ Ze‘”““t Z ak (t)z*.
k=1 lal=M

There exists dj, independent of M such that dega® < d}. for all .
We can construct a realization % such that

T~ uN) 4N+ 4 , lp=o =0.
Letting 4 := u—1, it remains to show the existence of an expandible solution
% = O(|z|*°) such that

Su+v(z,Vy)u =7,

ﬁlt:—:O == O.
This is done by proving the following proposition by induction in N :
u=unN+ N

with expandible and O(|z|*°) function 4y and O (e #¥¥|z|>®) function ¥y.
We omit it. O
Theorem 4.1. Proposition 4.1 holds for time-dependent vector field
(32) v(t,x,Vy) = A(t,x)z - Vg, At,z)= A(z) + Alt, z),
where A(zx) s as in (25) and A(t, z) is ezpandible.

Remark 4.1. If we add pug = 0 in the definition of expandibility, Theorem
4.1 holds without the assumption N > 1.

Corollary 4.1. Suppose that a function s(t,z) is expandible; s(t,z) ~

oo

Ze—""‘tsk(t,x) and that so(z) is independent of t. If v(t,x) is expandible
k=0

in the form:

o
u(t,z) ~ Y e WktsoOiy, (¢ 7)),
k=0
then the solution of the Cauchy problem

Oru+ (0(t,x, V) + s(t,x))u = v,
Ujt=0 = 0
18 also expandible in the same form:

u(t,z) ~ Z e” (‘”’“+s°(0))tuk(t, z).
k=0
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Remark 4.2. The solution to the homogeneous equation
Ou+v(t,z,Vi)u =0,
Ult=0 = W,

is also expandible since u := u — x(t)w(x), where x(t) is a cutoff function
near t = 0, satisfies

ou+v(t,z,Vy)a = —x(t)bw,
'l_l'|t=0 =0,

which means by Theorem 4.1 that i@ is expandible.

Recall that v = w(exp tu(a:)) when the vector field is independent of t,
U = v. Taking x; as the initial data w, we see that exp tv(x) is expandible.
This fact also implies that the Hamilton flow (z(t),€(t)) = exp tHp, (2%, £°)
on the incoming stable manifold A_ is expandible. In fact, x(t) satisfies

z(t) =V§po($,vx¢—(x))>
z(0) =29,

where Vepo(z, Ved-) = —diag(Ay, ..., Aa)z + O(|z|?).

5. Connection at the fixed point

The aim of this section is to construct an asymptotic solution u to the
Schrédinger equation (17) in a small neighborhood W of the origin z = 0,
whose asymptotic expansion in a neighborhood V of the curve vy coincide
with the given WKB solution (18). Recall that we are looking for such a
solution in the form (21) and that the problem is reduced to the construction
of a WKB solution (20) to the time-dependent Schrodinger equation (22).

5.1. Construction of the time-dependent phase. Let I'g be the sub-
manifold of Ay:

To = {(x,€) € Ay; ¥(z) = (%)},

and Ag a Lagrangian manifold intersecting Ay cleanly along I'g. Put
Ay = exptHp (Ao), T :=exptHpy(To).
We have the following proposition :

Proposition 5.1. There ezist a neighborhood  of x = 0, a positive number
Ty and ¢ € C°((To, 00) x Q) such that

(33) A = {(z,€) € R £ = Vo(t, )}



S. FUJIIE AND M. ZERZERI

Moreover, ¢ can be choosen so that it satisfies the eikonal equation (23) and
the estimate

(34) p(t.x) = di(z) = OF(e™M).

Proof. Here we only show how to choose ¢ so that it satisfies (23).

We construct a Lagrangian manifold A in the phase space T*R‘(jﬂl) by

taking first a d-dimensional submanifold

AN ={(t,z7,¢ e R2D: ¢ = 0 (z,€) € Ag, T + po(z, €) = 0},

and putting
A =|JexptH, p,(A).
t

We see that the projection of A to the (t, x)-space is diffeomorphic, and
hence there exists a generating function (¢, z) such that

- 0 17,
A {(t,:r, nE)eR DT 5 (t,x), & B (¢, :v)}

This ¢ is determined modulo constant. Since A C (7 + po)~1(0), ¢ satisfies
the eikonal equation (23). O

Proposition 5.2. The function ¢(t,z) — ¢+ (x) is ezxpandible in the sense
of §4:
o ]
(35) o(t,z) — ¢4 (x) ~ ¢1(x)e M + Z bk (t, T)e Het,
k=2
In particular, ¢1 is independent of t and given by
(36) b1(z) = =M X" (2°%€%) - 2+ O(lz]),
where X ~(20,£9) is a non-zero eigenvector associated to the eigenvalue —\1

of the fundamental matris Fp,, see assumption (A1l).

Proof. Let us introduce new symplectic local coordinates (z,&) centered
at (0,0) such that A_ is given by z = 0 and A, is given by £ = 0. Then
| po(z,§) = A(z, &z - &,
where the matrix A(0,0) has the eigenvalues A3, ..., \q and we may assume
that
A(0,0) = diag(M -+, Ag).
The curve v now becomes (0, & (t)), where &(t) = O(e™#1?).
We check the following proposition by induction :
(H)n: ¢ =¢n +7n; ¥y expandible O (e~Mtz|),

ry = 0% (e NNt g N+ | ry o = 0.
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By Taylor expansion with respect to ry, we get
OrN + UNTN = fr + O (e7 VA g 2NHLY
where
UN = Vepo(z, VeYN) - Vg,
Vepo(z, Vzon) = Az, 0)x + O (Jz?e ™),  expandible,
and

In = —(0n + po(z, Von))
is expandible and O (e=N*1t|z|N+1). Let py be the solution to

OipN +UNPN = [N,

PNjt=0 = 0.
then, by Theorem 4.1 and Lemma 4.1, which holds also for ¢-dependent 7,
pn = O(e~Nht|z|N+1) is expandible. Now we put
o= (YN + pN) + (TN — pN) =: YN + T2N.
We see that roy = O (e72NA1t|g|2V+1) gince it satisfies

OyroN + UnTony = O (6_‘2N)‘1t|$|2N+1)

T2N|t=0 ~ 0.
Hence (H)y implies (H)2pn.
It remains to prove (H);. The estimate (34) implies
p(t,z) = @(t,0) + x - Vop(t,0) + O (e M1t|z]2),
Differcutiating the eikonal equation
O + Az, Vi) - Vep =0
with respect to x, and substituting z = 0, £(t) := Vzp(t,0) satisfies
£(t) +'A(0,£(1))&(t) = 0.
Then £(t) is expandible by Remark 4.2 since 'A(0,0) = diag(\1,...,Aq).
Hence (H); holds.
It is not difficult to see that ¢ — ¢+ is expandible also for the original
coordinates. a

Let V C R? be a small open neighborhood of II,~.

Proposition 5.3. For each x € V, there is unique t = t(x) such that
H,J,I:r: € A (1'1;)11' is the lift of © on Ay ). Then t(x) is a critical point of
¢(-, ) and the critical value is Y(x) :

o (t(z),z) =0, ¢(t(z),z) = ¥(z).
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Proof. Put H,;/jlr = (z,€). Since (z,£) € Ay N Ay Cpgt(0) N Ay(z), one
has

po(z,§) =0 and &= Vup(t(z),z),
ie. po (x,Vwc,o(t(a:),:c)) = 0. Hence by the eikonal equation, we have
Btcp(t(x),:c) = 0.
From this, we see that V, [cp(t(.z,),.L)] = (Vz¢)(t(z),z) = €. On the
other hand, £ = V1 because (z,£) € Ay.
Hence V, [gp(t(:c),x)} = V9. O

5.2. Construction of the time-dependent symbol. Let V ¢ R? be a
small open neighborhood of II,v. By the stationary phase method at the
critical point t(z), we have an asymptotic expansion of the following form:

1 oo . >, -
(37) — / D ha(t, i h)x (¢ — t(z))dt ~ ¥ @/h Z by (x)R',
V2rh =0

where x is a cutoff function near ¢t = 0. In particular, if we fix ¢, then for
z € V NIy, one has
wi/4

————ay(to, ).

et (to, T)
We define ag(to, z) so that bg(z) = by(z) on Iy, NV. Since by and by satisfy
the same transport equation, they coincide in V. Continuing this way, we
can determine the formal symbol a so that (37) holds formally near 0 in V,
with b; instead of b;.

(38) . bo(z) =

Proposition 5.4. The function a; is expandible in the sense of §4 and

o
(39) ay(t, ) ~ et Z ax(t, T)eTHEE
k=0

d
N 1 .
where S = 5 jE_l )\j — 4z,

In particular, app(t,z) = apo(x) is independent of t and

__mij4\3/2 S—A1)t /J(Oaxol)

Here c is the constant given in (15).

Proof. By the change of variable y = z — z(¢), the transport equation
becomes, for each I > 0,

Oray + Q[Vmcp(t, )]fg;'{_y -Vea; + (Acp(t, x(t) + y) - z'z) aj = —Aaj_1.



138

CONNECTION OF WKB SOLUTIONS AT A HYPERBOLIC FIXED POINT

By convention a—; = 0. We define [f()]z = f(0) — f(a).
By (35), we have

2[Valt, o™ = 2[Vedr ()20 + A(t, )y,
where A(t,y) is an expandible matrix. Moreover,
2[Var (V)50 = 29204 (2())y + O (I?),

and 2VZ2¢, (2(t)) = diag()\y,...,A\s) + expandible. Hence the vector field
2[Vaip(t, )] 5*Y . ¥, is of the form (32).
On the other hand, s(t,y) = Ap(t, z(t) + y) — iz is expandible, s(t,y) ~
Z e Mlsi(t,y), with so(y) = A¢4(y)—iz is independent of t and s4(0) =
'}i”z}?en it follows from Corollary 4.1 that a; is expandible of the form (39).
Next we calculate ag0(0) as the limit of e5*aq (¢, z(t)) when t — +oo.
First, in (38), recall that

J(0, x9)
J(t,2%)

Lemma 5.1. The functions ¥ and ¢ satisfy

b (xO) = gi%le —fo Ay(z(T) )d'rb (1:0)

(41)  bo(z(t)) =

(42) w(z(t)) }: — A+ O(e~Mt),

(43) pu(t 2() = AMfe Mt (14 O (ch)).
The formula (42) means the existence of the limit as t — oo of the function

Aj ’
(Ej=1 'ZL”’\I)".1 / %j—;’,%. On the other hand, (38) and (41) with (43) give

J(0,z%")
J(t, x0")
Letting t — co, we get (40). ‘ O

v N Aj
eStag(t, a(t)) ~ ce™/ AN}/ 2e(Eim1 F Mt bo(2°).

5.3. Asymptotic expansion on the outgoing stable manifold. To con-

clude this text, we calculate the asymptotic expansion of u, constructed in

the previous section, near a given point on the outgoing stable manifold A ;.

Since A, converges to A+ as t — +00, The asymptotic expansion of u of the

integral form (21) comes from the aymptotic behavior of the time-dependent

WKB solution (20) as t — 400, which was already studied in §4.1 and §4.2.
Fix a point (x,€£) on A, and put

(z(t),&(t)) = exp tHpy(x, ).
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As on A_, the curve z(t) has the asymptotic behavior of the type

(44) z(t) = X1 (z,8)eMt + 0®(e2') as t — —oo,
where X T (z,£) is a vector independent of t, see Proposition 3.1. We assume
X7 (2%,67) - X*(,€) #£0. (A3)
We also asSume
S+pur#0 VkeN. ‘ (A4)

This is equivalent to the condition that the energy z does not belong to the
discrete set —i(y where

d
1
o = Z (Ozj -+ §> /\j; = (al,...,(ld) S Nd
i=1
d_ )2
is the set of eigenvalues of the harmonic oscillator — 4J
Jj=1
Theorem 5.1. On A4, we have
oo : S .
(45) / R gtz s h) dt = b1 en®+ @ c(a; ),
Jo
o0 -
b
c(x;h) ~ Z cg(z,In h)h*,
k=0 .
Here, 0 = fig < 11 < fiz < --- 15 a numbering of the linear combinations of

{ur — p1}52, over N, and cg is independent of Inh and given by

r ( S) exp(isy sgne1)
N, S
M N (@)

Proof. Pute™ =3, ¢ — ¢4 = ¢10#, then, by (35), o has an expansion
with respect to s of the form

(46) co(z) =

ao,o(:v).

= n@
w ~

~ 8 (1 + Zpk(—— log s, :Ir)s“‘ﬂ) .
k=2

It is not difficult to see that, conversely, s has the asymptotic expansion
with respect to o of the same form :

s~o (1 + ka(-—log o, m)a‘lk) :

k=2
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By this change of variable, the left hand side of (45) becomes

o ; 1.
/ erfagdt = eﬁd’*“/ eh P10 sSZao,k(*log s,x)s* "1 ds
0 0

i Q_’((’L‘)W i m -
= eh®+ / er®rot Zbk(— log 0. z)o S TR~ dg,
0
and moreover by o#! =71
S+

i alz) -
= erh®+ / en®” Z ck(—logT,z)T ™M ! dr,
0

0(0,z) — ¢ (x)
$1()

depend only on x and ¢p(z) = gll‘bo(l') = #—11ao70(;1:).

where a(z) = . In particular, the coefficients co(z), bo(z)

The last integral is not well-defined when -S%fi’i is a negatif integer, that

d
1
is, z = zq. N = —'i(Z(aj + 'é)Aj — N)y), for some a = (ai, - ,aq) € Nd
=1
d .
and N € N. Recall that S := ) ?1 —iz. If a1 > N, this z is excluded by
j=1
(A4). On the contrary, the other cases corresponding to a; < N never occur
because we already know that our solution u is holomorphic outside —ih(g.
For details see [BFRZ], page 111, identity (5.82) and proposition 5.11, and
identities (5.97), (5.98) page 113.
Now Proposition follows from the following facts:

x© . pr !
(47) / en®sP lds = el%sgﬂﬂr(p)(l-a”—l)”, a € R\{0}, 0<Rep<1
0

and

1 ' m 1 .
/ en1TrH log ) dr = — (£> / erm/hu=1ar
0 ou 0

It remains to write co(z) in terms of the original WKB solution on A_
instead of ago(z). Thanks to the formula (40), it suffices to write it in terms
of ag,0(0).

The function co(x) satisfies the transport equation

(48) ' 2V b4 - Vico + (Ady —i2)co = 0.

O

This is an ordinary differential equation on A, along the Hamilton flow
x = z(t) along which (48) is written as

2 colw(t) + (A (a(t)) = i) = 0,
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and the solution is co(x(t)) = e?t=Jo A+@(T)dr o (1),
Together with (46), we obtain co(z) = e~#t+/o A¢+((M) 47 ¢4 (z(¢)), hence

. t exp(i£X sgn
(49)  co(a) = e=otH IS Abs (T (Aﬁ) plizy; s (i.l)ao,o(:v(t)).
170 Ao (z()) |2
Recalling (44) and (36), we get

(50) ¢1(z(t)) = ~A1 X~ (2°,6°) - X*(z,£)eMt + O(e¥2=9)  ast — —o,
Here 6 > 0 is arbitrary. Taking the limit ¢ — —o0 in (49), we obtain:

Proposition 5.5.

(51)  co(z) =T (

e ao,o(O),
ALIAL X~ (29, £9) - X+(z, €)%

S exp(—iégT’; o)
A1

where
o =sgn [X~(a%,€%) - X*(z,6)],
and ag0(0) is given in (40):

w3 ) s ay [T O,mo,)
CL0,0(O) .- ’\1le (:EO’&O)IL—E—I{POO 6(‘5 A1)t ]—_—.((t TOI) .
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