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1. Introduction and Statement of Results

Let $H=- \sum_{i_{\backslash }j=1}^{n}\partial_{i}a_{i,j}(x)\partial_{j}$ , where $a_{i,j}=a_{j,i}$ , be a formally self-adjoint operator

in $L^{2}(\mathbb{R}^{n}),$ $n\geq 2$ , where the notation $\partial_{j}=\frac{\partial}{\partial x_{j}}$ has been used.
Wc assume that the real measurable matrix function $a(x)=\{a_{i,j}(x)\}_{1\leq i,j\leq n}$

satisfies, with some positive constants $a_{1}>a_{0}>0$ , $\Lambda_{0}>0$ ,

(1.1) $a_{0}I\leq a(x)\leq a_{1}I$ , $x\in \mathbb{R}^{n}$ ,
(1.2) $a(x)=I$ for $|x|>\Lambda_{0}$ .
In what follows we shall use the notation $H=-\nabla\cdot a(x)\nabla$ .
Wc retain the notation $H$ for the self-adjoint (Friedrichs) extension associated with
the form $(a(x)\nabla\varphi, \nabla\psi)$ , where $($ , $)$ is the scalar product in $L^{2}(\mathbb{R}^{n})$ . When $a(x)\equiv I$

wc get $H=H_{0}=-\Delta$ .
Let

$R_{0}(z)=(H_{0}-z)^{-1},$ $R(z)=(H-z)^{-1}$ , $\wedge*\in C^{\pm}=\{z/ \pm Imz>0\}$ ,

be the associatod resolvent operators.
The purpose of this paper is to study the continuity properties of $R(z)$ in cer-

tain operator topologics, as $z$ approaches the real axis. To fix the ideas, we shall
generally assume that $Imz>0$ , with obvious modifications for $Imz<0$ .

Definition 1.1. Let $[\alpha,$ $\beta]\subseteq \mathbb{R}$ . We say that $H$ satisfies the “Limiting $\mathcal{A}bsorption$

Principl $e^{;i}$ (LAP) in $[\alpha, \beta]$ if $R(z),$ $z\in C^{+}$ , can be extended continuously to $Imz=$
$0,$ $Rez\in[\alpha, \beta]_{i}$ in a suitable opcrator topology. In this case $\tau ve$ denote $thc$ limiting
values by $R^{+}(\lambda)$ , $\alpha\leq\lambda\leq\beta$ .

A similar definition applies for $z\in C^{-}$ , but the limiting values $R^{-}(\lambda)$ will be,
generally speaking, different from $R^{+}(\lambda)$ . Observe that the precise specification of
thc opcrator topology in the above definition is left open. Typically, it will be the
uniform operator topology associated with wcighted-L2 or Sobolcv spaces, which
will bc introduced later.

It is well-known that our assumptions (1.1), (1.2) imply that $\sigma(H)$ , the spectrum
of $H$ , is the half-axis $[0, \infty)$ , and is entirely absolutely continuous. The “threshold”
$\approx=0$ plays a spccial role in this setting, as we shall see later. Thus, consider first
the case $[\alpha, \beta]\subseteq(0, \infty)$ .
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Under assumptions close to ours here (but also assuming that $a(x)$ is continuously
differentiable) a weaker version (roughly, “ strong” instead of” uniform” convcrgence
of the rcsolvents) was obtained by Eidus [14, Theorem 4 and Remark 1]. For
$H=H_{0}$ the LAP has been established by Agmon [1]. Indeed, it was established
for operators of tlxe type $H_{0}+V$ , where $V$ is a short-range perturbation. However,
an inspection of Agmon’s perturbation-theoretic proof shows that it cannot be
extended to our operator $H$ , in a straightforward way. Observe on the other hand
that the short-range potential $V$ can be replaced by a potential depending only on
dircction $(x/|x|)[15]$ or a perturbation of such a potential [23, 24]. In this case
the condition $\alpha>0$ is replaced by $\alpha>$ $\lim supV(x)$ . The LAP for the periodic

$|x|arrow\infty$

case (namely, $a(x)$ is symmetric and periodic) has recently been established in [22]
Note that in this case the spectrum is absolutely continuous and consists of a

union of intervals (”bands”).
We also refer to [16] where the existence and completeness of the wave operators

$W_{\pm}(H, H_{0})$ is established under suitable smoothness assumptions on $a(x)$ (how-
ever, $a(x)-I$ is not assumed to be compactly supported and $H$ can include also
magnetic and electric potentials). Note that by a well-known theorem of Kato and
Kuroda [19], if $H,$ $H_{0}$ satisfy the LAP in $[\alpha, \beta]$ (with respect to the same operator
topologies) then the wave operators over this interval exist and are complete.

In this paper we focus on the study of the LAP for $H$ in $[\alpha, \beta]$ where $\alpha<0<\beta$ .
This case has bccn studied for the Laplacian $H_{0}[6$ , Appendix $A$ ] and in the one-
dimensional case $(n=1)$ in [3, 4, 10]. The present paper deals with the multi-
dimensional case $n\geq 2$ .

Throughout this papcr we shall make use of the following weighted-L2 and
Sobolcv spaces. First, for $s\in \mathbb{R}$ and $m$ a nonncgative integer we define.

(1.3) $L^{2,s}(\mathbb{R}^{n})$

$:=\{u(x) / \Vert u\Vert_{0,s}^{2}=/(1\mathbb{R}^{\iota}+|x|^{2})^{s}|u(x)|^{2}dx<\infty\}$

(1.4) $H^{?n,s}(\mathbb{R}^{n})$ $:=\{u(x)$ $/D^{\alpha}u\in L^{2,s}$ , $|\alpha|\leq m$ ,
$\Vert u\Vert_{m,s}^{2}=\sum_{|\alpha\leq m}\Vert D^{\alpha}u\Vert_{0,s}^{2}\}$

$($we write $\Vert u\Vert_{0}=\Vert u\Vert_{0,0})$ .
More generally, for any $\sigma\in \mathbb{R}$ , let $H^{\sigma}\equiv H^{\sigma_{\tau}0}$ be the Sobolcv space of order $\sigma$ ,

namely,

(1.5) $H^{\sigma}=\{\hat{u} /u\in L^{2,\sigma}, \Vert\hat{u}\Vert_{\sigma,0}=\Vert u\Vert_{0_{2}\sigma}\}$

where the Fourier transform is defined as usual by

$\hat{u}(\xi)=(2\pi)^{-\tau}n_{R^{n}}/u(x)\exp(-i\xi x)dx$ .

For negative indices we denote by $\{H^{-m,s}$ , $\Vert\cdot\Vert_{-7n,s}\}$ the dual space of $H^{m,-s}$ .
In particular, observe that any function $f\in H^{-1,s}$ can be represented (not uniquely)
as

In the case $n=2$ and $s>1$ . we define

(1.6) $f=f_{0}+ \sum_{k=1}^{n}i^{-1}\frac{\partial}{\partial x_{k}}f_{k}$ , $f_{k}\in L^{2,s}$ , $0\leq k\leq n$ .
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$L_{0}^{2,s}(\mathbb{R}^{2})=\{u\in L^{2,s}(\mathbb{R}^{2}) /\hat{u}(0)=0\}$ ,

and set $H_{0}^{-1,s}(\mathbb{R}^{2})$ to be the space of functions $f\in H^{-1,s}(\mathbb{R}^{2})$ which have a repre-
sentation (1.6) where $f_{k}\in L_{0}^{2,s}$ , $k=0,1,2$ .

For any two normed spaces $X,$ $Y$ , we denote by $B(X, Y)$ the spacc of bounded
linear operators from $X$ to $Y$ , equipped with the operator-norm topology.

Thc fundamental result obtained in the present paper is given in the following
theorem.

THEOREM A. Suppose that $a(x)$ satisfies $(1.1),$ $(1.2)$ . Then the operator $H$

satisfies the LAP in $\mathbb{R}$ . More precisely, using the density of $L^{2,s}$ in $H^{-1,s}$ , consider
$thcrc$solvcnt $R(z)=(H-z)^{-1}$ , $Imz\neq 0$ , as two opcrator-valued functions,
defined respectively in the lower and upper half-planes,

(1.7) $zarrow R(z)\in B(H^{-1,s}(\mathbb{R}^{n}), H^{1,-s}(\mathbb{R}^{?t}))$ , $s>1_{\}}$ $\pm Imz>0$ .
Then these functions can be extended $continuo^{t}usly$ from $C^{\pm}=\{z/\pm Imz>0\}$ to

$\overline{C^{\pm}}=C^{\pm}\cup \mathbb{R}_{j}$ with respcct to th $e$ opcrator-norm topology. In the case $n=2$ rcplacc
$H^{-1,s}$ by $H_{0}^{-1,s}$

In particular, it follows that the limiting values $R^{\pm}(\lambda)$ are continuous at $\lambda=0$

and $H$ has no resonance there. The study of the resolvent near the threshold $\lambda=0$

is sometimes referrcd to as “ low energy estimates”. As mentioned earlier, this result
has been established in the case $H=H_{0}$ [$6$ , Appendix $A$]. The paper [25] deals
with the two-dimensional $(n=2)$ case, but the resolvent $R(z)$ is restricted to con-
tinuous compactly supported functions $f$ , thus enabling the use of pointwise decay
estimates of $R(z)f$ at infinity. The case of the closely related “ acoustic propagator”
, where the matrix $a(x)=b(x_{1})I$ is scalar and dependent on a single coordinate
, has been extensively studied [4, 9, 12, 17, 18, 20], as well as the “anisotropic”
case wherc $b(x_{1})$ is a general positive matrix [5]. The proof of the theorem will be
given in Section 3. It is based on an extended version of the LAP for $H_{0}$ , with the
resolvent $R_{0}(z)$ acting on elements of $H^{-1,s}$ , for suitable positive values of $s$ (see
Section 2).

An important application of the LAP in the case of perturbations of the Lapla-
cian is the derivation of an “cigenfunction expansion theorem”, where the eigen-
functions are perturbations of plane waves $\exp(i\xi x)[1,29]$ . We can use the LAP
result of Theorem A in order to derive a similar expansion for the operator $H$ . In
fact, our generalized eigenfunctions are given by the following definition.

Definition 1.2. For every $\xi\in \mathbb{R}^{n}$ let
$\psi_{\pm}(x, \xi)=-R^{\mp}(|\xi|^{2})((H-|\xi|^{2})$ cxp$(i\xi x))=$

(1.8)
$R^{\mp}(| \xi|^{2})(\sum_{l,j=1}^{n}\partial_{l}(a_{l,j}(x)-\delta_{l,j})\partial_{j})\exp(i\xi x)$ .

The generalized eigenfunctions of $H$ are defined by

(1.9) $\varphi\pm(x, \xi)=\exp(i\xi x)+\psi_{\pm}(x, \xi)$ .
Remark 1.3. We label the eigenfunctions as “generalized” because they do not
belong to the Hilbert space $L^{2}(\mathbb{R}^{n})$ .
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In analogy with the eigenfunction expansion theorem for short or long range
perturbations of the Laplacian [1, 29] we can now state an eigenfunction expansion
theorem for the operator $H$ . We assume $n\geq 3$ in order to simplify the statement of
the theorem. As we show below (see Proposition ??) the generalized eigenfunctions
are (at least) continuous in $x$ , so that the integral in the statement makcs sense,

THEOREM $B$

Suppose that $n\geq 3$ and that $a(x)$ satisfies (1.1),(1.2). For any compactly supported
$f\in L^{2}(\mathbb{R}^{n})$ define

(1.10) $( \mathbb{F}_{\pm}f)(\xi)=(2\pi)^{-\tau}n\int_{R^{n}}f(x)\overline{\varphi\pm(x,\xi)}dx$ , $\xi\in \mathbb{R}^{n}$ .

$?^{1}hen$ the transformations $\mathbb{F}\pm$ can be extended as unitary transformations (for
$\tau i)hichw\zeta)$ retain the same notation) of $L^{2}(\mathbb{R}^{7\iota})$ onto itself. Furthermore, these
transforvnations ”diagonalize“ $H$ in the following se$nse$ .
$f\in L^{2}(\mathbb{R}^{n})$ is in the domain $D(H)$ if and only if $|\xi|^{2}(\mathbb{F}_{\pm}f)(\xi)\in L^{2}(\mathbb{R}^{n})$ and

(1.11) $H=\mathbb{F}_{\pm}^{*}A/I_{|\xi|^{2}}\mathbb{F}\pm$ ,

where $\Lambda I_{|\xi|^{2}}$ is the multiplication opemtor by $|\xi|^{2}$ .

As is well-known from the theory of Schr\"odinger operators, the LAP and the eigen-
function expansion theorem provide powerful tools for the treatment of a wide
array of related problems. Here we give one such application, dealing with global
space-time estimates for a generalized wave equation.

We consider the equation

(1.12) $\frac{\partial^{2}u}{\partial t^{2}}=Hu=-\sum_{i,j=1}^{n}\partial_{i}a_{i,j}(x)\partial_{j}u$ ,

subjcct to thc initial data

(1.13) $u(x, 0)=u_{0}(x)$ , $\partial_{t}u(x, 0)=v_{0}(x)$ , $x\in \mathbb{R}^{7l}$ .

Wc next replace the assumptions (1.1),(1.2) by stronger ones as follows.
Let $g(x)=(g_{i,j}(x))_{1\leq i,j\leq n}$ be a smooth Riemannian metric on $\mathbb{R}^{n}$ such that

(1.14) $g(x)=I$ for $|x|>\Lambda_{0}$ .
and assume that

(1.15) $a(x)=g^{-1}(x)=(g^{i,j}(x))_{1\leq i,j\leq n}$ .

We have the following theorem.

THEOREM $C$

Suppose that $n\geq 3$ and that $a(x)$ satisfies (1.14),(1.15). $\mathcal{A}ssume$ further that the ge-
ometry defined by $the\uparrow n$etric $g$ has no “trapped geodesics” [27]. Then for any $s>1$
there exists a constant $C=C(s, n)>0$ such that the solution to $(1.12).(1.13)$
satisfies

(1.16)
$\int_{\mathbb{R}}\int_{N^{n}}(1+|x|^{2})^{-s}|u(x, t)|^{2}dxdt\leq$

$C[Ilu_{0}\Vert_{0}^{2}+\Vert|D|^{-1}v_{0}\Vert_{0}^{2}]$ ,
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where as usual $|D|^{-1}$ denotes multiplication by the symbol $|\xi|^{-1}$ .

This estimate generalizes similar estimates obtained for the classical $(g=I)$ wave
equation [2, 21].

We do not provide proofs of the theoreins, but we include below the treatment
of the unperturbed operator $H_{0}$ . This treatment is already new in the sense that
it extends the treatment of the LAP beyond the $L^{2}$ setting (see the statement of
Theorem A).

2. The Operator $H_{0}=-\Delta$

Let $\{E_{0}(\lambda)\}$ be the spectral family associated with $H_{0}$ , so that

(2.1)
$(E_{0}(\lambda)h, h)=/|\xi|^{2}\leq\lambda|\hat{h}|^{2}d\xi$

, $\lambda\geq 0$ , $h\in L^{2}(\mathbb{R}^{n})$ .

Following the methodology of [7, 13] we see that the weak derivative $A_{0}(\lambda)=$

$\frac{d}{d\lambda}E_{0}(\lambda)$ exists in $B(L^{2,s}, L^{2,-\epsilon})$ for any $s> \frac{1}{2}$ and $\lambda>0$ . (Here and below we
write $L^{2,s}$ for $L^{2,s}(\mathbb{R}^{n}))$ . Furthermore,

(2.2) $<A_{0}(\lambda)h,$
$h>=(2 \sqrt{\lambda})^{-1}\int_{|\xi|^{2}=\lambda}|\hat{h}|^{2}d\tau$

,

where $<,$ $>$ is the $(L^{2,-s}, L^{2,s})$ pairing and $d\tau$ is the Lebesgue surface measure.
Rccall that by the standard trace lemma we have

(2.3)
$|\xi|^{2}=\lambda/|\hat{h}|^{2}d\tau\leq C\Vert\hat{h}\Vert_{H^{\delta}}^{2}$

, $s> \frac{1}{2}$ .

However, wc can refine this estimate near $\lambda=0$ as follows.

Proposition 2.1. Let $\frac{1}{2}<s<\frac{3}{2}$ , $h\in L^{2,s}$ . For $n=2$ assume further that $s>1$
and $h\in L_{0}^{2,s}$ Then

(2.4)
$| \xi|^{2}=\lambda/|\hat{h}|^{2}d\tau\leq C\min(\lambda^{\gamma}, 1)\Vert\hat{h}\Vert_{H^{\epsilon}}^{2}$

,

where

(2.5) $0< \gamma<s-\frac{1}{2}$ ,

and $C=C(s, \gamma, n)$ . ($\mathcal{A}ctually$ we can take $\gamma=s-\frac{1}{2}$ if $s\leq 1$ and $n\geq 3$).

Proof. If $n\geq 3$ , the proof follows from [8, Appendix]. If $n=2$ and $1<s< \frac{3}{2}$ we
have, for $h\in L_{0}^{2,s}$ ,

$|\hat{h}(\xi)|=|\hat{h}(\xi)-\hat{h}(0)|\leq C_{s,\delta}|\xi|^{\delta}\Vert\hat{h}\Vert_{H^{S}}$ ,

for any $0< \delta<\min(1, s-1)$ . Using this estimate in the integral in the right-hand
side of (2.4) the claim follows also in this case. $\square$
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Combining Equations (2.2),(2.3) and (2.4) we conclude that,

(2.6) $|<A_{0}(\lambda)f,$ $g>|\leq<A_{0}(\lambda)f,$ $f>^{1}F<A_{0}(\lambda)g,$ $g>^{\frac{1}{2}}$

$\leq C\min(\lambda^{-\frac{1}{2}}, \lambda^{\eta})\Vert f\Vert_{0,s}\Vert g\Vert_{0,\sigma}$ , $f\in L^{2,\epsilon}$ , $g\in L^{2,\sigma}$ ,

where either

(i) $n\geq 3$ , $\frac{1}{2}<s,$ $\sigma<\frac{3}{2}$ , $s+\sigma>2$ and $0<2\eta<s+\sigma-2$ ,

(2.7) or

(ii) $n=2$ , $1<s< \frac{3}{2}$ , $\frac{1}{2}<\sigma<\frac{3}{2}$ , $s+\sigma>2$ , $0<2\eta<s+\sigma-2$

and $\hat{f}(0)=0$ .
In both cases, $A_{0}(\lambda)$ is H\"older continuous and vanishes at $0,$ $\infty$ , so as in [7] we
obtain

Proposition 2.2. The operator-valued function

(2.8) $zarrow R_{0}(z)\in\{\begin{array}{l}B(L^{2,s}, L^{2,-\sigma}), n\geq 3,B(L_{0}^{2,s}, L^{2,-\sigma}), n=2,\end{array}$

?vhcr$(,$ $s,$ $\sigma$ satisfy (2.7), can be extended continuously from $C^{\pm}$ to $\overline{C^{\pm}}$ , in the respec-
tive uniform operator topologies.

We shall now extend this proposition to more general function spaces. Let $g\in$

$H^{1,\sigma}$ , where $s,$ $\sigma$ satisfy (2.7).Let $f\in H^{-1,s}$ havc a representation of the form (1.6).
Equation (2.2) ean be extended in an obvious way to yield

(2.9) $i^{-1}<A_{0}( \lambda)\frac{\partial}{\partial x_{k}}f_{k},g>=(2\sqrt{\lambda})^{-1}/\xi_{k}\hat{f}_{k}(\xi)\overline{\hat{g}(\xi)}d\tau|\xi|^{2}=\lambda$’
$k=1,$ $\ldots,$

$n$ .

We therefore obtain

Proposition 2.3. The operator-valued function of Proposition 2.2 is well-defined
(and analytic) for nonreal $z$ in the following functional setting.

(2.10) $zarrow R_{0}(z)\in\{\begin{array}{l}B(H^{-1,s}, H^{1,-\sigma}), n\geq 3,B(H_{0}^{-1,s}, H^{1,-\sigma}), n=2,\end{array}$

where $s,$ $\sigma$ satisfy (2.7). Furthermore, it can be extended continuously from $C^{\pm}$ to
$\overline{C^{\pm}}$ , in the respective uniform opemtor topologies.

Proof. In view of (2.9) and the considerations preceding Proposition 2.2, since
$g\in H^{1,\sigma}$ , we have instcad of (2.6),

$|<A_{0}( \lambda)\frac{\partial}{\partial x_{k}}f_{k},$ $g>|$
(2.11)

$\leq C\min(\lambda^{-\frac{1}{2}}, \lambda^{\eta})\Vert f\Vert_{-1,s}\Vert g\Vert_{1,\sigma}$ $f\in H^{-1,\epsilon}$ , $g\in H^{1,\sigma}$ ,

so that the claim holds true if $H^{1.-\sigma}$ is replaced by $H^{-1,-\sigma}$ . However, using that
$H_{0}R_{0}(z)=I+zR_{0}(z)$ we see that also $H_{0}R_{0}(z)$ can be extended continuously
(as $z$ approaches the real line from either half-plane) with values in $H^{-1,-\sigma}$ . The
conclusion of the proposition follows since the norm of $H^{1,-\sigma}$ is equivalent to the
graph-norm of $H_{0}$ in $H^{-1,-\sigma}$ . $\square$
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