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Schrodinger operators with random ¢
magnetic fields

by Takuya MINE! and Yuji NOMURA?

Abstract. We shall consider the Schrodinger operators on R? with ran-
dom 0 magnetic fields. Under some mild conditions on the distribution of
the random J-fields, we prove the Lifshitz tail for our operators. The key of
the proof is the Hardy type inequality by Laptev-Weidl (7].

1 Introduction

We consider the random magnetic Schrodinger operators on R2:
1 2
Ew:: (E‘7+'aw) )

where w is an element of some probability space (€2, P). The vector-valued
function a,, = (a4, @y y) is the magnetic vector potential, which corresponds
to the magnetic field rot a,, = 0,a.,,y — Oya,,.. We assume

rota,(z) = Z 2o, (w)d(z — ) (1)

Y€l

in the distribution sense, where I',, is a discrete set in C, a(w) = {a(w) }rer,,
are real numbers satisfying 0 < a,(w) < 1, and ¢ is the Dirac measure concen-
trated on the origin. We consider the following assumptions for (T, a(w)). In
the sequel, we identify a vector z = (z,y) with a complex number z = z + iy,
and use notations S+ z={s+z|se€ S} and rS={rs|se€ S} for S CC,
z€ Candr>0. |

Assumption 1.1 (i) For any Borel set E in R?, the functions
no(E) =#TuNE), @, (F)= Z ay(w)
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are measurable with respect to w € (2.

(i) Let Qo = {z=z+iy| —3 <z <3, —% <y <3} Then, for any Borel
set E C Qo, the random variables {®(E +n)}nezaiz are independently,
tdentically distributed (abbrev. i.i.d.).

(i4i) The mathematical expectation E[®(Qy)] is positive and finite, and the
variance V[®(Qo)] is finite.

(iv) For any € > 0, the probability
P{n(Qo) <1 and ®(Qo) < €}
18 positive.
(v) For some § with 0 < é < 1, the probability
P{n(Qo) = n(6Qo) = 1}
18 positive.

We can construct the vector potential a, satisfying (1) by the following
formula (see [5, section 4]):

a, = (Im¢w,Re¢w)a
suls) = 2w av(w>< : +l+‘z‘>’ (2)

_ 2
Z yeTo\o) =TT

where we put op(w) = 0 if 0 € I'. We can prove that the sum in the above
formula converges almost surely under (i), (ii) and (iii) of Assumption 1.1.

There are many examples satisfying Assumption 1.1. We list two typical
examples below.

(i) Perturbation of a lattice. T', = {n + fu(w)}nezeiz, Where {fn}
are i.i.d., complex-valued random variables satisfying | f,(w)| < §/2 for
some deterministic constant § with 0 < § < 1. {a,} are [0, 1)-valued
i.i.d. random variables independent of {f,}, satisfying E[a,] > 0 and

P{a, <€} >0 for any e > 0. (3)



(ii) Poisson model. T', is a Poisson configuration (the support of the
Poisson point process) on C with intensity measure pdrdy for some
positive constant p. {a,} are i.i.d. random variables independent of I,
and satisfying E[a,] > 0 (the assumption (3) is not necessary).

For the definition of the Poisson point process, see [13, 2|.

We denote the Friedrichs extension of Ewlcoo (r2\r,,) by H,. We can prove
that the operator domain D(H,,) of H, coincides with the functions in L? (R2?)
satisfying the boundary conditions

L,u € L*(R?), lim |u(2)| < oo for any v € [,,. 4)

Z—y
Under (i)-(iv) of Assumption 1.1, we can prove
o(H,) = [0, 00)

almost surely, by the usual method of approximating eigenfunctions (the
technical detail will be given in our forthcoming paper [10]).

We shall introduce the integrated density of states (IDS) for the operator
H, Let Qe ={2=z+iy| -k—<z<k+3-k—-—3<y<k+3}for
k > 0. Let H® be the self-adjoint reahzatlon of the operator £, on L %(Qk)
with the Neumann boundary conditions (iV + aw) u-n=0on 0Q; (nis
the unit outer normal). For E € R, we define -

NME) = # {eigenvalues of HY less than or equal to E}, (5)
N(E) = Jim 15 !N’“(E) (6)

where |- | denotes the Lebesgue measure. We can prove the limit N(E) exists
and independent of w by Akcoglu-Krengel’s superadditive ergodic theorem
(see [4, 1]).

‘Our main result is the following inequality, called the Lifshitz tail.

Theorem 1.2 Under (i)-(v) of Assumption 1.1, there exists some con-
stant C > 0 and Ey > 0 independent of w and E, such that

olle}

N(E)<e~ (7)

for any E with 0 < E < Ej.



There are numerous results which proved the Lifshitz tail for Schrodinger
operators with random scalar potentials; see e.g. [4, 14]. There are also some
results which proved the Lifshitz tail for Schrédinger operators with random
magnetic fields; see Nakamura [11] and Klopp—Nakamura—Nakano—Nomura
[6] for the discrete operators, Ueki [15], Nakamura [12], and Borg-Pulé [3]
for the continuous operators. However, there seems to be no results for the
Lifshitz tail for random § magnetic fields, at present.

In Nakamura’s paper [12], the crucial inequality in the proof of Lifshitz
tail is Avron-Herbst-Simon estimate:

H, > rota,,. (8)

If the magnetic field is regular, we can reduce the problem to the scalar
potential case by using (8). However, in our case the inequality (8) is no
longer useful, since rota, = 0 almost everywhere. Instead of (8), we use
the Hardy-type inequality by Laptev—Weidl [7]. Below we sketch the main
ingredient of the proof briefly.

2 Hardy-type inequality

For d > 3, there exists a positive constant Cy such that

/ \Vu(z)|?dz > Cy / u@) (9)
Rd re |Z|2

for any u € C(R?). This inequality is called the Hardy inequality. The
inequality (9) fails when d = 2, however, Laptev—Weidl [7] proved that a
similar inequality holds if there exists a é magnetic field at the origin.

Lemma 2.1 (Laptev-Weidl) Let o € R and putay(z) = (Im %, Re %)
(so rota, = 2mad). Then, we have

/MSR (E.V +aa> u(2)

@
for any R > 0 and any u € C(R?\ {0}). Here p(a) = min In + af?.

’ dzdy > pla) |u(2)?

dzdy (10)

|z|<R | 2|2



Proof. We use the polar coordinate z = re’. By a simple computation,
we have
2

(%v_,_aa) F)Em| = )P+ 222 r) > B 5.

So we get the conclusion by expanding u as a Fourier series with respect to
6. []

Let us return to our model. Let ¢ be the constant given in (v) of As-

sumption 1.1. Then, the probability of the event
Ny (Qo +n) =n,(0Qp+n) =1 (11)
is positive for any n € Z @ iZ. When (11) holds, we denote I',, N (Qo +n) =
{mW)}, an(w) = a,, w)(w). For z € n + Qy, define
4 . 1-96
V. (2) = mp(an(w)) if (11) holds and |z — 1, (w)| < 5
0 otherwise. |

By using an appropriate gauge transformation and Lemma 2.1, we have

[oJGrn)es

for any u € C°(R?\ I,).
Next, notice that?

Vlu| = Re(sgnaVu) = Re(sgna(V + ia,)u) a.e. (13)

holds for u € C(R? \ T,), where sgnz = z/|z| for z # 0 and sgn0 = 0.
Taking the absolute value of the both sides, we have

1 2

By (12) and (14), we have the following inequality:

(n+ a)z

p()

dzdy > p(an(w)) o V() |u(2)|?dzdy (12)

> ’V]ul‘z a.e. | (14)

Lemma 2.2

L.
Qi L

for any u € CP(R2\T,).

3The equality (13) holds for u € H ! (R?); see e.g. [8, appendix].

loc

2

dody > 1/ (lvw‘ +V |yl )d:vdy (15)




3 Qutline of Proof of Theorem 1.2

By virtue of Lemma 2.2, we can reduce the problem to the scalar potential
case, as we shall see below. The technical detail will be given in [10].
We use the following rough estimate for the eigenvalue counting functions:

NS(E) < C1| Qx| (16)

for any £ < 1 and any k = 1,2,..., where C] is a constant independent of
I, a(w), E, and k. An inequality like (16) is well-known when the magnetic
potential is smooth, and we can also prove (16) for our operator H,, by using
the diamagnetic inequality for Schrédinger operators with d-magnetic fields
[9].

It is known that ]
Qx

(see [4, VI.1.3]). Let E;(HF) be the smallest eigenvalue of H%, and x(w) the
characteristic function of the event ‘E;(H¥) < E’. Then we have for every
k>1land £ <1

N(E) = Iicgg E [N:(B)]

1 k
N(E) < [orBINIE)
L BIN*E)x(w
S ENEEX)

C\P{E\(H}) < E}
< CP {El (%(—A’;V + Vw)> < E} : (17)

IA

where we used (16) in the second inequality, and Lemma 2.2 and the min-
max principle in the last inequality. The potential V,, is, roughly speaking,
the Anderson-type scalar potential, * so we can use the well-known result
(see e.g. [14, section 2.1])

P {El (%(—A’jv + Vw)> ‘5 E} < e CFT (18)

for sufficiently small £ > 0. Thus we have the conclusion.

4The potential V,, is not exactly the Anderson type scalar potential, since the ‘center’
of each single site potential varies a bit randomly from lattice points. However, the proof
of the inequality (18) in [14] can be applied for our potential V.
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