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Abstract

We cannot perform the projective measurement of a momentum on a half line
since it is not an observable. Nevertheless, we would like to obtain some physical
information of the momentum on a half line. We define an optimality for mea-
surement as minimizing the variance between an inferred outcome of the measured
system before a measuring process and a measurement outcome of the probe system
after the measuring process, restricting our attention to the covariant measurement
studied by Holevo. Extending the domain of the momentum operator on a half line
by introducing a two dimensional Hilbert space to be tensored, we make it self-
adjoint and explicitly construct a model Hamiltonian for the measured and probe
systems. By taking the partial trace over the newly introduced Hilbert space, the
optimal covariant positive operator valued measure (POVM) of a momentum on a
half line is reproduced. We physically describe the measuring process to optimally
evaluate the momentum of a particle on a half line.

1 Introduction
Quantum theory begins in 1899 with the discovery of the Planck law in black body
radiation. Its formulation was initiated by Heisenberg and Schr\"odinger respectively. In
1932, von Neumann mathematically formulated quantum mechanics [2] as the following
postulates.

Postulate 1 (Representations of states and observables). $\mathcal{A}ny$ quantum system $S$ is as-
sociated with a separable Hilbert space $\mathcal{H}_{S}$ , called the state space of S. $\mathcal{A}ny$ quantum state
of $S$ is the element $|\psi\rangle$ of the Hilbert space and is represented in one-to-one correspon-
dence by a positive operator $\rho=|\psi\rangle\langle\psi|$ with unit trace, called a density opemtor. $\mathcal{A}ny$

observable of $S$ is represented in one-to-one correspondence by a self-adjoint operator $A$

densely defined on $\mathcal{H}_{S}$ .

Postulate 2 (Schr\"odinger equation). If $S$ is isolated in a time interval $(t, t’)$ , there is a
unitary operator $U$ such that if $S$ is in $\rho$ at $t$ then $S$ is in $\rho=U\rho U^{\uparrow}at$ $t’$ .

Postulate 3 (Born formula). Any observable $A$ takes the value in a Borel set $\Delta$ in any $\rho$

with the probability Tr $[E^{A}(\Delta)\rho]$ , where $E^{A}(\Delta)$ is the spectral projection ofA corresponding
to $\Delta$ .

Postulate 4 (Composition rule). The composite system $S+S’$ is the tensor product
$\mathcal{H}_{S}\otimes \mathcal{H}_{S^{t}}$ of their state spaces.

lThis proceeding is for the talk at RIMS Research Meeting ”Micro-Macro Duality in Quantum Anal-
ysis” held at RIMS, Kyoto university and is based on the work [1].
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Figure 1: Scheme of measuring processes. We switch on the interaction between the
measured and probe systems in the first step to obtain the measurement outcome of the
probe system in the second step. We infer the observable of the measured system at $t=0$
from the outcome of the probe system at $t=t_{f}$ in the third step.

While he discussed measuring processes, he failed to give the mathematical postulate of
measurement. Thereafter Ozawa introduced the postulate of measurement [3] to consider
the measured system and probe system.

Postulate 5 (Representation of generalized measurement). When any observable $A$ of
the measured system is measured in any state $\rho_{sys}$ before measurement, we obtain that the
state after measurement is $M(\Delta)\rho_{sys}=\ulcorner fr_{en\tau},[U(\rho_{sv^{g}}\otimes\rho_{prob})U^{\uparrow}]$ and $A$ takes the value in
a Borel set $\Delta$ with the probability $Tr_{sys}[\rho_{sys}M(\Delta)]$ , where the time evolution opemtor is
defined on the composite system $\mathcal{H}_{sys}\otimes \mathcal{H}_{prob}$ .

$M(\Delta)$ is often called positive operator valued measure (POVM) or completely positive
trace preserving (CPTP) map of measurement. The concept of measurement is illustrated
in Fig. 1. So measurement is represented by a POVM while an interaction between a
measured and probe system is not known. To consider an experimental setup of measure-
ment, we need to know the interaction. We now derive the measurement interaction from
a given POVM under a specific condition about measurement of a momentum on a half
line.

For measuring processes, we shall consider an optimal measurement initiated by Hel-
strom $[$4]. He defined an optimality of a measuring process to minimize the variance
between an outcome of a measured system before the interaction and a measurement out-
come of a probe system after the interaction. The optimal measurement sets upper limits
to a POVM. In this paper, we explicitly constmct a model Hamiltonian which reproduces
the optimal POVM in a special case, while a general method is not available to construct
a measurement model from a given POVM.

This paper has two main results. One is to explicitly construct an optimal covariant
measurement model Hamiltonian to measure a momentum of a particle. In case of a
whole line, optimal covariant measurement corresponds to projective measurement, that
is to consider an implementation of projective measurement. The other is to consider a
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half line system using the optimal covariant measurement model. Throughout this paper,
we take the unit $\hslash=1$ .

2 Review of Optimal Covariant Measurement
Let us consider a measuring process described by an interaction between a measured
system and a probe system, the latter of which is the part of the measuring apparatus
as a whole. To establish the relationship between the measured and probe systems, we
consider the momentum space $\Omega=\mathbb{R}$ and a projective unitary representation of the shift
group of $\Omega$ . Stonc’s theorem tells us that the unitary representation is given by

$parrow V_{p}=e^{-i\rho\hat{x}}$ , (1)

where $\hat{x}$ is the position operator.

Definition 1. A POVM $M(dp)$ is covanant vnth respect to the representation $parrow V_{p}$ if
$V_{p}^{\dagger}M(\Delta)V_{p}=M(\Delta_{-p})$ , $p\in\Omega$ (2)

for any $\Delta\in \mathcal{A}(\Omega)$ , where

$\Delta_{p}=\{p’|p’=p+p’’, p’’\in\Delta\}$ (3)

is the image of the set $\Delta$ under the transformation $p$ and $\mathcal{A}(\Omega)$ is the Borel $\sigma- field$ of $\Omega$ .

The covariant POVM has the property in the following form by using the Bom for-
mula [2, 9],

$Pr\{\hat{p}\in\Delta_{p}\Vert\rho_{p+p_{0}’}\}=Tr\rho_{p+p_{0}’}M(\Delta_{p})$

$=TrV_{-p}\rho_{p_{0}’}V_{-\rho}^{\dagger}M(\Delta_{p})$

$=T\}\rho_{p_{0}’}V_{p}^{\underline{\dagger}}M(\Delta_{p})V_{-p}$

$=Tr\rho_{p_{0}’}M(\Delta)$

$=Pr\{\hat{p}\in\Delta\Vert\rho_{p_{0}’}\}$ . (4)

That is, when the measured system is arbitrarily shifted, the measurement outcome is
shifted by the same amount. This idealized measurement is called a covanant measure-
ment. The curious point is to correspond to the opitmal POVM under an unbiased
condition by Hayashi and Sakaguchi [5] and more realistic measuring device is subject to
an unbiased condition only locally as discussed by Hotta and Ozawa [6].

By von Neumann’s spectral theorem, any Hilbert space $\mathcal{H}$ can be formally described
as the direct integral of a Hilbert space $\mathcal{H}_{x}$ ,

$\mathcal{H}=\int\oplus \mathcal{H}_{x}dx$ , (5)

so that any state vector $\psi\in \mathcal{H}$ is described by the vector-valued function $\psi=[\psi_{x}]$ with
$\psi_{x}\in \mathcal{H}_{x}$ introducing a convenient notation $[\cdot][7,9]$ . There, a position operator $\hat{x}$ acts
as multiplication operators

$\hat{x}\psi=[x\psi_{x}|$ (6)
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in this notation. The same notation $[\cdot]$ is used for an operator-valued function. A kernel
$[K(x, x’)]$ , where $K(x, x’)$ is a mapping from $\mathcal{H}_{x’}$ to $\mathcal{H}_{x}$ for all $x$ and $x’$ , defines an operator
$\hat{K}$ on $\mathcal{H}$ . We can write

$\hat{K}\psi=[K(x, x^{l})][\psi_{x’}]=[\int K(x, x’)\psi_{x’}dx’]$ . (7)

The equation (6) and (7) can be rephrased by the bracket notation as

$\hat{x}|\psi\rangle=\int dx|x)x\langle x|\psi)$ , (8)

$\hat{K}|\psi\rangle=/dx/dx’|x\rangle K(x, x’)\langle x’|\psi\rangle$ , (9)

respectively. Also we express the norm in $\mathcal{H}_{x}$ as 1 $\Vert_{x}$ .
We are now in a position to explicitly describe the covariant POVM as follows.

Theorem 1 (Holevo [7]). Any covamant POVM in $\mathcal{H}$ has the form

$M(dp)=[K(x, x’)e^{i(x-x’)p} \frac{dp}{2\pi}]$ , (10)

$\prime inh_{l}ere[K(x, x’)]$ is a positive definite kernel satisfying $K(x,x)\equiv I_{x}$ , the identity mapping
from $\mathcal{H}_{x}$ to itself.

In the above discussion, we have assumed that system and probe observables are
isometric to obtain (10) as the POVM. The proof of Theorem 1 is given in Appendix A
of $[1|$ .

Next we tum to a measuring process. First, we couple a measured system to a probe
system. Second, the combined system is evolved in time. Finally, we measure the probe
observable. The sequence of processes enables us to retrospectively evaluate the system
observable at the starting time by the measurement outcome of the probe observable at
the end time (See Fig. 1). So we define the optimal covariant measurement as an optimal
evaluation of the syst$em$ observable by the outcome of the probe observable.

Let us assume that $W(p-P)$ is a deviation function, which expresses the variance
between the inferred “measurement” outcom$ep$ of the system momentum before the
interaction and the measurement outcome $P$ of the probe momentum after the interaction,
satisfying

$W(p)=-/e^{ipx}\tilde{W}(dx)$ , (11)

for an even finite measure $\tilde{W}(dx)$ on $\mathbb{R}$ . Let us consider the condition to minimize the
variance

$R_{\rho} \{\Lambda I\}=\int_{\Omega}W(p-P)\mu_{\rho}(dp)$ , (12)

where $\mu_{\rho}(dp)\equiv$ Tlr $\rho M(dp)$ is the probability distribution for the pure state $\rho=|\psi\rangle\langle\psi|$ .
Because of covariance, we rewrite (12) as

$R_{0}\{M\}=/\Omega^{W(p)\mu_{\rho 0}(dp)}$

$=-/\Phi_{\rho}(x)\tilde{W}(dx)$ , (13)
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where
$\Phi_{\rho}(x)\equiv/\iota^{e^{ixp}\langle\psi|M(dp)\psi\rangle}$ (14)

is a characteristic function of $\mu_{\rho}(dp)$ . We get from Eq. (10)

$\Phi_{\rho}(x)=/\langle\psi_{\mu}|K(\mu, \mu-x)\psi_{\mu-x}\rangle d\mu$ . (15)

Since the integral converges by the Cauchy-Swartz inequality and the condition $K(x, x)=$
$I_{x}$ ,

$Re\Phi_{\rho}(x)\leq\Phi_{*}(x)\equiv/\Vert\psi_{\mu}\Vert_{\mu}\Vert\psi_{\mu-x}\Vert_{\mu-x}d\mu$ , (16)

so that

$R_{0} \{M\}\geq-/\int\Vert\psi_{\mu}\Vert_{\mu}\Vert\psi_{\mu-x}\Vert_{\mu-x}d\mu\tilde{W}(dx)$

$\equiv R_{0}\{M_{0}\}$ , (17)

where
$M_{0}(dp)=[ \frac{\psi_{x}\cdot\psi_{x}^{\dagger}}{\Vert\psi_{x}||_{x}\Vert\psi_{x}’,\Vert_{x’}}e^{i(x-x’)p}\frac{dp}{2\pi}]$ , (18)

by transforming $\mu-x$ to $x^{l}$ . Note that Eq. (18) does not depend on the choice of the
deviation function $W(p-P)$ because of the covariance. In the case of the whole line
system, the optimal covariant POVM (18) in the bracket notation expresses

$M_{0}(dp)= \int_{R}dx\int_{R}dx’|x)e^{i(x-x’)p}\frac{dp}{2\pi}\langle x’|$ , (19)

noting that the normalized term $\frac{\psi_{x}\psi^{t},}{\Vert\psi_{x}\Vert_{x}||\psi_{x},\Vert_{x}}$ is the identity in the bracket notation. Using
the Fourier transformation,

$|p \rangle=\frac{1}{\sqrt{2\pi}}/\mathbb{R}^{dxe^{ipx}|x\rangle}$
’ (20)

Eq. (19) is transformed to the following equation,

$M_{0}(dp)=|p\rangle\langle p|dp$ , (21)

to obtain the projective measurement of a momentum on a whole line. To summarize the
above discussion, we obtain the optimal covariant POVM (18) to minirnize the estimated
variance between the system and probe observables [7, 8]. We emphasize that Eq. (18)
remains valid even when we change the domain of $x$ .

3 Optimal Measurement Model on a Whole Line
In the previous section, we have obtained the optimal covariant POVM. We are now going
to explicitly construct a Hamiltonian for a measurement model to realize the POVM.
While it is straightforward to calculate the POVM and the probability distribution of
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the system observable for a given Hamiltonian of a combined system, it is not to find a
Hamiltonian from a given POVM. In the two dimensional case, there is a way to construct
a model Hamiltonian from a given POVM [11]. Once the Hamiltonian for the combined
system is found, we can physically realize the given POVM in principle. In the infinite
dimensional case, we heuristically explore the optimal covariant POVM for the momentum
in measuring processes in the following way. In this section, we preparatively discuss
measurement of the momentum of a particle on a whole line and then apply the results
to that on a half line in the next section. To make our exposition shorter, we assume that
the wave functions $\{\psi_{x}\}$ are normalized and the measure $\frac{d}{2}R\pi$ is omitted in Eq. (18). Then
Eq. (18) is simply

$M_{0}=[\psi_{J_{x}}\cdot\psi_{x}^{\dagger},e^{i(x-x’)p}]$ . (22)

Let us consider a model Hamiltonian[12],

$\hat{\mathcal{H}}_{c,om}=\frac{1}{2m}\hat{p}^{2}+\frac{1}{2M}\hat{P}^{2}+g\hat{P}\hat{x}\delta(t)+\frac{m\omega^{2}}{2}\hat{x}^{2}$

$\equiv\hat{\mathcal{H}}_{0}+g\hat{P}\hat{x}\delta(t)$ , (23)

where a pair $(\hat{x},\hat{p})$ are the position and thc momentum operators of the measured sys-
tem, a pair $(\hat{X},\hat{P})$ are those of the probe system and $\delta(t)$ is the Dirac $\delta$-function. This
Hamiltonian is modeled from the following consideration. We take the potential of the
measured system as a harmonic oscillator for simplicity and the probe system is assumed
to be a free particle system. Furthermore, the interaction is assumed to be instantaneous
with a coupling constant $g$ . The interaction term $g\hat{x}\hat{P}\delta(t)$ is chosen by the following rea-
soning. Because of the covariance, i.e., the measurement value $\tilde{P}$ of the probe observable
corresponds to the “ measurement” value $\tilde{p}$ of the system observable at a certain time, we
are led to an interaction of the momentum $\hat{P}$ of the probe system. Since the exponents
in the optimal covariant POVM (22) has a quadratic form, a possible interaction term is
either $g\hat{x}\hat{P}$ or $g\hat{p}\hat{P}$ . The latter is excluded because it does not influence the momentum
of the measured system.

Let us assume that the measured system itself is weakly coupled to a bulk system at
zero temperature. We consider the measuring process from the time $t=0-$ to $t=t_{f}$ .
Fkom Eq. (23) the evolution operator $\hat{U}$ becomes

$\hat{U}=$ Texp $(-i \int_{0-}^{t_{f}}\hat{\mathcal{H}}_{com}dt)$

$=$ Texp $(-i/\epsilon t_{f}\hat{\mathcal{H}}_{0}dt)\exp(-i/-\epsilon\epsilon g\hat{P}\hat{x}\delta(t)dt)$

$=T$ cxp $(-il^{t_{f}}\hat{\mathcal{H}}_{0}dl)$ cxp $(-ig\hat{P}\hat{x}(0))$ , (24)

where $\epsilon$ is an infinitesimal positive parameter and $T$ stands for the time-ordered product.
We construct the Kraus operator $[\hat{\mathcal{A}}_{xx’}]$ from the evolution operator as follows. Given

the initial probe stat$e|\tilde{P}\rangle$ , an eigenstat$e$ of the momentum $\hat{P}$ of the probe system, we see
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Figure 2: An optimal covariant measurement model. By the instantaneous interaction
between the measured and probe systems, the measured system is entangled with the
probe system. On the other hand, the measured system is coupled with the bulk system
at zero temperature to dissipate the energy of the measured system. Thus we optimally
evaluate the system observable at $t=0$ inferred from the outcome of the probe system
at $t=\infty$ by the momentum conservation law.

that

$\hat{A}_{xx’}=/\langle P|\langle x|\hat{U}|x’\rangle|\tilde{P}\rangle dP$

$= \sum_{j}\langle x|$
Texp $(-i \int_{\epsilon}^{t_{f}}\hat{\mathcal{H}}_{0}dt)|j\rangle\psi_{x,j}^{\dagger}\exp(-ig\tilde{P}x(0))$

$arrow\psi_{x}\cdot\psi_{x}^{\dagger},$ $\exp(-ig\tilde{P}x(0))$ a$s$ $t_{f}arrow\infty$ , (25)

where $|P\rangle$ is an eigenstate of $\hat{P},$
$\psi_{x_{2}j}$ is a wave function corresponding to the j-th energy

eigenstate $|j\rangle$ and $\psi=[\psi_{x}]$ is the ground state of the free Hamiltonian $\hat{\mathcal{H}}_{0}$ . In the last
line of (25), the ground state is pickcd up in the limit $t_{f}arrow\infty$ , or physically speaking,
we measure the prob$e$ observable after sufficient time passes. $Re$call that the standard
$i\epsilon$ prescription [13] implicitly assumes that the measured system itself is weakly coupled
to the bulk system at zero temperature. The equation (25) is the matrix element of the
Kraus operator $[\hat{\mathcal{A}}_{xx’}]$ .

From the Kraus operator, we calculate the POVM as

$M=[ \int\hat{A}_{x’ x}^{\dagger},,A_{xx’’}dx^{l/}]=[\psi_{x}^{\dagger},$ . $\psi_{J_{x}}\exp(-ig\tilde{P}\{x(0)-x’(0)\})]$ . (26)

We identify $g\tilde{P}$ with the measurement outcome $P$ itself of the probe observable to repro-
duce the optimal covariant POVM (22) on a whole line.

Now, we physically describe how we optimally infer the momentum of the measured
system just before the measuring process. First, we couple the measured system to the
probe syst$em$ instantaneously. Second, we keep the measured system in contact with the
bulk system at zero temperature and wait for a sufficiently long time. Since the energy of
the measured system is dissipated to the bulk system, the state of the measured system
settles down to the ground state. If we let the energy of the ground state zero, i.e.,
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$\omegaarrow 0$ of the interaction Hamiltonian (23), the momentum of the measured system $p_{sys,\infty}$

becomes zero at $t_{f}=\infty$ . According to the momentum conservation law, we obtain

$p_{sy0}6,+p_{p,0}=p_{sys,\infty}+p_{p,\infty}=p_{p,\infty}$ , (27)

where $p_{sys,t}$ and $p_{p,t}$ are the momenta of the measured system and the probe system at a
time $t$ . Since we can control the probe system, we can precisely infer the “ measurement”
value $p_{9ys,0}$ of the momentum of the measured system at the beginning of the measuring
process from the measurement outcome $p_{p,\infty}$ , which we measure in the probe system at
$t_{f}=\infty$ (See Fig. 2). If $\omega$ of the Hamiltonian (23) were finite, the variance of the
momentum of the measured system would remain finite due to the zero point oscillation
and Eq. (27) would be modified.

Although we have assumed that the potential of the measured system is given by
the harmonic oscillator, the potential could actually be any convex function since the $i\epsilon$

prescription picks up the ground state at $t_{f}arrow\infty$ .

4 Quantum Mechanics on a Half Line
According to the functional analysis, on which the mathematical foundation of quantum
mechanics [2] is based, an operator $\hat{A}$ is symmetric if $\hat{\mathcal{A}}=\hat{A}\dagger$ , where $\hat{\mathcal{A}}\dagger$ is the Hermite
conjugate. Further, a symmetric operator $\hat{A}$ is self-adjoint if $\mathcal{D}(\hat{A})=\mathcal{D}(\hat{A}\dagger)$ , where $\mathcal{D}(\hat{A})$

is the domain of the operator $\hat{A}_{-}$ In quantum mechanics, the observables are defined as
self-adjoint operators, which have real spectra [14]. Symmetric operators, however, do
not necessarily have a real spectrum. We need to classify symmetric operators into self-
adjoint operators, essentially self-adjoint operators, self-adjoint extendable operators and
non-self-adjoint extendable operators (for the definitions, see the book [14]). A criterion
is known as the deficiency theorem (See Appendix A).

Let us specifically consider a quantum system on a half line $\mathbb{R}+\equiv[0, \infty)$ . There
have been many works conceming this problem since the beginning of quantum mechan-
ics [15, 16, 17], e.g., the singular potential [18, 19, 20, 21]. Recently, Ful\"op et al. have
studied boundary effects [22, 23, 24] and Twamley and Milburn have discussed a quantum
measurement model on a half line by changing the coordinate $x\in \mathbb{R}_{+}$ to log $x\in \mathbb{R}[25|$ .

In the following consideration, we characterize the half linc system as follows. Let us
take a Hilbert space $\mathcal{H}_{+}\equiv \mathcal{L}^{2}(\mathbb{R}_{+})$ and a momentum operator $\hat{p}_{+}$ in $\mathcal{H}_{+}$ defined by

$\hat{p}_{+}\psi(x)=\frac{1}{i}\frac{d}{dx}\psi(x)$ ,

$\mathcal{D}(\hat{p}_{+})=\{\psi\in \mathcal{H}_{+};\psi(0)=0,$ $I_{0}^{\infty}| \frac{d}{dx}\psi(x)|^{2}dx<\infty\}$ (28)

in analogy to the standard momentum operator on a whole line.
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Then we can see that $\hat{p}+$ is symmetric since

$\langle\phi|\hat{p}_{+}\psi\rangle=\frac{1}{i}/0\infty\overline{\phi(x)}\frac{d}{dx}\psi(x)dx$

$=[ \frac{1}{i}\overline{\phi(x)}\psi(x)]_{0}^{\infty}-\frac{1}{i}/0^{\infty}\frac{d}{dx}\overline{\phi(x)}\psi(x)dx$

$=/0^{\infty}\overline{\frac{1}{i}\frac{d}{dx}\phi(x)}\psi(x)dx$

$=\langle\hat{p}1\phi|\psi\rangle$ , (29)

$\psi\in \mathcal{D}(\hat{p}_{+})$ $\phi\in \mathcal{D}(\hat{p}_{+}^{\dagger})$ , (30)

where $\hat{p}_{+}^{\dagger}=\frac{1}{i}\frac{d}{dx}$ with

$\mathcal{D}(\hat{p}_{+}^{\dagger})=\{\psi\in \mathcal{H}_{+};\int_{0}^{\infty}|\frac{d}{dx}\psi(x)|^{2}dx<\infty\}$ . (31)

Therefore we conclude that $(\hat{p}_{+}, \mathcal{D}(\hat{p}_{+}))\subsetneq(\hat{p}_{+}^{\dagger}, \mathcal{D}(\hat{p}_{+}^{\dagger}))$ since $\mathcal{D}(\hat{p}_{+})\neq \mathcal{D}(\hat{p}_{+}^{\dagger})$ . So the
momentum operator $\hat{p}+$ on a half line is symmetric but not self-adjoint, i.e., not an
observable.

5 Optimal Measurement Model on a Half Line
Let us apply the optimal measurement model to the half line system. We have already
seen that the momentum operator (28) is not self-adjoint. First, we extend the domain
of $\hat{p}+\acute{a}$ la Naimark so that the extended operator $\hat{p}$ is self-adjoint. The extended Hilbert
space is

$\mathcal{H}=\mathcal{H}_{+}\otimes \mathcal{H}_{2}$ , (32)

where $\mathcal{H}\equiv \mathcal{L}^{2}(\mathbb{R}),$ $\mathcal{H}_{+}\equiv \mathcal{L}^{2}(\mathbb{R}_{+})$ and $\mathcal{H}_{2}$ is the two dimensional Hilbert spac$e$ of the two
level system with the orthonormal bases $|0\rangle$ and $|1\rangle$ , often called the minimum Naimark
extension. We choose the form of the extended momentum operator as

$\hat{p}=\hat{p}+\otimes|0\rangle\langle 0|-\hat{p}_{+}\otimes|1\rangle\langle 1|$ . (33)

By the unitary transformation $\Pi_{1}$ , which is the space inversion around the zero point only
for the spin state $|1)$ , the Hilbert space $\mathcal{H}$ is unitarily equivalent to

$\mathcal{H}=\mathcal{H}_{+}\otimes|0\rangle+\mathcal{H}_{-}\otimes|1\rangle=\mathcal{H}_{+}\oplus \mathcal{H}_{-}$ , (34)

where $\mathcal{H}_{-}\equiv \mathcal{L}^{2}(\mathbb{R}_{-})$ and $R_{-}\equiv(-\infty, 0]$ . Then we transform the extended momentum
operator (33) by $\Pi_{1}$ as

$\Pi_{1}\hat{p}\Pi_{1}^{\dagger}=\hat{p}_{+}\otimes|0)\langle 0|+\hat{p}_{-}\otimes|1\rangle\langle 1|$ , (35)
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Figure 3: A Naimark extension. An auxiliary two dimensional Hilbert space $\mathcal{H}_{2}$ is tensored
to the Hilbert space $\mathcal{H}_{+}$ to prepare the two (original and copied) Hilbert spaces. Then we
spatially invert the copied Hilbert space aroumd the zero point. Finally, we combine the
original and inverted Hilbert spaces to obtain the extended Hilbert space, $\mathcal{H}=\mathcal{H}_{+}\otimes \mathcal{H}_{2}=$

$\mathcal{H}_{+}\oplus \mathcal{H}_{-}$ .

where $\hat{p}_{+}$ and $\hat{p}_{-}$ are momentum operators, which have the following domains

$\mathcal{D}(\hat{p}_{+})=\{\psi\in \mathcal{H}_{+};\psi(0)=0,$ $/0 \infty|\frac{d}{dx}\psi(x)|^{2}<\infty\}$

$\mathcal{D}(\hat{p}_{-})=\{\psi\in \mathcal{H}_{-)}\cdot\psi(0)=0,$ $/-0 \infty|\frac{d}{dx}\psi(x)|^{2}<\infty\}$ , (36)

respectively. Then the extended operator $\hat{p}$ is self-adjoint extendable since the domain is
the Hilbert space for the whole line system. For a more precise argument, see Appendix
$A$ , where the choice of a boundary condition $\psi(0)=0$ is also justified. These operations
are exhibited in Fig. 3.

We adopt the form of the model Hamiltonian (23) with $\hat{p}$ being replaced by the right
hand side of (35) and $x\in \mathbb{R}$ , so that all the operators in the Hamiltonian (23) are self-
adjoint to construct the optimal covariant measurement in the same way as described in
Sec. 3. We, then, calculate the Kraus operator from the model Hamiltonian using the $i\epsilon$

prescription. Since we have chosen $\psi(0)=0$ , we end up with the ground state with odd
parity with the energy $\frac{3}{2}\omega$ . The Kraus operator is then

$\Pi_{1}[\hat{A}_{xx’}|\Pi_{1}^{\dagger}=[\psi_{J_{x+}}\cdot\psi_{x_{+}}^{\dagger},\exp(-igP_{+}x_{+}(0))]\otimes|0\rangle\langle 0|$

$+[\psi_{x-}\cdot\psi_{x_{-}}^{\dagger},\exp(-igP_{-}x_{-}(0))]\otimes|1\rangle\langle 1|$ . (37)

From Eq. (25), the Kraus operator (37) gives the following POVM,

$\Pi_{1}M_{0}\Pi i=[\psi_{x+}\cdot\psi_{x_{+}’}^{\dagger}e^{i(x-x_{+}’)p+]}+\otimes|0)\langle 0|+[\psi_{x-}\cdot\psi_{x_{-}}^{\dagger},e^{i(x--x_{-}’)p-]}\otimes|1\rangle\langle 1|$. (38)

By taking the partial trace over $\mathcal{H}_{2}$ , we obtain the reduced POVM

$\tilde{M}_{0}\equiv Tr_{2}M_{0}$

$=[\psi_{x+}\cdot\psi_{x_{+}}^{\dagger},e^{i(x_{+}-x_{+}’)p+]},$ (39)
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up to a normalization constant. Here in Eq. (39), we have transformed (38) back to $M_{0}$

by the unitary operator $\Pi_{1}$ and reproduced the optimal covariant POVM (22) restricted
to positive parameters $x$ and $x$‘.

Finally. we calculate the probability distribution of the momentum on a half line in
the optimal case. As an example, let us assume the pure state $\rho=[\phi_{x_{+}}\cdot\phi_{x_{+}}^{\dagger},]$ , which is
a plane wave with a momentum $p_{true}$ ,

$\phi_{x_{+}}=Ae^{ip_{true}x+}$ , (40)

for the measured system before the measuring process. We assume that the state (40)
is properly localized to be an element of the Hilbert space $\mathcal{H}_{+}$ . The state (40), $\phi_{x+}$ , is
relaxed by the measuring process to the ground stat $e\psi_{x_{+}}\in \mathcal{H}_{+}$ given by

$\psi_{x+}=2(\frac{(m\omega)^{3}}{\pi})^{\frac{1}{4}}x_{+}\exp(-\frac{m\omega}{2}x_{+}^{2})$ . (41)

Then we obtain the probability distribution of the momentum as

Tr $(\rho\tilde{M}_{0})=$ Tr $([\phi_{x_{+}’’}\cdot\phi_{x_{+}}^{\dagger},][\psi_{x+}\cdot\psi_{x_{+}^{l}}^{\dagger},$ $e^{i(x_{+}-x_{+}’’)p]})$

$= \int\int\dagger\uparrow i(x_{+}-x’’)p$

$=16 \sqrt{\frac{\pi}{(m\omega)^{3}}}|A|^{2}(p-p_{true})^{2}\exp(-\frac{1}{m\omega}(p-p_{true})^{2})$ , (42)

which has two peaks at $p=p_{true}\pm\sqrt{m\omega}$ and vanishes at $p=p_{true}$ . If we take $\omegaarrow 0$ , i.e.,
the me&sured system is a free particle system, we can precisely evaluate the momentum
of the plane wave since we obtain Tr $(\rho\tilde{M}_{0})=\delta(p-p_{tru\epsilon})$ . Otherwise there remains
uncertainty by quantum zero point oscillation and the momentum with the maximum
probability deviates by $\sqrt{m\omega}$ from the precise momentum $p_{true}$ . When the potential of
the measured syst$em$ is a general convex function, the probability distribution for the
momentum becomes the modulus square of the Fourier transformation of the odd parity
ground state wave function.

To summarize this section, we have obtained the optimal covariant POVM on a half
line, which enables us to explicitly construct the measuring process of the momentum on
a half line.

6 Summary and Discussion
We have considered the optimal covariant measurement of momenta on a half line. Since
the momentum operator $\hat{p}_{+}=\frac{1}{i}\frac{d}{dx}$ on a half line is not self-adjoint, i.e., not an observable.
By applying the Naimark extension, the measured system is extended to the whole line
and the momentum operator on the extended system becomes self-adjoint. Then we have
discussed the optimal covariant measurement model on the extended system. By applying
Holevo’s works [7, 8, 9, $10|$ , we have obtained the optimal covariant POVM in the optimal
sense to minimize the variance bctwcen thc “mea.$s\iota irement$” outcome of the measured
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system before the interaction and the measurement outcome of the probe system after
the interaction. To realize physical systems, we have explicitly constructed the model
Hamiltonian for the measured and probe systems and coupled the measured system to the
bulk system at zero temperature for infinitely long time. We have shown that the optimal
covariant POVM coincides with the calculated POVM from the model Hamiltonian. As
a result, we have presented the optimal covariant measurement model. Then we have
physically explained the optimal covariant measuring process. By taking the partial trace
over the auxiliary Hilbert space $\mathcal{H}_{2}$ , we have described the optimal covariant measurement
model for the momentum on a half line and calculated the optimal probability distribution
of the momentum on a half line in a special case.

The following points remain to be clarified. First, we have only discussed the covariant
case. Peres and Scudo, however, pointed out that the covariant measurement may not be
optimal and mentioned counterexamples in quantum phase measurement [26]. We have
to check whether the optimality for any measurement is the optimal covariant measure-
ment in our setup or not. Second, Ozawa have recently constructed a new Heisenberg
uncertainty principle [27, 28]. The inequality expresses a quantum limit of measuring
processes. It will be interesting to examine Ozawa’s inequality in our framework. Fi-
nally, we have presented the model Hamiltonian (23) to physically realize the optimal
covariant POVM (18). We do not know a general method to construct a Hamiltonian
from an arbitrary POVM. Our analysis may be a clue to the general method to solve the
inverse problem. Furthermore, to demonstrate the measurement model experimentally,
experimental setups remain to be considered for our proposed model Hamiltonian.

A Deficiency Theorem
We refer the reader to the book [29] and the paper [30] for details. We shall give a criterion
for closed symmetric operators to be self-adjoint operators.

Let us assume that $(\hat{A}, \mathcal{D}(\hat{\mathcal{A}}))$ is densely defined, symmetric and closed. One defines
the deficiency subspaces $\mathcal{N}_{\pm}$ by, for a fixed $\gamma>0$ ,

$\mathcal{N}_{+}=\{\psi\in \mathcal{D}(\hat{A}^{\uparrow});\hat{A}^{\uparrow}\psi=i\gamma\psi\}$ (43)
$\mathcal{N}_{-=}\{\psi\in \mathcal{D}(\hat{A}\dagger);\hat{A}^{\dagger}\psi=-i\gamma\psi\}$ (44)

of respective dimensions $n+$ and $n_{-}$ , which are called the deficiency indices of the operator
$\hat{A}$ and denoted by a pair $(n_{+}, n_{-})$ . The following theorem holds.

Theorem 2 (Deficiency theorem). For any closed symmetric opemtor $\hat{\mathcal{A}}$ utth deficiency
indices $(n_{+}, n_{-})_{f}$ there are three possibilities:

1. $\hat{A}$ is self-adjoint if and only if $n+=n_{-}=0$ .

2. $\hat{\mathcal{A}}$ has self-adjoint extensions if and only if $n+=n_{-}$ . There evists one-to-one

$\mathcal{N}_{-}correspondence$
between self-adjoint extension of $\hat{A}$ and unitary maps from $\mathcal{N}_{+}$ to

3. If $n+\neq n_{-},\hat{A}$ has no self-adjoint extension.

193



This theorem is firstly discussed by Weyl [31] and generalized by von Neumann [32].
Let us apply this theorem to the momentum operator (28) on a half line. First, we

solve the differential equations,

$\hat{p}_{+}\psi_{\pm}(x)=-i\frac{d}{dx}\psi_{\pm}(x)=\pm i\gamma\psi_{\pm}(x)$, (45)

where $\gamma$ is real and positive to obtain

$\psi_{\pm}(x)\sim e^{\mp\gamma x}$ . (46)

Because of $\psi\in \mathcal{L}^{2}(\mathbb{R}_{+})$ , only $\psi_{+}(x)$ is allowed. Therefore, we obtain the deficiency indices
$($ 1, $0)$ and conclude, by the deficiency theorem, $\hat{p}_{+}$ has no self-adjoint extension.

As another example, we show that the extended momentum operator (33) is self-
adjoint extendable. We obtain the deficiency indices $(0,1)$ of $-\hat{p}_{+}$ in the same way. So
the deficiency indices of the extended momentum operator (33) are (1, 1) and the operator
is self-adjoint extendable by the deficiency theorem. Since the self-adjoint extension is
parametrized by $U(1),$ $\psi(0+)=e^{i\theta}\psi(0-)$ where $\theta\in \mathbb{R}$ , we have a freedom to choose the
boundary conditions at the origin by that amount. The boundary condition $\psi(0)=0$

chosen in the main text, which comes from the physical requirement to the half line
system, is mathematically legitimate in the extended system because it is a special case
of the $U(1)$ variety.
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