<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>ON INJECTIVITY OF TAME MAPPINGS (The second Japanese-Australian Workshop on Real and Complex Singularities)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>FUKUI, TOSHIZUMI; KURDYKA, KRZYSZTOF; PAUNESCU, LAURENTIU</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1610: 29-31</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/140030</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
ON INJECTIVITY OF TAME MAPPINGS

TOSHIZUMI FUKUI, KRZYSZTOF KURDYKA AND LAURENTIU PAUNESCU

In this short note, we give a criterion for the injectivity of tame mappings. This was part of the talk given by the third named author at the second Australian-Japanese meeting on real and complex singularities, held in Kyoto in November 2007. For a more comprehensive study and also for a list of relevant articles on this topic, we send the reader to our paper [1].

Let U be a convex open set of \mathbb{R}^m and $f : U \to \mathbb{R}^n$ a tame map. Let B denote the set where f is not C^1, and let \hat{B} denote the set where f is not a C^1-immersion. For a subset V of U we put

$$C(f, V) = \text{the convex hull of } \{df(x) : x \in V - B\}.$$

We denote its closure by $\overline{C}(f, V)$, and define $\overline{CC}(f, V)$ by

$$\overline{CC}(f, V) = \text{the cone of } \overline{C}(f, V) \text{ with vertex } 0.$$

We also use the notations $C(f) = C(f, U)$, $CC(f) = CC(f, U)$, etc., for shortness.

Take $x, x' \in U$, $x \neq x'$, and put $v = \frac{x' - x}{|x - x'|}$. We denote the segment connecting x and x' by $[x, x']$. If f is tame, then we have the following well known facts,

- $[x, x'] \cap \hat{B}$ is a finite set, or
- a sub-segment of $[x, x']$ is subset of \hat{B}.

Setting $g(t) = f(t + tv)$, we have

$$g'(t) = df(x + tv)v, \quad \text{whenever } x + tv \notin B.$$

Let Σ denote the set of singular matrices and Σ_v denote the set of singular matrices annihilating v.

Theorem. A tame map $f : U \to \mathbb{R}^n$ is injective, if the following conditions hold:

- $C(f, U - \hat{B})$ does not contain singular matrices.
- If \hat{B} contains a segment with direction v, then f is not constant on this segment, and Σ_v is an extremal set of $\overline{CC}(f)$.

It is not hard to see that the theorem follows from Lemmas 1 and 3 below.

Lemma 1. Assume that $[x, x'] \cap \hat{B}$ is a finite set. If $C(f, U - \hat{B})$ does not contain singular matrices, then $f(x) \neq f(x')$.

Proof. By supposition, the set $\hat{C} = \{t \in [0, 1] : x + tv \in \hat{B}\}$ is finite. If $C(f, U - \hat{B}) \cap \Sigma = \emptyset$, then $C(f, [x, x'] - \hat{B}) \cap \Sigma_v = \emptyset$. Then we obtain that

$$C(g, [0, 1] - \hat{C}) = C(f, [x, x'] - \hat{B}) \cdot v \neq 0.$$

We employ the following lemma to complete the proof. □
Lemma 2. Let $g : [a, b] \to \mathbb{R}^n$ be a tame map and let \(\hat{C} \) be a finite subset of \([a, b]\). If \(C(g, [a, b] - \hat{C}) \) does not contain 0, then \(g(a) \neq g(b) \).

Proof. The proof is similar to the proof of Lemma 5.3, in [1], and we omit it. \(\square \)

Lemma 3. Assume that \([x, x'] \cap \bar{B}\) contains a sub-segment with direction \(v \). If \(\Sigma_v \) is an extremal set of the closure of \(CC(f) \), then \(f(x) \neq f(x') \), or \(f|_{[x,x']} \) is constant.

Proof. Since \(f \) is tame, we may choose a vector \(u \) such that
\[
C_u = \{ t \in [0, 1] : x + tv + su \in B \}
\]
are finite sets when \(0 < s < \varepsilon \). Set \(g_s(t) = f(x + tv + su) \). We remark that
\[
g'_s(t) \in C(g_s, [0, 1] - C_u) = C(f, [x + su, x' + su] - B) \cdot v \subset C(f) \cdot v.
\]
We assume that \(g_0(t) \) is not constant. This means that \(g_0(t) \) is not zero on some subinterval of \([0, 1]\). We then obtain that \(g_s(t) \) is not constant for sufficiently small \(s > 0 \), and \(\langle w, g'_s(t) \rangle > 0 \) for some \(t \in [0, 1] \). We thus have
\[
\langle w, g_s(1) \rangle - \langle w, g_s(0) \rangle = \int_0^1 \langle w, g'_s(t) \rangle dt > 0.
\]
When \(s \to 0 \), we obtain
\[
\langle w, g_0(1) \rangle - \langle w, g_0(0) \rangle = \int_0^1 \langle w, g'_0(t) \rangle dt \geq 0.
\]
Assuming that the equality holds, we will have that \(\langle w, g'_0(t) \rangle = 0 \) for almost all \(t \).
We will conclude that \(g'_0(t) = 0 \), which is a contradiction. By Lemma 4.3 in [1], we have
\[
g'_0(t) = \lim_{s \to 0} g'_s(t) = \lim_{s \to 0} df(x + tv + su) \cdot v
\]
and this is in the closure of \(C(f) \cdot v \). Remark that \(df(x + tv + su) \) goes to infinity, even though the right hand side of \((*)\) stays in a compact set.

We now remark that the closure of \(C(f) \cdot v \) is the image of the closure of the cone of \(C(f) \) by the map defined by \(A \mapsto Av \), that is,
\[
\overline{C(f)} \cdot v = \overline{C(f)} \cdot v.
\]
Since \(\Sigma_v \) is an extremal set of \(\overline{CC(f)} \), 0 is an extremal point of \(\overline{C(f)} \cdot v \). This means that \(\langle w, z \rangle \geq 0 \) for any \(z \in \overline{C(f)} \cdot v \) and the equality holds only if \(z = 0 \). Since \(\langle w, g'_0(t) \rangle = 0 \) for almost all \(t \), we conclude that \(g'_0(t) = 0 \) for almost all \(t \). \(\square \)

Remark. If \(f \) is locally Lipschitz, one can replace the assumption in Lemma 3 by the following condition:
\(\Sigma_v \) is an extremal set of the closure of \(CC(f) \) (since \(C(f) \) is a bounded set).

References

ON INJECTIVITY OF TAME MAPPINGS

DEPARTMENT OF MATHEMATICS, SAITAMA UNIVERSITY, SAITAMA, JAPAN
E-mail address: tfukui@rimath.saitama.u-ac.jp

DEPARTEMENT DE MATHEMATIQUES, UNIVERSITÉ DE SAVOIE, CHAMBERY, FRANCE
E-mail address: kurdyka@univ-savoie.fr

SCHOOL OF MATHEMATICS AND STATISTICS, THE UNIVERSITY OF SYDNEY, SYDNEY, AUSTRALIA
E-mail address: laurent@maths.usyd.edu.au