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Abstract. We present the concept of the generalized James constant and its use concerning the uniform
normal structure. Then the Dominguez- Lorenzo condition will be introduced. A relationship on the constant
and the condition is considered. As a consequence, a fixed point theorem for multivalued nonexpansive
mappings is obtained.

Keywords: Generalized James constant, Dom\’inguez-Lorenzo condition, Fixed point the$(\succ$

rem.

Mathematics Subject Classiflcation: $47H09,54H25$ .

1 Introduction

Let $X$ be a Banach space and $E$ be a weakly compact convex subset of $X$ . Let $T$ : $Earrow KC(E)$ be
a nonexpansive mappings with values are compact and convex subsets of $E$ . Since we are considering
self-valued nonexpansive mappings, we may assume throughout that the domain $E$ is also separable (see

[16] $)$ .

Since the publication of Nadler [18] in 1969 on the extension of the Banach Contraction Principle to
multivalued contractive mappings in complete metric spaces many authors have tried to do the same for
classical fixed point theorems for single-valued nonexpansive mappings.

By using Edelstien’s method of asymptotic centers, Lim [17] proved in 1974 the existence of a fixed
point for a multivalued nonexpansive self-mapping $T$ : $Earrow K(E)$ where $E$ is a nonempty bounded
closed convex subset of a uniformly convex Banach space. In 1990, Kirk and Massa [14] extended this
theorem of Lim by proving that every multivalued nonexpansive self-mapping $T$ : $Earrow KC(E)$ has a
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fixed point where $E$ is a nonempty bounded closed convex subset of a Banach space $X$ for which the
asymptotic center in $E$ of each bounded sequence of $X$ is nonempty and compact. Xu [20] in 2001
extended Kirk-Massa’s theorem to a multivalued nonself-mapping $T$ : $Earrow KC(X)$ which satisfies the
inwardness condition.

Following the idea in Dom\’inguez and Lorenzo [10], Dhompongsa et al.[5] introduced the so-called the
Dom\’inguez - Lorenzo condition ((DL)-condition), i.e., an inequality conceming the asymptotic radius
and the Chebyshev radius of the asymptotic center for some types of sequences and proved a fixed point
theorem for a nonself multivalued nonexpansive mapping on a Banach space which satisfies the (DL) $-$

condition. It is known that [7, Theorem 3.6], the (DL)-condition implies the weak multivalued fixed point
property (w-MFPP)(i.e., every nonexpansive mapping $T:Earrow KC(E)$ has a fixed point, where $E$ is a
weakly compact convex subset of $X$). Indeed, in [7], we introduced another property, namely, property
(D), which is stricly weaker than the (DL)-condition, the property that implies w-MFPP.

Recently, Dom\’inguez and Gavira [8] proved that every uniformly smooth Banach space has w-MFPP
by showing that the condition $\xi_{X}(\beta)<\frac{1}{1-\beta}$ for some $\beta\in(0,1)$ satisfies the (DL)-condition. Here $\xi_{X}$ is
the modulus of squareness of the space $X$ . They also showed in [8] that the condition $r_{X}(1)>0$ impies
the (DL)-condition, where $r_{X}$ is the Opial modulus associated to the space $X$ .

The purpose of this paper is devoted to finding more properties that implies the (DL)-condition.

2 Preliminaries

Let $X$ and $E$ be as above, let $FB(E)$ be the family of nonempty bounded closed subsets of $E$ and $KC(E)$

be the family of nonempty compact convex subsets of $E$ . Let $H($ ., . $)$ denote the Hausdorff distance on
$FB(X)$ , i.e.,

$H(A, B)$ $:= \max\{\sup_{a\in}dist(a, B).\sup_{b\in B}dist(b, A)\}$ , $\mathcal{A},$ $B\in FB(X)$ ,

where dist $(a, B)$ $:= \inf\{\Vert a-b\Vert : b\in B\}$ is the distance from the point $a$ to the subset $B$ .

A multivalued mapping $T:Earrow FB(E)$ is said to be nonexpansive if

$H(Tx, Ty)\leq\Vert x-y\Vert$ for all $x,$ $y\in E$ .

We say that $x$ is a fixed point of $T$ if $x\in Tx$ .

Let $A$ be a nonempty bounded subset of $X$ . The number $r(A)$ $:= \inf\{\sup_{y\in A}\Vert x-y\Vert : x\in A\}$ is called

the Chebyshev radius of $A$ . The number $\delta(A)$ $:= \sup\{\Vert x-y\Vert : x, y\in A\}$ is called the diameter of $A$ . A
Banach space $X$ is said to have normal structure (respectively, weak $nor\tau nal$ structure) if $r(A)<\delta(A)$

for every bounded closed (respectively, weakly compact) convex subset $A$ of $X$ with $\delta(A)>0.X$ is said
to have uniform normal structure (respectively, weak uniforrrn normal structure) if

$\gamma(X):=\inf\frac{\delta(A)}{r(A)}>1$ , (2.1)

where the infimum is taken over all bounded closed (respectively, weakly compact) convex subsets $A$ of.
$X$ with $\delta(A)>0$ . The weakly convergent sequence coefficient $WCS(X)[2]$ of $X$ is the number
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$WCS(X)$ $:= \inf\{\lim_{n,\tau narrow\infty,n\neq m}\Vert x_{n}-x_{m}\Vert\}$ , (2.2)

where the infimum is taken over all weakly null sequences $\{x_{n}\}$ in $X$ such that $\lim_{narrow\infty}\Vert x_{n}\Vert=1$ and
$\lim_{n,marrow\infty,n\neq m}\Vert x_{n}-x_{m}\Vert$ exists. It is known that $1\leq WCS(X)\leq 2$ and $WCS(X)>1$ implies $X$ has

weak normal structure (see [2]).

For a Banach space $X$ , the Jordan - von Neumann constant $C_{NJ}(X)$ of $X$ , introduced by Clarkson

[3], is defined by

$C_{NJ}(X)= \sup\{\frac{\Vert x+y||^{2}+\Vert x-y\Vert^{2}}{2\Vert x||^{2}+2\Vert y\Vert^{2}}$ : $x,$ $y\in X$ not both zero $\}$ . (2.3)

The James (or the uniform nonsquare) constant defined by $G$ao and Lau [11] by $J(X)= \sup\{\Vert x+$

$y\Vert$ A $\Vert x-y\Vert$ : $x,$ $y\in B_{X}\}$ , where $B_{X}$ is the closed unit ball of $X$ .
Dhompongsa et al $[6|$ extended this concept and defined a generalized James constant $J(a, X)$ for $a\in$

$[0.\infty)$ as

$J(a,$ $X)= \sup\{\Vert x+y\Vert$ A $\Vert x-z\Vert$ : $x,$ $y,$ $z\in B_{X}$ and $\Vert y-z\Vert\leq a\Vert x\Vert\}$ . (2.4)

They proved in [6] that every space $X$ with $J(X)< \frac{1+\sqrt{5}}{2}$ or $J(a, X)< \frac{3+a}{2}$ for some $a\in[0,1]$ has

uniform normal structure.
Let $\{x_{n}\}$ be a bounded sequence in $X$ . We define the asymptotic radius and the asymptotic center of

$\{x_{n}\}$ in $E$ , respectively, by

$r(E, \{x_{n}\})=\inf\{\lim_{narrow\infty}\sup\Vert x_{n}-x\Vert$ : $x\in E\}$ and $A(E, \{x_{n}\})=\{x\in E:\lim_{narrow\infty}\sup\Vert x_{n}-x\Vert=$

$r(E, \{x_{n}\})\}$ .

We call a sequence $\{x_{n}\}$ regular relative to $E$ if $r(E, \{x_{n}\})=r(E, \{y_{n}\})$ for all subsequences $\{y_{n}\}$ of

$\{x_{n}\}$ . Furthermore, $\{x_{n}\}$ is called $asr/mptotically$ uniform relative to $E$ if $A(E, \{x_{n}\})=A(E, \{y_{n}\})$ for

all subsequences $\{y_{n}\}$ of $\{x_{n}\}$ .

Lemma 2.1. Let $\{x_{n}\}$ and $E$ be as above. Then

(i) (Gobel [12], Lim [17]) there always exists a subsequence of $\{x_{n}\}$ which is regular relative to $E$ ,

(ii) (Kirk [15]) if $E$ is separable, then $\{x_{n}\}$ contains a subsequenoe which is asymptotically uniform

relative to $E$ .

If $C$ is a bounded subset of $X$ , the $Ch’,byshr\uparrow$’ mdius of $C$ relative to $E$ is defined by $r_{E}(C)= \inf\{r_{x}(C)$ :

$x\in E\}$ , where $r_{x}(C)= \sup\{\Vert x-y\Vert$ : $y\in C\}$ .

The Dom\’inguez-Lorenzo condition introduced in [5] is defined as follows:

Deflnition 2.2. [5, Definition 3.1] A Banach space $X$ is said to satisfy the Domt’nguez-Lorenzo $((DL)-)$

condition if there exists $\lambda\in[0,1)$ such that for every weakly compact convex subset $E$ of $X$ and for every

bounded sequence $\{x_{n}\}$ in $E$ which is regular relative to $E$ ,

$r_{E}(A(E, \{x_{n}\}))\leq\lambda r(E, \{x_{n}\})$ .
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Finally, we give a brief formulation of an ultrapower of a Banach space $X$ . Let $\mathcal{U}$ be a nontrivial
ultrafilter on the set of positive integers $\mathbb{Z}^{+}$ . Let $l_{\infty}(X)$ be the space of all bounded sequences in
$X$ , that is, $l_{\infty}(X)=\{\{x_{n}\}\subset X$ : iiup $\Vert x_{n}\Vert<\infty\}$ and consider the closed subspace $\mathcal{N}$ of $l_{\infty}(X)$ :
$\mathcal{N}=\{\{x_{n}\}\in l_{\infty}(X)$ : $\lim_{\mathcal{U}}\Vert x_{n}\Vert=0\}$ . Let $\tilde{X}$ be the quotient space $l_{\infty}(X)/\mathcal{N}$ and call it an ultrapower of
X. For each $x=\{x_{n}\}\in l_{\infty}(X)$ , let $\tilde{x}$ stand for the equivalence class of $x$ . Then the quotient norm $\Vert\tilde{x}\Vert$ of
di is $\Vert\tilde{x}\Vert=\lim_{\mathcal{U}}\Vert x_{n}\Vert$ . Note that for every sequence $\{a_{n}\}$ of real numbers, $\lim_{n}\inf a_{n}\leq\lim_{\mathcal{U}}a_{n}\leq\lim_{n}\sup a_{n}$.

We denote for each subset $E$ of $X,\dot{E}$ the set $\{\tilde{x}$ : $x=\{x_{n}\},$ $x_{n}=x_{1}\in E$ for all $n\}$ , and denote for each
$v\in X$ , ab the equivalence class of the sequence $\{v_{n}\}$ where $v_{n}=v$ for all $n$ . Thus $\dot{E}=\{\dot{v}$ : $v\in E\}$ . For
more details on the subject, we refer to [1] and [19].

3 Results

For a sequence $\{x_{n}\}$ , let sep$\{x_{n}\}=\inf_{n\neq m}\Vert x_{n}-x_{m}\Vert$ .

Definition 3.1. A Banach space $X$ is said to have the Uniform Kadec-Klee $(UKK)$ property if for any
$\epsilon>0$ , there exists $\delta>0$ such that $x_{n}\in B_{X},$ $x_{n}arrow wx$ and sep$\{x_{n}\}\geq\epsilon$ imply $\Vert x\Vert\leq 1-\delta$ .

Deflnition 3.2. A Banach space $X$ is said to be nearly uniformly $\omega nvex$ (NUC) if for any $\epsilon>0$ , there
exists $\eta<1$ such that $x_{n}\in B_{X}$ and sep$\{x_{n}\}\geq\epsilon$ imply co $\{x_{n}\}\cap\eta B_{X}\neq\emptyset$ .

A space $X$ is NUC if and only if it has the UKK property and is reflexive (see [13]). It is a consequence
of Dom\’inguez and Gavira [8, Corollary 2] that UKK property implies the (DL)-condition. Here we give
a direct proof.

Theorem 3.3. Every space $X$ which has the UKK property satisfies the (DL)-condition.

Proof. Let $E$ be a weakly compact convex subset of $X,$ $\{x_{n}\}\subset E$ a sequence in $E$ which is regular
relative to $E$ . Take a subsequence $\{y_{n}\}$ of $\{x_{n}\}$ such that $y_{n}arrow wz\in E$ and $\lim_{n\neq m}||y_{n}-y_{m}\Vert$ exists. Let
$r=r(E, \{x_{n}\})$ and $A=A(E, \{x_{n}\})$ . Let $0<\rho<1$ and take $\delta>0$ corresponding to $\rho$ from the
definition of the UKK property. Let $\eta>0$ and $\epsilon>0$ so that $\frac{r-\eta}{r+\epsilon}>\rho$ . Let $x\in A$ and choose $n_{0}$ so that
$\Vert y_{n}-x\Vert<r+\epsilon$ for all $n\geq n_{0}$ .
Since

$r \leq\lim_{n}\sup\Vert y_{n}-z\Vert\leq\lim_{n}\sup\lim_{m}\sup\Vert y_{n}-y_{m}\Vert=\lim_{n\neq m}\Vert y_{n}-y_{m}\Vert$ ,

we can choose $n_{1}\geq n_{0}$ so that

$\Vert y_{n}-y_{m}\Vert\geq r-\eta$ for all $n,$ $m\geq n_{1}$ with $n\neq m$ .

For convenience, assume $n_{0}=n_{1}=1$ . Now $\frac{v_{n}-x}{r+\epsilon}\in B_{X},$ $\frac{u_{n}-x}{r+\epsilon}arrow w\frac{z-x}{r+\epsilon}$ , and sep$\{\# r\overline{\mapsto}+\frac{x}{\epsilon}\}\geq\frac{r-\eta}{r+\epsilon}>\rho$ . Thus
$\frac{z-x}{r+\epsilon}\leq 1-\delta$ and this implies

$r_{E}(A(E, \{x_{n}\}))\leq\Vert z-x\Vert\leq(1-\delta)(r+\epsilon)$ .

Since $\epsilon>0$ is arbitrarily small, we obtain

$r_{E}(A(E, \{x_{n}\}))\leq(1-\delta)r(E, \{x_{n}\})$

and the (DL)-condition holds. $\square$
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The proof given above is based on the proof of [9, Theorem 3.4].

In [7] it is proved that every space $X$ with $C_{NJ}(X) \leq 1+\frac{WCS^{2}(X)}{4}$ has property(D). Here we obtain
its analogue in terms of $\gamma(X)$ in (2.1). Observe that, under the present condition, we obtain a stronger
result.

Theorem 3.4. Let $X$ be a Banach space. If $C_{NJ}(X) \leq 1+\frac{\gamma^{2}(X)}{4}$ , then $X$ satisfies the (DL)-condition.

Proof. Let $E$ be a weakly compact convex subset of $X$ and let $\{x_{n}\}\subset E$ be a bounded sequence which is
regular relative to $E$ . Let $A=A(E, \{x_{n}\})$ . Put $\lambda=\frac{2}{\gamma(X)}\sqrt{C_{N}J(X)-1}<1$ . Let $u,v\in A$ . Thus $\frac{u+v}{2}\in A$

since $A$ is convex. Consider $\tilde{x}=\overline{(x_{n}}$) in an ultrapower $\tilde{X}$ of $X$ with respect to some non-trivial ultrafilter
$\mathcal{U}$ on $\mathbb{Z}^{+}$ . Note that $\Vert\tilde{x}-\dot{a}\Vert\leq r(E, \{x_{n}\})$ $:=r$ for all $a\in A.$ Rom the definition of the Jordan-von
Neumann constant (2.3) and the fact that $C_{NJ}(\tilde{X})=C_{NJ}(X)$ , we obtain the following estimates:

$\Vert\dot{u}-\dot{v}\Vert^{2}=\Vert(\dot{u}-\overline{x})-(\dot{v}-\tilde{x})\Vert^{2}$

Thus, in terms of $\gamma(X)$ , we have

$\leq$ $4r^{2}C_{NJ}(X)-\Vert\dot{u}+\dot{v}-2\tilde{x}\Vert^{2}$

$=$ $4r^{2}C_{NJ}(X)-4 \Vert\frac{\dot{u}+\dot{v}}{2}-\tilde{x}\Vert^{2}$

$=$ $4r^{2}C_{NJ}(X)-4r^{2}$ .

$\gamma(X)r_{E}(A)\leq\delta(A)\leq 2r\sqrt{C_{NJ}(X)-1}=2\sqrt{C_{NJ}(X)-1}r(E, \{x_{n}\})$ .

Therefore,
$r_{E}(A(E, \{x_{n}\}))\leq\lambda r(E, \{x_{n}\})$

as desired. $\square$

In [5] it is shown that every Banach space $X$ which has property WORTH and $J(X)<2$ satisfies the

(DL)-condition. In $[$4$]$ , we have the following results.

Theorem 3.5. Let a Banach space $X$ satisfy the non-strict Opial condition and let $E$ be a weakly

compact convex subset of $X$ . Assume that $\{x_{n}\}$ is a sequence in $E$ which is regular relative to $E$ . Then

$r_{E}(A(E, \{x_{n}\}))\leq\frac{J(1,X)}{2}r(E, \{x_{n}\})$ .

Corollary 3.6. Let X be a Banach space with $J(1, X)<2$ and satisfies $non- str\tau ct$ Opial condition.

Then $X$ satisfies the (DL)-condition.

Example 3.7. There exists a space $X$ satisfying $J(1, X)<2$ and the non-strictly Opial but does not

have WORTH:
Let $1<p<2,$ $X_{1}=\mathbb{R}^{2}$ utth norm $\Vert x\Vert=\Vert(x_{1},x_{2})=\Vert x\Vert_{1}$ or $\Vert x\Vert_{p}$ according as $x_{1}x_{2}\geq 0$ or $x_{1}x_{2}\leq 0$ .

Then let our space $X$ be $\ell_{2}(X_{1})$ .
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