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Abstract. The octahedral projection can be used to obtain the octahedral sub-
division for a given simplicial subdivision of a simplex. By suitable labellings, we
prove that our multiple balanced Sperner’s lemma, a generalized Sperner’s lemma
of Shapley with the consideration of orientations, is equivalent to our combinatiorial
formula for multiple set-valued labellings. A multiple balanced KKM theorem can
be derived from the multiple balanced Sperner’s lemma and can be used to prove
the nonemptyness of the common core of coupled balanced games.

1. Preliminaries

The following (M1), (M2) and (M3) from matrix theory will be used later. All
matrices are real here.

(M1) If Aisp x pand B is q x g, then
det(I, + kAB) = det(I, + kBA). (1.1)

(M2) If Aispxp, Bisgxgq, Cispxqand D is qx p and if A, B and
B + BDA™'CB are nonsigular, then

(A+CBD)™' = A™' - A-\CB(B + BDA™'CB)~'BDA. (1.2)

(M3) If Ay isp x p, Axp is ¢ X q, A1z is p x g and Ay is ¢ x p and if
An A
A= 1 A ,
Ax Ap

det A = det A22 det(Au - A12A22—1A21), (13)

then

provided A,; is nonsigular.

(M1) follows from the following two identities

I,+kAB kA\ ([ I, kA I, O
o) I, ]\ -B 1, B I,



I, kA (5L o I, kA
O I,+kBA ) \ B 1, -B I, )

By multiplying the right side of (1.2) and the matrix A+C BD directly, (M2) follows.
(M3) is a generalization of the expansion of 2x2 determinants.

The p x ¢ matrix with all entries 1 will be denoted by 1,4, thus
1% = 1px1l1xq and 1ixplpx1 = p. (1.4)

Let n be a positive integer and a be a real number. The following identities are
direct consequences of (1.1), (1.2) and (1.4).

det(l, — al,xn) = 1 — na, (1.5)
det(—1I, — aluxn) = (=1)*(1 + na), (1.6)
- o 1
(In - alnxn) = I, + 1= nalnxn (O! ?é ;;) (17)
2. Octahedral Projections
In this section, we shall let
(a) ay,- - ,an be the standard basis of the Euclidean n-space, (2.1)
(b) a= Zaa,ﬁ = (a,- -+ ,a) where « is some real number, (2.2)
i=1
(c)bi=a;—afori=1,---,n, (2.3)
(d) b =—a;~afori=1,---,n. (2.4)
Proposition 2.1.
(a) det(b;---b,) =1 —na. (2.5)
(b) det(by ---b,) = (—=1)*(1 + na). (2.6)

(c) det(by -+ b bry1-- brys) = (=1)"(1 + ra — sa), where 7+ s = n. (2.7)
Proof. (a) It follows from (1.5), (2.1), (2.2) and (2.3) that
det(by - - -bp) = det(ln, — alnxn) =1 — na.
(b) It follows from (1.6), (2.1), (2.2) and (2.4) that
det(by -+ - by ) = det(—I, — alnxn) = (=1)*(1 + na).

(c) If r =0 or s = 0, then (2.7) becomes (2.5) or (2.6) respectively, so let r > 1
and s > 1. We first assume a # 1, then by (1.7) with n = s, we have
o

(I, - alsx,)—l = I, + ‘I“:}alsxa, (28)
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also, by (1.5) with n = s, we have
det(I; — alsys) =1 — s (2.9)
It follows from (1.1), (1.3), (1.4), (2.3), (2.4), (2.8), (2.9) and a computation that
det(hy -« by bpr1 -+ - brys)
det ( —Ir —alyx,  —alyxs )
—alexr Ly — 0dgxs
= (-1)"(1 - sa)det(l, + -lesal,x,)

= (~1)7(1 - sa)(1+ 5 iasa)

= (=1)"(1 - sa+ra).

I

Since the right side of (2.7) is a continuous function of e, (2.7) is also valied for & = 1.

Corollary

Ifc;=b;orb for i=1,---,nand if r of the vectors ¢, - -+, ¢, are of the form
b, and n — r of the form b;, then

det(cy---¢cn) = (-1)"(1 + ra — sa). (2.10)

Consequently, they are linearly independent if

-1 -1 1 1
e, 2 2.11
a7 n’' n-2’ n—2"n (2.11)
Proof. If ¢; = b; and ¢; = b, for some i < j, then the determinant does not change
when interchanging the ith row and the jth row then interchanging the ith column
and the jth column but ¢; and c; are replaced by b; and b;. Continue this process

if necessary, we finally obtain
d(cl T C'n) = det(bll o br,br+l co br+.9)

thus (2.10) follows from (2.7), consequently, c;, - -, c, are linearly independent if
and only if
l1+ra—sa#0

or equivalently,
(s —r)a # 1.

Since s + r = n, we have
s—re{-n, —-n+2, .-, n—2, n}.

For a given subset S of the Euclidean n-space, the convex hull and the affine hull of
S will be denoted by convS and af fS respectively. In particular,

P=E$iai€aff{al, “te, Gn}

i=1
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if and only if
Ty + -+ x, = 1. (2.12)
From (2.1), (2.2), (2.4) and (2.12) it follows that
a+th €aff{a, -+, an}
if and only if
_na—1

1
Tnat+1 @ 7 n
Recall that a ray emanting from a is the set

{a+tb|t>0}

where b is a fixed nonzero vector. Note that in the following Proposition 2.2, t is
positive.

Proposition 2.2. Suppose that

T=a+th forj=1, -, n (2.13)
where
na—1
= . 2.14
no+ 1 >0 ( )
If
=Y pja (1<j<n), (2.15)
i=1
n
o=y g;& (1<j<n), (2.16)
i=1
then
2a na — 1
= (p..) = nxn — ————1I,, A7
P = (py) noa+1""% no + 1 (217)
2o na+1
= () = —— _ - I. 2.
Q = (gi) = —— T laxn = ——71In (2.18)

Proof. Since
G =a+th =a+ t(—a; —a) = (1 - t)a + t(—a;),

we have

ipijaj = i{(l —_ t)a - tdij}a,-

i=1 i=1

5 = 1 ifs=j
YTl 0 ifistg

where
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which gives (2.17).
If we write

P = a(l - t){ In + lnxl 1 llxn}

_—t
a(l—t)
then, by (1.2), a computation will show that (2.18) holds.

The relative interior of conv{vy, ---, vm} in aff{vi, -+, vm} is denoted by
Int{vy, ---, v} which is the set

{i Av; | }ﬂ:/\i =1, each ); > 0}.
i=1 i=1

Corollary
conv{ay, ---, ap} C Int{Gy, -, Gn}
if and only if
1 1
‘—m <a< —-E (219)
where n > 2 and -;‘1—2 = -0 ifn=
Proof. That a; is an affine combination of a;, ---, @, follows from (2.16) and

(2.17). We may write (2.18) as

na +1 2c
Q= na—l(na+ llnx"_I")'
Since
na+1 _l>0
na—1 ¢t ’
we have g;; > 0 for all ¢, j if and only if
2
- —-1>0
na+ 1

which is equivalent to (2.19).

By the (n — 1)-sphere S™~! we mean the set of all points

p=) gz (2.20)
=1
satisfying
S ozl =1. (2.21)
i=1

We may write (2.20) as

p=) lola+ ) |ail(—a:) (2.22)

x>0 xi<0



or,by (2.23) and (2.24),

p—a= Z |:]b; + Z EAL (2.23)

x>0 z;<0
If
S(p - a) = Z /,L,;bi -+ Z llzitb@" (224)
x>0 <0
where
S m=1 (2.25)
z;#0

then, by (2.11), (2.13) and (2.19), the unknows s and y; can be solved. Geometri-
cally, the point a+s(p—a) is the central projection of p € S* ' onaff{ai, ---, an}
relative to the center a, this makes the following definition.

Definition
Let n > 2 and let

1
t= na+1 where — 1 <a<-——. (2.26)
no — n—2 n
The mapping f: S" ! - aff{ai, -+, an} defined by
fp) = Z Hili + Z il (2.27)
zi>0 ;<0
in which
n n
p= ma; with Y |z|=1 (2.28)
=1 i=1
and
wi = s|lz;| if z; >0, pi=slzi|/tifzi<0 (2.29)
where N
s=1/(3 Izl + Y lail/2) (2.30)
z;>0 z;<0

is called an octahedral projection. (In case n = 3, S™~! is the surface of an octahe-
dron, hence the name.)

Remarks
(a) Since z; may be positive or negative or zero in (2.28), there are exactly 3" — 1

faces of the simplicial complex $™~! consisting of C32" (r — 1)-faces for
r=1, ---, n; the relative interiors of these faces form a partition of 72,
(b) It follows from (2.3), (2.4), (2.26) and the corollary of 2.1 that a+cy, ---, a+cn
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are affinely independent, so by (2.27), (2.28), (2.29) and (2.30) that f maps the
open simplex
Int({a;|lz; > 0} U {—a:|x; < 0})

onto the open simplex
Int({ai|x,' > 0} U {a_,lz, < 0})
(c) By (2.26), a < —2, the ray
R:a+s(p—a), s>0

will pierce the interior of the closed unit ball

B" . ilwd _<_ 1
i=1

if p € Int{—ai1, ---, —an}, sothat RN S™"! will have exactly two points for
S™~1 is the boundary of the convex body B".
(d) It follows from (2.26), (2.27), corollary of 2.2 and the previous remarks (a), (b)

and (c) that f maps the polyhedron S™*~! \ Int{-a;, -+, —a,} onto the
(n — 1)-simplex conv{ay, ---, @} bijectively and induces an octahedral
subdivision of this image which consisting of the images of the 3" — 2 faces, all
faces of S™~! but the face conv{—a;, ---, —an}.
(e) Let T be a simplicial subdivision of the (n — 1)-simplex conv{ai, - -, a,}. lf o
is an (r — 1)-simplex of T with the vertices v;, - -+, v, and if the carrier of o is
conv{a;|i € I} forsome I C {1, ---, n}
then
o = conv({v, ---, v }U{a;|j € J}),
where J = {1, ---, n}\/, is an (n — 1)-simplex for

{aili € IYU {@5lj € J}

is linearly independent. The set of all such (n — 1)-simplexes & together with
their faces is then a simplicial complex 7', the induced octahedral subdivision
of conv{a;, ---, @p} from T.

(f) (2.7) shows that

det(@y --- @) = (—t)"! (2.34)
and that
det(ds - dn) = (—ty| E{R= 20 (2.35)

where t and « are given by (2.26), 1 < r < n — 1, and where d; = @; or a; for
i=1, ---, nand r of dy, ---, d, are of the from @; and n — r of the form a;.



(g) (2.33), (2.34) and (2.35) give the relation between the orientations of ¢ and &
in the coherently oriented (n — 1)-pseudomainfold T, where the orientations are
induced by the signs of their determinants.

By suitable labellings on the vertices of @y, ---, @,, we have proven that our
multiple balanced Sperner’s lemma [2] is equivalent to our combinatorial formulas
for multiple set-valued labellings [2]. A multiple balanced KKM theorem [2] can be
derived from the multiple balanced Sperner’s lemma and can be used to prove the
nonemptyness of the common core of coupled balanced games [5]. Related results
can be found in (1], (3] and [4].
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