ABOUT THE JAMES CONSTANT OF ABSOLUTE NORMED SPACES (II) (Nonlinear Analysis and Convex Analysis)

Author(s)
MITANI, KEN-ICHI; SAITO, KICHI-SUKE; SUZUKI, TOMONARI

Citation
数理解析研究所講究録 (2008), 1611: 128-133

Issue Date
2008-09

URL
http://hdl.handle.net/2433/140046

Type
Departmental Bulletin Paper

Textversion
publisher
ABOUT THE JAMES CONSTANT OF ABSOLUTE NORMED SPACES II

KEN-ICHI MITANI, KICHI-SUKE SAITO, AND TOMONARI SUZUKI

ABSTRACT. In this note, we describe some recent results concerning James constant of absolute norms on \mathbb{R}^2 and the 2-dimensional Lorentz sequence spaces.

1. INTRODUCTION

A Banach space X is called uniformly non-square if there is a $\delta > 0$ such that if $x, y \in S_X$ then $\|x + y\|/2 \leq 1 - \delta$ or $\|x - y\|/2 \leq 1 - \delta$, where $S_X = \{x \in X : \|x\| = 1\}$. Gao and Lau [4] introduced the James constant of a Banach space X as follows:

$$J(X) = \sup \left\{ \min \{\|x + y\|, \|x - y\|\} : x, y \in S_X \right\}.$$

We shall collect some properties about James constant:

1. For any Banach space X we have $\sqrt{2} \leq J(X) \leq 2$.
2. If X is a Hilbert space, then $J(X) = \sqrt{2}$.
3. $J(X) < 2$ if and only if X is uniformly non-square.
4. If $1 \leq p \leq \infty$ and $\dim L_p \geq 2$, then

$$J(L_p) = \max \{2^{1/p}, 2^{1/p'}\}$$

where $1/p + 1/p' = 1$.

In this note, we describe some recent results concerning the James constant of absolute norms on \mathbb{R}^2 and the 2-dimensional Lorentz sequence spaces.

A norm $\| \cdot \|$ on \mathbb{R}^2 is said to be absolute if $\|(x, y)\| = \|(|x|, |y|)\|$ for all $x, y \in \mathbb{R}$, and normalized if $\|(1, 0)\| = \|(0, 1)\| = 1$. The ℓ_p-norms $\| \cdot \|_p$ are
such examples:

\[\| (x, y) \|_p = \begin{cases} \left(|x|^p + |y|^p \right)^{1/p} & \text{if } 1 \leq p < \infty, \\ \max\{|x|, |y|\} & \text{if } p = \infty. \end{cases} \]

Let \(AN_2 \) be the family of all absolute normalized norms on \(\mathbb{R}^2 \). Bonsall and Duncan [2] showed that for any absolute normalized norm on \(\mathbb{R}^2 \) there corresponds a continuous convex function on \([0, 1]\) with some appropriate conditions as follows. Let \(\Psi_2 \) be the family of all continuous convex functions on \([0, 1]\) such that \(\psi(0) = \psi(1) = 1 \) and \(\max\{1 - t, t\} \leq \psi(t) \leq 1 \). Then \(AN_2 \) and \(\Psi_2 \) are in a one to one correspondence under the equation

(1) \[\psi(t) = \| (1 - t, t) \| \quad (0 \leq t \leq 1). \]

Indeed, for any \(\| \cdot \| \in AN_2 \) we put \(\psi \) as (1). Then \(\psi \in \Psi_2 \). Also, for all \(\psi \in \Psi_2 \) we define

\[\| (x, y) \|_{\psi} = \begin{cases} (|x| + |y|)\psi\left(\frac{|y|}{|x| + |y|}\right) & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases} \]

Then \(\| \cdot \|_{\psi} \in AN_2 \), and \(\| \cdot \|_{\psi} \) satisfies (1). From this result, we can consider many non-\(\ell_p \)-type norms easily. The functions which correspond with the \(\ell_p \)-norms \(\| \cdot \|_p \) on \(\mathbb{R}^2 \) are

\[\psi_p(t) = \begin{cases} \left((1 - t)^p + t^p \right)^{1/p} & \text{if } 1 \leq p < \infty, \\ \max\{1 - t, t\} & \text{if } p = \infty. \end{cases} \]

For \(0 < \omega < 1 \) and \(1 \leq q < \infty \), the 2-dimensional Lorentz sequence space \(d^{(2)}(\omega, q) \) is \(\mathbb{R}^2 \) with the norm

\[\| x \|_{\omega, q} = (x_1^{*q} + \omega x_2^{*q})^{1/q}, \quad x = (x_1, x_2) \in \mathbb{R}^2, \]

where \((x_1^*, x_2^*)\) is the nonincreasing rearrangement of \((|x_1|, |x_2|)\); that is, \(x_1^* = \max\{|x_1|, |x_2|\} \) and \(x_2^* = \min\{|x_1|, |x_2|\} \).
Note here that the norm $\| \cdot \|_{\omega, q}$ of $d^{(2)}(\omega, q)$ is a symmetric absolute normalized norm on \mathbb{R}^2, and the corresponding convex function is given by

$$\psi_{\omega, q}(t) = \begin{cases} ((1-t)^q + \omega t^q)^{1/q} & \text{if } 0 \leq t \leq 1/2, \\ (t^q + \omega (1-t)^q)^{1/q} & \text{if } 1/2 \leq t \leq 1. \end{cases}$$

2. **James Constant of Absolute Normalized Norms on \mathbb{R}^2**

For a norm $\| \cdot \|$ on \mathbb{R}^2, we write $J(\| \cdot \|)$ for $J((\mathbb{R}^2, \| \cdot \|))$. Mitani and Saito [6] characterized the James constant of $(\mathbb{R}^2, \| \cdot \|_{\psi})$ in terms of ψ.

Theorem 1 ([6]). Let $\psi \in \Psi_2$. If ψ is symmetric with respect to $t = 1/2$, then

$$J(\| \cdot \|_{\psi}) = \max_{0 \leq t \leq 1/2} \frac{2-2t}{\psi(t)} \psi\left(\frac{1}{2-2t}\right).$$

Example 2. Let $1 \leq p \leq \infty$ and $1/p + 1/p' = 1$. Then

$$(2) \quad J(\| \cdot \|_{p}) = \max\{2^{1/p}, 2^{1/p'}\}.$$

Indeed, we define a function f on $[0, 1/2]$ as follows:

$$f(t) = \frac{2-2t}{\psi_p(t)} \psi_p\left(\frac{1}{2-2t}\right)$$

$$= \left(\frac{1 + (1-2t)^p}{(1-t)^p + t^p}\right)^{1/p}.$$

If $1 \leq p \leq 2$, then f is the maximum at $t = 0$ and

$$J(\| \cdot \|_{\psi_p}) = f(0) = 2^{1/p}.$$

If $p \geq 2$, then f is the maximum at $t = 1/2$ and

$$J(\| \cdot \|_{\psi_p}) = f(1/2) = 2^{1/p'}.$$

Thus we obtain (2).
Example 3. Let \(1/2 \leq \lambda \leq 1\). We define a function \(\varphi_\lambda\) as
\[
\varphi_\lambda(t) = \max\{1 - t, t, \lambda\}.
\]
Then it is obvious that \(\varphi_\lambda \in \Psi_2\). The corresponding absolute normalized norm \(\| \cdot \|_{\varphi_\lambda}\) is
\[
\| \cdot \|_{\varphi_\lambda} = \max\{\| \cdot \|_\infty, \lambda \| \cdot \|_1\}.
\]
Then
\[
J(\| \cdot \|_{\varphi_\lambda}) = \begin{cases} 1/\lambda & \text{if } 1/2 \leq \lambda \leq 1/\sqrt{2}, \\ 2\lambda & \text{if } 1/\sqrt{2} \leq \lambda \leq 1. \end{cases}
\]

3. **James Constant of 2-Dimensional Lorentz Sequence Spaces**

Kato and Maligranda [5] calculated \(d^{(2)}(\omega, q)\) in the case where \(q \geq 2\), that is, they proved that if \(0 < \omega < 1\) and \(q \geq 2\), then
\[
J(d^{(2)}(\omega, q)) = 2 \left(\frac{1}{1 + \omega}\right)^{1/q}.
\]
However, from Theorem 1 we obtain the following.

Lemma 4. For \(0 < \omega < 1\) and \(1 \leq q < \infty\),
\[
J(d^{(2)}(\omega, q)) = J(\| \cdot \|_{\psi_{\omega,q}}) = \max_{0 \leq t \leq 1/2} \frac{2 - 2t}{\psi_{\omega,q}(t)} \psi_{\omega,q}\left(\frac{1}{2 - 2t}\right)
\]
holds.

By using this lemma, we calculate \(J(d^{(2)}(\omega, q))\) in the case where \(1 \leq q < 2\).

Theorem 5 ([9], cf. [6, 12]). Let \(1 \leq q < 2\). (i) If \(0 < \omega \leq (\sqrt{2} - 1)^{2-q}\), then
\[
J(d^{(2)}(\omega, q)) = 2 \left(\frac{1}{1 + \omega}\right)^{1/q}.
\]
(ii) If \((\sqrt{2} - 1)^{2-q} < \omega < 1\), then there exists a unique solution \(s_0\) of the equation
\[
(1 + s_0)^{q-1}(1 - \omega s_0^{q-1}) = \omega(1 - s_0)^{q-1}(1 + \omega s_0^{q-1}), \quad 0 < s_0 < \omega^{1/(2-q)}.\]
(ii-a) If $(\sqrt{2} - 1)^{2-q} < \omega \leq \sqrt{2}^q - 1$, then

$$J(d^{(2)}(\omega, q)) = \max \left\{ \left(\frac{2(1 + s_0)^{q-1}}{1 + \omega s_0^{q-1}} \right)^{1/q}, 2 \left(\frac{1}{1 + \omega} \right)^{1/q} \right\}.$$

(ii-b) If $\sqrt{2}^q - 1 < \omega < 1$, then

$$J(d^{(2)}(\omega, q)) = \left(\frac{2(1 + s_0)^{q-1}}{1 + \omega s_0^{q-1}} \right)^{1/q}.$$

REFERENCES

(K.-I. Mitani) NIIGATA INSTITUTE OF TECHNOLOGY, KASHIWAZAKI, NIIGATA 945-1195, JAPAN

E-mail address: mitani@adm.niit.ac.jp

(K.-S. Saito) DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, NIIGATA UNIVERSITY, NIIGATA 950-2181, JAPAN

E-mail address: saito@math.sc.niigata-u.ac.jp

(T. Suzuki) DEPARTMENT OF MATHEMATICS, KYUSHU INSTITUTE OF TECHNOLOGY, KITAKYUSHU 804-8550, JAPAN

E-mail address: suzuki-t@mns.kyutech.ac.jp