Approximation Processes of Bernstein-type Operators

Nonlinear Analysis and Convex Analysis

Author(s)
Nishishiraho, Toshihiko

Citation
数理解析研究所講究録 2008, 1611: 26-33

Issue Date
2008-09

URL
http://hdl.handle.net/2433/140059

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
Approximation Processes of Bernstein-type Operators

Toshihiko Nishishiraho
Department of Mathematical Sciences, Faculty of Science
University of the Ryukyus, Okinawa, Japan

Abstract
We give a generalization of the Bernstein polynomials on the closed unit interval of the real line, and consider the uniform convergence and the degree of approximation by the generalized Bernstein-type operators.

1. Introduction
Let N denote the set of all natural numbers. Let f be a real-valued continuous function on the closed unit interval $I = [0, 1]$ of the real line \mathbb{R} and let $n \in N$. Then nth Bernstein polynomial of f is defined by

\begin{equation}
B_n(f)(x) = \sum_{j=0}^{n} f\left(\frac{j}{n}\right) \binom{n}{j} x^j (1-x)^{n-j} \quad (x \in \mathbb{I}).
\end{equation}

It is well known that the sequence $\{B_n(f)\}_{n \in N}$ converges uniformly to f on I (cf. [3]). Nowadays there are various generalizations of (1) and one of them is the following ([2], cf. [1], [9]):

\begin{equation}
C_n(f, s_n, x) = \frac{1}{s_n} \sum_{j=0}^{n} \sum_{k=0}^{s_n-1} f\left(\frac{j+k}{n+s_n-1}\right) \binom{n}{j} x^j (1-x)^{n-j},
\end{equation}

where $\{s_n\}_{n \in N}$ is a sequence of natural numbers. If $s_n = 1$ for all $n \in N$, then $C_n(f, s_n, x) = B_n(f)(x)$.

In this paper, we further generalize (2) to the multidimensional case and consider its uniform convergence with rates in terms of the modulus of continuity of functions to be approximated. For the details, we refer to [8].

2. Convergence theorems
Let $1 \leq p \leq \infty$ be fixed and let \mathbb{R}^r denote the metric linear space of all r-tuples of real numbers, equipped with the metric

$$
d_p(x, y) = \begin{cases}
\left(\sum_{i=1}^{r} |x_i - y_i|^p\right)^{1/p} & (1 \leq p < \infty) \\
\max\{|x_i - y_i| : 1 \leq i \leq r\} & (p = \infty),
\end{cases}
$$
where \(x = (x_1, x_2, \ldots, x_r), \ y = (y_1, y_2, \ldots, y_r) \in \mathbb{R}^r \).

For \(i = 1, 2, \ldots, r \), \(e_i \) denotes the \(i \)th coordinate function on \(\mathbb{R}^r \) defined by \(e_i(x) = x_i \) for all \(x = (x_1, x_2, \ldots, x_r) \in \mathbb{R}^r \). Then we have

\[
(d_p(x, y))^q \leq C(p, q, r) \sum_{i=1}^{r} |e_i(x) - e_i(y)|^q \quad (x, y \in \mathbb{R}^r, \ q > 0),
\]

where

\[
C(p, q, r) = \begin{cases}
 r^{q/p} & (1 \leq p < \infty, \ p \neq q) \\
 1 & (1 \leq p < \infty, \ p = q) \\
 1 & (p = \infty).
\end{cases}
\]

A subset \(X \) of \(\mathbb{R}^r \) is said to be locally closed if for each point \(x \in X \), there exists an open neighborhood \(V_x \) such that \(X \cap V_x \) is (relatively) closed in \(V_x \). Note that \(X \) is locally closed if and only if there exist an open set \(O \) and closed set \(F \) such that \(X = O \cap F \).

From now on let \(X \) be a locally closed subset of the first hyperquadrant

\[
\mathbb{R}^r_+ = (x_1, x_2, \ldots, x_r) \in \mathbb{R}^r : x_i \geq 0, \ 1 \leq i \leq r \).
\]

Let \(B(X) \) denote the Banach space of all real-valued bounded functions on \(X \) with the supremum norm \(\| \cdot \|_X \). Also, we denote by \(C(X) \) the linear space of all real-valued continuous functions on \(X \) and set \(BC(X) = B(X) \cap C(X) \).

Let \(b = (b_1, b_2, \ldots, b_r) \in X \), where \(b_i > 0 \) for \(i = 1, 2, \ldots, r \). Let \(Y \) be a closed subset of \(X \cap H_b \), where

\[
H_b := \{(x_1, x_2, \ldots, x_r) \in \mathbb{R}^r : x_i \leq b_i, \ i = 1, 2, \ldots, r \}.
\]

Let \(\{\nu_{n,i}\}_{n \in \mathbb{N}}, i = 1, 2, \ldots, r \), be strictly monotone increasing sequences of positive integers and let \(\{m_{n,i}\}_{n \in \mathbb{N}}, i = 1, 2, \ldots, r \), be sequences of positive integers. Let \(\{\gamma_{n,i}\}_{n \in \mathbb{N}}, i = 1, 2, \ldots, r \), be sequences of positive real-valued functions defined on \(Y \) which satisfy

\[
\gamma_n(j_1, j_2, \ldots, j_r; k_1, k_2, \ldots, k_r; x) := (\gamma_{n,1}(x)(j_1 + k_1), \gamma_{n,2}(x)(j_2 + k_2), \ldots, \gamma_{n,r}(x)(j_r + k_r)) \in X
\]

for all \(x \in Y \) and all \(n \in \mathbb{N} \), where \(j_i = 0, 1, 2, \ldots, \nu_{n,i} \) and \(k_i = 0, 1, 2, \ldots, m_{n,i} - 1 \) \((i = 1, 2, \ldots, r) \). For each \(n \in \mathbb{N}, \alpha, \beta \in \mathbb{R} \), we define

\[
p_{n,j}(\alpha, \beta) = \binom{n}{j} \beta^j (\alpha - \beta)^{n-j} \quad (j = 0, 1, 2, \ldots, n).
\]
Let \(n \in \mathbb{N}, f \in BC(X) \) and \(x = (x_1, x_2, \ldots, x_r) \in Y \). Then we define

\[
B_{\nu_{n,1}, \ldots, \nu_{n,r}}(f; m_{n,1}, \ldots, m_{n,r}; \gamma_{n,1}, \ldots, \gamma_{n,r}; b)(x)
= \prod_{i=1}^{r} \frac{1}{m_{n,i} b_{i}^{\nu_{n,i}}} \sum_{j_{1}=0}^{\nu_{n,1}} \sum_{k_{1}=0}^{m_{n,1}-1} \sum_{j_{2}=0}^{\nu_{n,2}} \sum_{k_{2}=0}^{m_{n,2}-1} \cdots \sum_{j_{r}=0}^{\nu_{n,r}} \sum_{k_{r}=0}^{m_{n,r}-1}

f(\gamma_{n}(j_{1}, j_{2}, \ldots, j_{r}; k_{1}, k_{2}, \ldots, k_{r}; x)) \prod_{i=1}^{r} p_{\nu_{n,i}, j_{i}}(b_{i}, x_{i}),
\]
which forms a positive linear operator of \(BC(X) \) into \(B(Y) \).

Remark 1. Let \(r = 1, b_1 = 1 \) and \(X = Y = \mathbb{I} \). We define

\[
\nu_{n,1} = n, \quad m_{n,1} = s_{n}, \quad \gamma_{n,1}(x) = 1/(n + s_{n} - 1) \quad (n \in \mathbb{N}, x \in Y).
\]

Then (3) reduces to (2).

Remark 2. Let \(X = Y = \mathbb{I}^{r} \) be the unit \(r \)-cube and \(b = (1, 1, \ldots, 1) \). We define

\[
m_{n,i} = 1, \quad \gamma_{n,i}(x) = 1/\nu_{n,i} \quad (n \in \mathbb{N}, x \in Y, i = 1, 2, \ldots, r).
\]

Then (3) reduces to the following \(r \)-dimensional Bernstein operators:

\[
B_{\nu_{n,1}, \nu_{n,2}, \ldots, \nu_{n,r}}(f)(x) := \sum_{j_{1}=0}^{\nu_{n,1}} \sum_{j_{2}=0}^{\nu_{n,2}} \cdots \sum_{j_{r}=0}^{\nu_{n,r}} f\left(\frac{j_{1}}{\nu_{n,1}}, \frac{j_{2}}{\nu_{n,2}}, \ldots, \frac{j_{r}}{\nu_{n,r}}\right)
\]

\[
\times \prod_{i=1}^{r} \left(\frac{\nu_{n,i}}{j_{i}}\right)^{j_{i}}(1-x_{i})^{\nu_{n,i}-j_{i}}
\]

(cf. [3]).

Theorem 1 If

\[
\lim_{n \to \infty} \|\gamma_{n,i}\|_{Y} = 0 \quad (i = 1, 2, \ldots, r),
\]

\[
\lim_{n \to \infty} \|m_{n,i} \gamma_{n,i}\|_{Y} = 0 \quad (i = 1, 2, \ldots, r)
\]

and

\[
\lim_{n \to \infty} \|\nu_{n,i} \gamma_{n,i} - b_{i}1_{X}\|_{Y} = 0 \quad (i = 1, 2, \ldots, r),
\]

then for every \(f \in BC(X) \),

\[
\lim_{n \to \infty} \|B_{\nu_{n,1}, \ldots, \nu_{n,r}}(f; m_{n,1}, \ldots, m_{n,r}; \gamma_{n,1}, \ldots, \gamma_{n,r}; b) - f\|_{Y} = 0.
\]
Let \(\{\varphi_{n,i}\}_{n \in \mathbb{N}}, i = 1, 2, \ldots, r \), be sequences of nonnegative real-valued functions defined on \(Y \). We define
\[
\gamma_{n,i}(x) = \frac{1}{\nu_{n,i} + m_{n,i} + \varphi_{n,i}(x) - 1}
\]
for all \(n \in \mathbb{N}, x \in Y \) and for \(i = 1, 2, \ldots, r \). Suppose that
\[
\gamma_n(j_1, j_2, \ldots, j_r; k_1, k_2, \ldots, k_r; x) \in X
\]
for all \(x \in Y \) and all \(n \in \mathbb{N} \), where \(j_i = 0, 1, 2, \ldots, \nu_{n,i} \) and \(k_i = 0, 1, 2, \ldots, m_{n,i} - 1 \) \((i = 1, 2, \ldots, r) \). Then from Theorem 1, we have the following:

Theorem 2 If
\[
\lim_{n \to \infty} \frac{m_{n,i}}{\nu_{n,i}} = 0 \quad (i = 1, 2, \ldots, r)
\]
and
\[
\lim_{n \to \infty} \left\| b_i \left(1 + \frac{\varphi_{n,i}}{\nu_{n,i}} - 1 \right) \right\|_Y = 0 \quad (i = 1, 2, \ldots, r),
\]
then for every \(f \in BC(X) \),
\[
\lim_{n \to \infty} \left\| B_{\nu_{n,1}, \ldots, \nu_{n,r}}(f; m_{n,1}, \ldots, m_{n,r}; \gamma_{n,1}, \ldots, \gamma_{n,r}; b) - f \right\|_Y = 0.
\]

Remark 3. Let \(b = (1, 1, \ldots, 1) \) and we define
\[
\varphi_{n,i}(x) = 0 \quad (n \in \mathbb{N}, x \in Y, i = 1, 2, \ldots, r).
\]
Then (3) reduces to the form
\[
B_{\nu_{n,1}, \nu_{n,2}, \ldots, \nu_{n,r}}(f; m_{n,1}, m_{n,2}, \ldots, m_{n,r})(x) := \prod_{i=1}^{r} \left(\frac{\nu_{n,i}!}{(1-x_i)^{\nu_{n,i}}} \right) x_i^{j_i} (1-x_i)^{\nu_{n,i} - j_i}.
\]
Furthermore, if
\[
m_{n,i} = 1 \quad (n \in \mathbb{N}, i = 1, 2, \ldots, r),
\]
then (4) becomes the following form:
\[
B_{\nu_{n,1}, \nu_{n,2}, \ldots, \nu_{n,r}}(f)(x) := \sum_{j_1=0}^{\nu_{n,1}} \sum_{j_2=0}^{\nu_{n,2}} \cdots \sum_{j_r=0}^{\nu_{n,r}} f \left(\frac{j_1}{\nu_{n,1}}, \frac{j_2}{\nu_{n,2}}, \ldots, \frac{j_r}{\nu_{n,r}} \right)
\]
\[
\times \prod_{i=1}^{\nu_{n,i}} j_i^{x_i} (1 - x_i)^{\nu_{n,i} - j_i}
\]
\[(n \in \mathbb{N}, f \in BC(X), x \in Y).\]

In particular, if \(X = Y = I_r\), we have \(B_{\nu_{1,1}, \ldots, \nu_{1,r}} = B_{n,r}\) (cf. Remark 2).

Theorem 3 The following statements holds for all \(f \in BC(X)\):

(a) If \[
\lim_{n \to \infty} \frac{m_{n,i}}{\nu_{n,i}} = 0 \quad (i = 1, 2, \ldots, r),
\]
then
\[
\lim_{n \to \infty} \|B_{\nu_{1,1}, \nu_{2,1}, \ldots, \nu_{r,1}}(f; m_{1,1}, m_{1,2}, \ldots, m_{1,1}) - f\|_Y = 0.
\]

(b) \[
\lim_{n \to \infty} \|B_{\nu_{1,1}, \nu_{2,1}, \ldots, \nu_{r,1}}(f) - f\|_Y = 0.
\]

3. Rates of convergence

Let \(f \in B(X)\) and \(\delta \geq 0\). Then we define
\[
\omega_p(f, \delta) = \sup\{ |f(x) - f(y)| : x, y \in X, d_p(x, y) \leq \delta \},
\]
which is called the modulus of continuity of \(f\). Obviously, \(\omega_p(f, \cdot)\) is a monotone increasing function on \([0, \infty)\) and
\[
\omega_p(f, \delta) = 0, \quad \omega_p(f, \delta) \leq 2\|f\| \quad (\delta \geq 0).
\]

Also, \(f\) is uniformly continuous on \(X\) if and only if
\[
\lim_{\delta \to +0} \omega_p(f, \delta) = 0.
\]

Now we here suppose that \(X\) is convex. Therefore, we have
\[
\omega_p(f, \xi \delta) \leq (1 + \xi)\omega_p(f, \delta)
\]
for all \(\xi, \delta \geq 0\) and all \(f \in B(X)\) (cf. [4, Lemma 3 (ii)], [5], [6, Lemma 1 (b)], [7, Lemma 2.4 (b)]). Let \(\{\epsilon_n\}_{n \in \mathbb{N}}\) be a sequence of positive real numbers.

Theorem 4 For all \(f \in BC(X)\) and all \(n \in \mathbb{N}\),
\[
\|B_{\nu_{1,1}, \ldots, \nu_{r,1}}(f; m_{1,1}, \ldots, m_{1,r}; \gamma_{1,1}, \ldots, \gamma_{1,r}; b) - f\|_Y \leq \|1_X + \mu_n\|_Y \omega_p(f, \epsilon_n),
\]
where for all \(x \in Y\),
\[
\mu_n(x) = \min\left\{ C(p, r)\epsilon_n^{-2} \sum_{i=1}^{r} \mu_{n,i}(x), \sqrt{C(p, r)}\epsilon_n^{-1} \sqrt{\sum_{i=1}^{r} \mu_{n,i}(x)} \right\},
\]
\[C(p, r) = \begin{cases} r^{2/p} & (1 \leq p < \infty, p \neq 2) \\ 1 & (p = 2, \infty) \end{cases} \]

and

\[
\mu_{n,i}(x) = \left((b_i - \nu_{n,i} \gamma_{n,i}(x))^2 - \nu_{n,i} \gamma_{n,i}^2(x) \right) \left(\frac{x_i}{b_i} \right)^2 \\
+ \gamma_{n,i}(x) \left(\nu_{n,i} \gamma_{n,i}(x) - (m_{n,i} - 1)(b_i - \nu_{n,i} \gamma_{n,i}(x)) \right) \frac{x_i}{b_i} \\
+ \frac{1}{3}(m_{n,i} - 1)(m_{n,i} - \frac{1}{2}) \gamma_{n,i}^2(x).
\]

Theorem 5 Suppose that \(\nu_{n,i} \gamma_{n,i}(x) \leq b_i \) for all \(n \in \mathbb{N}, x \in Y \) and for \(i = 1, 2, \ldots, r \). Then for all \(f \in BC(X) \) and all \(n \in \mathbb{N} \),

\[
B_{\nu_{n,1}, \nu_{n,2}, \ldots, \nu_{n,r}}(f; m_{n,1}, \ldots, m_{n,r}; \gamma_{n,1}, \ldots, \gamma_{n,r}; b) - f \|_Y \leq ||1_X + \tau_n||_Y \omega_p(f, \epsilon_n),
\]

where for all \(x \in Y \),

\[
\tau_n(x) = \min \left\{ C(p, r) \epsilon_n^{-2} \sum_{i=1}^{r} \tau_{n,i}(x), \sqrt{C(p, r) \epsilon_n^{-1}} \sqrt{\sum_{i=1}^{r} \tau_{n,i}(x)} \right\}
\]

and

\[
\tau_{n,i}(x) = \left(\frac{x_i}{b_i} \right)^2 (b_i - \nu_{n,i} \gamma_{n,i}(x))^2 + \frac{x_i}{b_i} \nu_{n,i} \gamma_{n,i}^2(x) + \frac{1}{3}(m_{n,i} - 1)(m_{n,i} - \frac{1}{2}) \gamma_{n,i}^2(x).
\]

Theorem 6 For all \(f \in BC(X) \) and all \(n \in \mathbb{N} \),

\[
\| B_{\nu_{n,1}, \nu_{n,2}, \ldots, \nu_{n,r}}(f; m_{n,1}, m_{n,2}, \ldots, m_{n,r}) - f \|_Y \leq ||1_X + \eta_n||_Y \omega_p(f, \epsilon_n),
\]

where for all \(x \in Y \),

\[
\eta_n(x) = \min \left\{ C(p, r) \epsilon_n^{-2} \sum_{i=1}^{r} \eta_{n,i}(x), \sqrt{C(p, r) \epsilon_n^{-1}} \sqrt{\sum_{i=1}^{r} \eta_{n,i}(x)} \right\}
\]

and

\[
\eta_{n,i}(x) = x_i^2 \left(\frac{m_{n,i} - 1}{\nu_{n,i} + m_{n,i} - 1} \right)^2 + \frac{\nu_{n,i} x_i}{(\nu_{n,i} + m_{n,i} - 1)^2} \\
+ \frac{1}{3}(m_{n,i} - 1)(m_{n,i} - \frac{1}{2}) \frac{1}{(\nu_{n,i} + m_{n,i} - 1)^2}.
\]
Theorem 7 For all $f \in BC(X)$ and all $n \in \mathbb{N}$,
\begin{equation}
\|B_{\nu_{n,1},\nu_{n,2},\ldots,\nu_{n,r}}(f;m_{n,1}, m_{n,2}, \ldots, m_{n,r}) - f\|_Y \leq (1 + \min\{M_{r,Y}C(p, r), \sqrt{M_{r,Y}C(p, r)}\})\omega_p(f, \theta_n),
\end{equation}
where
\[M_{r,Y} = \max\{\|e_i^2 + \frac{1}{3}1_X\|_Y : i = 1, 2, \ldots, r\}\]
and
\[\theta_n = \sqrt{\sum_{i=1}^{r}((\frac{m_{n,i} - 1}{\nu_{n,i} + m_{n,i} - 1})^2 + \frac{1}{\nu_{n,i}})}.
\]

Remark 5. From (5), we obtain the following estimate for all $f \in BC(X)$ and all $n \in \mathbb{N}$:
\begin{equation}
\|B_{\nu_{n,1},\nu_{n,2},\ldots,\nu_{n,r}}(f;m_{n,1}, m_{n,2}, \ldots, m_{n,r}) - f\|_Y \leq (1 + 2\sqrt{\frac{C(p, r)}{3}})\omega_p(f, \zeta_n),
\end{equation}
where
\[\zeta_n = \sum_{i=1}^{r}(\frac{m_{n,i} - 1}{\nu_{n,i} + m_{n,i} - 1} + \frac{1}{\sqrt{\nu_{n,i}}}) \leq \sum_{i=1}^{r}(\frac{m_{n,i} - 1}{nu_{n,i}} + \frac{1}{\sqrt{nu_{n,i}}}).
\]
Therefore, the inequality (6) improves the estimate given in [2, Theorem 2] for $r = 1, b_1 = 1, X = Y = \mathbb{I}$ and $\nu_{n,1} = n$. Also, we can get the following estimate for all $f \in C(\mathbb{I}^r)$ and all $n \in \mathbb{N}$ (cf. [6], [7]):
\begin{equation}
\|B_{\nu_{n,1},\nu_{n,2},\ldots,\nu_{n,r}}(f) - f\|_{\mathbb{I}^r} \leq \xi_n(p, r)\omega_p\left(f, \epsilon_n\sqrt{\sum_{i=1}^{r}\frac{1}{\nu_{n,i}}}\right),
\end{equation}
where
\[\xi_n(p, r) = 1 + \min\{\frac{C(p, r)}{4\epsilon_n^2}, \frac{\sqrt{C(p, r)}}{2\epsilon_n}\}.
\]
In particular, if $\nu_{n,i} = n$ for all $n \in \mathbb{N}, i = 1, 2, \ldots, r$ and $B_n := B_{\nu_{n,1},\nu_{n,2},\ldots,\nu_{n,r}}$, then (7) establishes the inequality
\[\|B_n(f) - f\|_{\mathbb{I}^r} \leq \left(1 + \min\{\frac{rC(p, r)}{4}, \frac{\sqrt{rC(p, r)}}{2}\}\right)\omega_p(f, \frac{1}{\sqrt{n}})
\]
for all $f \in C(\mathbb{I}^r)$ and all $n \in \mathbb{N}$.
References

