<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>SMITH PROBLEM FOR A FINITE OLIVER GROUP WITH NON-TRIVIAL CENTER (Geometry of Transformation Groups and Related Topics)</td>
</tr>
<tr>
<td>著者</td>
<td>Sumi, Toshio</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 (2008), 1612: 189-197</td>
</tr>
<tr>
<td>発行日</td>
<td>2008-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/140064</td>
</tr>
<tr>
<td>型式</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学
SMITH PROBLEM FOR A FINITE OLIVER GROUP WITH NON-TRIVIAL CENTER

九州大学大学院芸術工学研究院 角 俊雄 (Toshio Sumi)
Faculty of Design
Kyushu University

1. INTRODUCTION

The Smith problem is that two tangential representations are isomorphic or not for a smooth action on a homotopy sphere with exactly two fixed points. Two real G-modules U and V are called Smith equivalent if there exists a smooth action of G on a sphere Σ such that $S^G = \{x, y\}$ for two points x and y at which $T_x(\Sigma) \cong U$ and $T_y(\Sigma) \cong V$ as real G-modules. We will consider a subset $Sm(G)$ of the real representation ring $RO(G)$ of G consisting of the differences $U-V$ of real G-modules U and V which are Smith equivalent. We also define a subset $CSm(G)$ of $RO(G)$ consisting of the differences $U-V \in Sm(G)$ of real G-modules U and V such that for the sphere Σ appearing in the notion of Smith equivalence of U and V satisfies that Σ^p is connected for every $P \in \mathcal{P}(G)$. Moreover, we assume that $0 \in Csm(G)$ as definition.

In many groups, Smith equivalent modules are not isomorphic. In this paper we discuss the Smith problem for an Oliver group with non-trivial center. Throughout this paper we assume a group is finite.

2. TOPOLOGICAL VIEWPOINT

We denote by $\mathcal{P}(G)$ the family of subgroups of G consisting of the trivial subgroup of G and all subgroups of G of prime power order, and by $\mathcal{L}(G)$ the family of large subgroups of G. Here, by a large subgroup of G we mean a subgroup $H \leq G$ such that $O_p^0(G) \leq H$ for some prime p, where $O_p^0(G)$ is the smallest normal subgroup of G such that $|G/O_p^0(G)| = p^k$ for some integer $k \geq 0$. A real G-module V is called $\mathcal{L}(G)$-free if $\dim V^H = 0$ for each $H \in \mathcal{L}(G)$, which amounts to saying that $\dim V^{O_p^0(G)} = 0$ for each prime p dividing $|G|$. Following [PS0], we denote by $LO(G)$ the subgroup of $RO(G)$ consisting of the differences $U-V$ of two real $\mathcal{L}(G)$-free G-modules U and V such that $\text{Res}_G^U(U) \cong \text{Res}_G^V(V)$ for every $P \in \mathcal{P}(G)$.

For two subgroups $P < H$ of G with $P \in \mathcal{P}(G)$, and a smooth G-manifold X or a real G-module X, we consider the number

$$d_X(P, H) = \dim X^P - 2 \dim X^H$$

2000 Mathematics Subject Classification. 57S17, 20C15.
Key words and phrases. real representation, Smith problem, Oliver group.
where \dim means the dimension of the G-CW complex. Furthermore we define by $\dim Z = \dim X - \dim Y$ for a virtual real G-module $Z = X - Y$ of $RO(G)$. A smooth G-manifold X satisfies the gap condition (GC) if $d_X(P, H) > 0$ for every pair (P, H) of subgroups $P < H$ of G with $P \in \mathcal{P}(G)$.

The following theorem goes back to [PSo], the Realization Theorem.

Theorem 2.1 ([PSo]). Let G be a finite Oliver gap group. Then $LO(G) \subseteq CSm(G)$.

We impose a number of restrictions on a smooth G-manifold, in particular, a real G-module X. The restrictions are collected in the following conditions, where we consider series $P < H \leq G$ of subgroups P and H of G always with $P \in \mathcal{P}(G)$. We say that a smooth G-manifold X satisfies the weak gap condition (WGC) if the conditions (WGC1)–(WGC4) all hold (cf. [LM], [MP]), and we say that X satisfies the semi-weak gap condition (SWGC) if the conditions (WGC1) and (WGC2) both hold.

1. (WGC1) $d_X(P, H) \geq 0$ for every $P < H \leq G$, $P \in \mathcal{P}(G)$.
2. (WGC2) If $d_X(P, H) = 0$ for some $P < H \leq G$, $P \in \mathcal{P}(G)$, then $[H : P] = 2$, $\dim X^H > \dim X^K + 1$ for every $H < K \leq G$, and X^K is connected.
3. (WGC3) If $d_X(P, H) = 0$ for some $P < H \leq G$, $P \in \mathcal{P}(G)$, and $[H : P] = 2$, then X^K can be oriented in such a way that the map $g: X^K \to X^H$ is orientation preserving for any $g \in N_G(H)$.
4. (WGC4) If $d_X(P, H) = d_X(P, H') = 0$ for some $P < H$, $P < H'$, $P \in \mathcal{P}(G)$, then the smallest subgroup $\langle H, H' \rangle$ of G containing H and H' is not a large subgroup of G.

Now, for a finite group G, we define subgroups $VLO(G)$, $WLO(G)$ and $MLO(G)$ of the free abelian group $LO(G)$ as follows.

- $VLO(G) = \{U - V \in LO(G) \mid U \oplus W$ and $V \oplus W$ both satisfy the gap condition for some real $\mathcal{L}(G)$-free G-module $W\}$
- $WLO(G) = \{U - V \in LO(G) \mid U \oplus W$ and $V \oplus W$ both satisfy the weak gap condition for some real $\mathcal{L}(G)$-free G-module $W\}$
- $MLO(G) = \{U - V \in LO(G) \mid U \oplus W$ and $V \oplus W$ both satisfy the semi-weak gap condition for some real $\mathcal{L}(G)$-free G-module $W\}$

Note that if $\mathcal{P}(G) \cap \mathcal{L}(G) = \emptyset$ then for an $\mathcal{L}(G)$-free real G-modules U and V there is a real $\mathcal{L}(G)$-free G-module W such that both $U \oplus W$ and $V \oplus W$ satisfy (WGC2), and if G is an Oliver group then for an $\mathcal{L}(G)$-free real G-modules U and V there is a real $\mathcal{L}(G)$-free G-module W such that both $U \oplus W$ and $V \oplus W$ satisfy (WGC2) and (WGC4).

In general, $VLO(G) \subseteq WLO(G) \subseteq MLO(G) \subseteq LO(G)$ by definitions. But if G is a gap group, then for every $U - V \in LO(G)$, there exists a real $\mathcal{L}(G)$-free G-module W satisfying the gap condition, such that $U \oplus W$ and $V \oplus W$ also satisfy the gap condition, and thus $U - V \in VLO(G)$, and hence

$VLO(G) = WLO(G) = MLO(G) = LO(G)$.

Therefore, the following theorem extends the result in Theorem 2.1 by using Theorem in [MP].

Theorem 2.2. Let G be a finite Oliver group. Then $WLO(G) \subseteq CSm(G)$.

3. Algebraic viewpoint

We denote by $PO(G)$ the subgroup of $RO(G)$ of G consisting of the differences $U - V$ of representations U and V such that $\dim U^G = \dim V^G$ and $\text{Res}_P^G(U) \cong \text{Res}_P^G(V)$ for any subgroup P of G of prime power order. We note that in [PSo], $PO(G)$ is denoted by $IO(G, G)$. Similarly, we denote by $\overline{PO}(G)$ the subgroup of $RO(G)$ of G consisting of the differences $U - V$ of representations U and V such that $\dim U^G = \dim V^G$ and $\text{Res}_P^G(U) \cong \text{Res}_P^G(V)$ for any subgroup P of G of odd prime power order and order 2.

By a theorem of Sanchez [Sa], the difference of two Smith equivalent representations lies in $\overline{PO}(G)$ and the difference of two \mathcal{P}-matched Smith equivalent representations lies in $PO(G)$.

We define the Laitinen number a_G as the number of real conjugacy classes in G represented by elements of G not of prime power order. The rank of $PO(G)$ is equal to the maximum of 0 and $a_G - 1$. Moreover the rank of $\overline{PO}(G)$ is equal to the rank of $PO(G)$ plus the number of all real conjugacy classes represented by 2-elements of order ≥ 8. Now, let H be a normal subgroup of G. We denote by $PO(G, H)$ the subgroup of $RO(G)$ consisting of the differences $U - V$ of representations U and V such that $U^H \cong V^H$ as representations over G/H, and $\text{Res}_P^G(U) \cong \text{Res}_P^G(V)$ for any subgroup P of prime power order. Again, we note that in [PSo], $PO(G, H)$ is denoted by $IO(G, H)$. It holds that $PO(G) = PO(G, G)$.

Let $b_{G/H}$ be the number of all real conjugacy classes in G/H which are images from real conjugacy classes of G represented by elements not of prime power order by the surjection $G \to G/H$. Then the rank of $PO(G, H)$ is equal to $a_G - b_{G/H}$ (see [PSo]).

Proposition 3.1 (cf. [PSo]). It holds that

$$PO(G, G^{nil}) \leq LO(G) \leq PO(G) \leq \overline{PO}(G) \leq RO(G).$$

Note that $G^{nil} = \cap_p O^p(G)$. Also it is known that

$$LO(G) \subseteq CSm(G) \subseteq Sm(G)$$

if G is an Oliver gap group.

4. Upper restriction

Let S be a set of primes dividing $|G|$ and 1, and let denote by $G^{\cap S}$ the normal subgroup of G defined as

$$G^{\cap S} = \bigcap_{L \trianglelefteq G; [G:L] \in S} L.$$
Theorem 4.1 ([M07a, KMK]). Let G be a finite Oliver group. We set $S = \{2, 3\}$ if a Sylow 2-subgroup of G is normal and set $S = \{2\}$ otherwise. Then it holds that
\[
CSm(G) \subseteq PO(G, G^{\cap S}) \quad \text{and} \quad Sm(G) \subseteq PO(G, G^{\cap S}).
\]
In addition if G is a gap group and $G^{nil} = G^{\cap S}$, then it holds that
\[
LO(G) = CSm(G) = PO(G, G^{nil}).
\]
Here G^{nil} is the minimal subgroup among normal subgroups N of G such that G/N is nilpotent.

In particular, $a_G = b_{G^{\cap S}}$ yields that $CSm(G) = 0$.

Proposition 4.2 (cf. [PSu07]). $G/G^{\cap S}$ is an elementary abelian group.

5. Known results

In this section we summarize several known results ([Ju, M07a, M07b, PSo, PSu07, Su]). First we treat a non-solvable group. Pawalowski and Solomon [PSo] showed that $0 \neq PO(G, G^{nil}) \subset CSm(G)$ if G is a non-solvable gap group with $a_G \geq 2$, Pawałowski and Sumi [PSu07] showed that $0 \neq LO(G) \cap CSm(G)$ if G is a non-solvable gap group with $a_G \geq 2$, except $Aut(A_6)$, $P\Sigma L(2, 27)$, and Morimoto [M07a, M07b] showed that $Sm(Aut(A_6)) = 0$ and $CSm(P\Sigma L(2, 27)) \neq 0$. Combining these results we can state that

Theorem 5.1. For a finite non-solvable group G, $Sm(G) = 0$ if and only if $a_G \leq 1$ or $G \equiv Aut(A_6)$.

We say that an element not of prime power order is an NPP element. Morimoto showed the following theorem to get $CSm(P\Sigma L(2, 27)) \neq 0$.

Theorem 5.2 (Morimoto). Let G be an Oliver gap group. Suppose that $O^2(G)$ has a dihedral subgroup D_{2pq} of order $2pq$ with distinct primes p and q and G has two real conjugacy classes of NPP elements contained in $O^2(G)$. Then $CSm(G) \neq 0$.

To show $LO(G) \cap CSm(G) \neq 0$ for a non-solvable group with $LO(G) \neq 0$, Pawalowski and Sumi introduced a basic pair (cf. [PSu07, Su]). Let $f: G \rightarrow G^{nil}$ be a natural homomorphism. For two NPP elements x and y of an finite Oliver group G, we call (x, y) a basic pair, if $f(x) = f(y)$, x is not real conjugate to y, and one of the following claims is satisfied:

1. x and y are elements of some gap subgroup of G.

2. $|x|$ is even and the involution of $\langle x \rangle$ is conjugate to the involution of $\langle y \rangle$ in G.

We denote by $\pi(G)$ the set of all primes dividing the order of G. Note that $\langle x \rangle G^{nil} = \langle y \rangle G^{nil}$ as $f(x) = f(y)$. Recall that if $|x|$ is even, then for the involution c of $\langle x \rangle$, $c \in O^2(G)$ or $|\pi(O^2(G))| \geq 2$, then $\langle x \rangle O^2(G)$ is a gap group.

Theorem 5.3 ([PSu07]). If an Oliver group has a basic pair, it holds $LO(G) \cap CSm(G) \neq 0$.

\end{quote}
Recall that $LO(G/G^{nil}) \subseteq LO(G)$. Furthermore we have

Proposition 5.4. $2LO(G/G^{nil}) \subseteq WLO(G)$ and in particular $LO(G/G^{nil}) \neq 0$ implies $CSm(G) \neq 0$.

Then $LO(G) \cap CSm(G) = 0$ implies $LO(G/G^{nil}) = 0$. Thus the following proposition is important.

Proposition 5.5 ([PSu07]). Let H be a nilpotent group with $LO(H) = 0$. Then H is isomorphic to one of the following groups:

1. a p-group for a prime p,
2. $C_2 \times P$ for an odd prime p and a p-group P, or
3. $P \times C_3$ for a 2-group P such that any element is self-conjugate.

Lemma 5.6. If $a_G \geq 2$ and $LO(G) = 0$ it holds $|\pi(G/G^{nil})| = 1, 2$.

Proof. If $|\pi(G/G^{nil})| \geq 3$, then G/G^{nil} is a gap group with $LO(G/G^{nil}) \neq 0$, a contrary. If $|\pi(G/G^{nil})| = 0$, then G is perfect and thus rank $LO(G) = a_G - 1 > 0$, a contrary. \hfill \square

Theorem 5.7. If $LO(G) \cap CSm(G) = 0$, then G has no element x with $|\pi(\langle x \rangle)| \geq 3$.

Proof. We assume that x is an element of G of order pqr such that p, q, r are distinct primes. It is clear that $a_G \geq 4$. We may assume that $x^{pq} \in G^{nil}$ by Lemma 5.6. Then $(x^{pq}x^{qr}x^{pr})$ is a basic pair, a contrary. \hfill \square

Thus $|\pi(\langle c \rangle)| \leq 2$ for each non-trivial element $c \in Z(G)$.

6. **Induced Modules and $PO(G)$**

Let G be a finite group and $NPP(G)$ be the set of all elements of G not of prime power order. Note that $NPP(G)$ does not contain the identity element. For the real representation ring $RO(G)$, the real vector space $RO(G) \otimes \mathbb{R}$ is identified with the vector space consisting of all maps from the set of real conjugacy classes of G to the real number field \mathbb{R}. We denote by $1^G_{(g)_{\pm}^{G}}$, the map defined by $1^G_{(g)_{\pm}^{G}}((g)_{\pm}^{G}) = 1$ and $1^G_{(g)_{\pm}^{G}}((a)_{\pm}^{G}) = 0$ if a is not real conjugate to g. Then

$$RO(G) \otimes \mathbb{R} \cong \langle 1^G_{(g)_{\pm}^{G}} \mid (g)_{\pm}^{G} \subseteq G \rangle$$

and

$$RO(G)_{P(G)} \otimes \mathbb{R} \cong \langle 1^G_{(g)_{\pm}^{G}} \mid g \in NPP(G) \rangle.$$

Let K be a subgroup of G. The induced map $\text{Ind}_K^G 1^K_{(k)_{\pm}^{K}}$ has a non-zero value at $(g)_{\pm}^{G}$ only if g is real conjugate to k in G, i.e. $(g)_{\pm}^{G} = (k)_{\pm}^{G}$, since

$$\text{Ind}_K^G 1^K_{(k)_{\pm}^{K}}((a)_{\pm}^{G}) = \sum_{b \in G/K, b^{-1}ab \in K} 1^K_{(k)_{\pm}^{K}}(((b^{-1}ab)_{\pm}^{K}).$$
We denote by $RO(G)_{P(G)}$ the subset of $RO(G)$ consisting the differences $U - V$ of real representations U and V such that $\text{Res}^G_P(U) \cong \text{Res}^G_P(V)$ for $P \in P(G)$. It is clear that

$$PO(G) = \text{Ker}(\text{Fix}^G : RO(G)_{P(G)} \to \mathbb{R}).$$

We have the following commutative diagram.

$$\begin{array}{ccc}
RO(K)_{P(K)} \otimes \mathbb{R} & \longrightarrow & (\text{Ind}_K^G RO(K)_{P(K)}) \otimes \mathbb{R} \\
\downarrow & & \downarrow \\
\langle 1_{(k)^{K}}^{K} | k \in \text{NPP}(K) \rangle & \longrightarrow & \langle 1_{(g)^{G}}^{G} | g \in \text{NPP}(G) \rangle
\end{array}$$

It holds that

$$(\text{Ind}_K^G RO(K)_{P(K)}) \otimes \mathbb{R} = (\text{Ind}_K^G RO(K))_{P(G)} \otimes \mathbb{R}$$

and then that

$$(\text{Ind}_K^G RO(K)_{P(K)}) \otimes \mathbb{Q} = (\text{Ind}_K^G RO(K))_{P(G)} \otimes \mathbb{Q}.$$
(2) If two involutions x and y of G outside of $O^2(G)$ are not conjugate then $C_G(x)$ or $C_G(y)$ is a 2-group.

The author does not know a group G with $MLO(G) \neq LO(G)$.

7. NON-TRIVIAL CENTRAL

In this section we consider whether $CSm(G) = 0$ or not for an Oliver group G with $a_G \geq 2$. In the section 5 we know completely it for a non-solvable group G. From now on we assume that G is an Oliver solvable group with $LO(G) \cap CSm(G) = 0$ and $a_G \geq 2$. Recall that $PO(G, Gn) \neq 0$ implies $a_G \geq 2$.

Lemma 7.1. If $Z(G) \neq \{1\}$ then $|\pi(G^{nil})| = 2$.

Proof. Since $LO(G/G^{nil}) = 0$, G/G^{nil} is isomorphic to P, $C_2 \times P$, or $C_3 \times P_2$, where P is a p-group and P_2 is a 2-group. Then for some subgroup K of G, the sequence $G^{nil} \leq K \leq G$ such that $|\pi(G/K)| = 1$ and K/G^{nil} is cyclic. Thus $|\pi(G^{nil})| \geq 2$. We assume that $|\pi(G^{nil})| \geq 3$. Take distinct primes p, q, r in $\pi(G^{nil})$. Let $c \in Z(G)$ be an element of prime order. We may assume that $|c| \neq q, r$. Take elements x_q and x_r of G^{nil} of order q and r respectively. Then cx_q and cx_r are NPP elements of distinct order. Therefore (cx_q, cx_r) is a basic pair.

Lemma 7.2. $Z(G)$ has no NPP element.

Proof. We suppose that $Z(G)$ has an NPP element c of order pq where p and q are primes. Then $|\pi(G)| = 2$ and $\pi(G) = \pi(\langle c \rangle) = \{p, q\}$ by Theorem 5.7. First we show that G^{nil} is not a subgroup of $\langle c \rangle$. Suppose $G^{nil} \leq \langle c \rangle$. Let $f: G \to G/\langle c \rangle$ be a canonical epimorphism. Note that $\pi(G/\langle c \rangle) = \{p, q\}$. Since $f(G)$ is nilpotent, $O^p(f(G))$ is a Sylow p-subgroup of $f(G)$ and a Sylow p-subgroup $O^p(G)_p$ of $O^p(G)$ is normal and its quotient $O^p(G)/O^p(G)_p$ is cyclic. This is a contrary against G is Oliver.

Thus we can take an element x of G^{nil} which is not in $\langle c \rangle$. Since f sends two NPP elements xc and c to elements of distinct order, xc and c are not real conjugate. It is clear that they are sent to the same element by $G \to G/G^{nil}$. Then (xc, c) is a basic pair, which is a contrary. Thus $Z(G)$ has no NPP element.

The following can be straightforward checked.
Lemma 7.3. Let \(c \in Z(G) \) be an element of order a prime \(p \). If \(G^{nil} \) has an element \(x \) of order \(q^2 \) for some prime \(q \neq p \), then \(G \) has a basic pair \((cx, cx^q) \).

We define the DressLength\((G)\) as the minimal length \(n \) of sequences

\[
G = G_0 > G_1 > G_2 > \cdots > G_n = \{1\}
\]

such that \(O^{p_j}(G_{j-1}) = G_j \) with some prime \(p_j \) for each \(j \). In convenient, we assume DressLength\((G)\) = \(\infty \) if there is no sequence as above. For example, DressLength\((G)\) = \(\infty \) for a non-solvable group. It is easy to see that DressLength\((G)\) \(\geq 3 \) if \(G \) is an Oliver group and that DressLength\((G)\) \(\geq 3 \) if \(G \) is a gap group.

Now we recall classical results. A finite group is called a CP group if it has no NPP elements.

Lemma 7.4 (Higman, cf. [PSO, Lemma 2.5]). Let \(H \) be a finite solvable CP group. Then one of the following conclusions holds:

1. \(H \) is a \(p \)-group for some prime \(p \); or
2. \(H = K \rtimes C \) is a Frobenius group with kernel \(K \) and complement \(C \), where \(K \) is a \(p \)-group and \(C \) is a \(q \)-group of \(q \)-rank 1 for two distinct primes \(p \) and \(q \); or
3. \(H = K \rtimes C \rtimes A \) is a 3-step group, in the sense that \(K \rtimes C \) is a Frobenius group as in the conclusion (2) with \(C \) cyclic, and \(C \rtimes A \) is a Frobenius group with kernel \(C \) and complement \(A \), a cyclic \(p \)-group.

Proposition 7.5 ([Hu, Proposition 22.3 and Remark on p.193]). \(\text{Aut}(C_{2^a}) = C_2 \times C_{2^{a-2}} \)

where \(x \mapsto x^5 \) is a generator of \(C_{2^{a-2}} \) and \(x \mapsto x^{-1} \) is a generator of \(C_2 \). \(\text{Aut}(C_{p^n}) = C_{p^{a-1}(p-1)} \) for an odd prime \(p \).

With these results we use a Frattini subgroup and a Fitting subgroup and then we obtain the following results.

Theorem 7.6. Let \(G \) be an Oliver solvable group with \(a_G \geq 2 \) and \(Z(G) \neq \{1\} \). If \(CSm(G) = 0 \), then it holds the following.

1. \(Z(G) \) has no NPP element.
2. If \(Z(G) \) is a \(p \)-group, an element of \(G^{nil} \) not of \(p \) power order has prime order.
3. \(|\pi(G)| = 2 \).
4. \(\text{DressLength}(G) = 3, 4 \).

References

FACULTY OF DESIGN, KYUSHU UNIVERSITY, SHIOBARU 4-9-1, FUKUOKA, 815-8540, JAPAN

E-mail address: sumi@design.kyushu-u.ac.jp