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1. BASIC PROBLEMS

Let G be a finite group throughout this paper. We mean by a (real) G-module a real
G-representation (space) of finite dimension. Let S(G) denote the set of all subgroups
of G and let P(G) denote the subset of S(G) consisting of all subgroups of prime power
order. Unless otherwise stated, M will stand for a (smooth) G-manifold. S. Cappell-
J. Shaneson referred the next problem to a basic problem on Algebraic and Differential

Topology.

Problem (Basic Problem A). Let z, y € M®. How similar is a neighborhood of z to

that of y as G-spaces?

If x € MY, then we can regard the tangent space T(M) at z in M as a G-module.

Thus the problem above is equivalent to ask
Problem (Basic Problem B). How similar is T,(M) to T, (M) as G-modules?
A specific case of the problem was posed by P. A. Smith.

Problem (Smith Problem). If ¥ is a homotopy sphere with exactly two fixed points z
and y, then is T;(X) isomorphic to T;,(X) as G-modules?

We would like to study this problem in a slightly generalized form. Now let 2(2)
denote the family of all (smooth) G-actions on manifolds with exactly 2 fixed points
and let X C 2A(2). We say that G-modules V and W are X-related, and write V ~y W,
if there exists a smooth G-action on M € X such that M¢ = {a, b}, T,(M) =¢ V and
Ty(M) =¢ W. Let RO(G) denote the real representation ring of G. We define the
X-relation set RO(G, X) of G by

RO(G, %)={[V] - [W] € RO(G) | V ~x W}
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Problem (Basic Problem C). Describe RO(G, X) in terms of Algebra (or Representa-
tion Theory)

We say that a G-action on a disk D has a linear boundary action if the boundary
0D is G-diffeomorphic to the unit sphere S(V) for some G-module V. A G-action on
a homotopy sphere L is called a G-semilinear sphere if ©¥ is a homotopy sphere for
each H < G. G-modules V and W are called P-matched if res§V =p resGW for all
P e P(G).

We will discuss Basic Problem C for the following subfamilies of 2A(2).

€ = {G-actions on Euclidean spaces € A(2)}
D = {G-actions on disks € %(2)}
Ds.in = {G-actions on disks with linear boundary action € A(2)}
6 = {G-actions on homotopy spheres € (2)}
Gs free = {semi free actions € G}
Scs = {E € & such that |[Z#| = 2 or = is connected (V H < G) }
Gstin = {G-semilinear spheres € (2)}
pS = {T € & (£ = {z,y}) such that T,(X) and T,(X) are P-matched}

With this notation, the Smith Problem is equivalent to ask whether RO(G, &) = 0
or not.

Here we may remark the following.

Theorem (G. E. Bredon [2]). Let G = C,, withn = p® and ¥ € 6 with dim ¥ = 2k

and x, y € X¢. Then T,(X) — T,(X) is divisible by p" in RO(G), where h = [;): ~ Z] ‘

By T. Petrie (e.g. [24]), the theorem above implies that if dim £ > n then T, (T) =4
T,(X). Thus, in the case G = C,, with n = 2% > 8, the set RO(G, &) is not additively

closed.
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2. PRELIMINARY

Let H be a set of subgroups of G. G-modules V and W are called H-matched if
res;V 2y resGW for all H € H. A G-module V is called H-free if V# = 0 holds for
any H € H. For M C RO(G), and H, K C S(G), we define

My ={V-WeM|V and W are H-matched}
ME={V-WeM|V,W are K-free}
ME = My N M~

By Definition, we have RO(G, p&) = RO(G, &)p(q)-

In some other papers, V and W are called Smith equivalent if V ~g W: V and W are
called s-Smith equivalent if V ~g_, W; V and W are called primary Smith equivalent
if V ~pe W. The set Sm(G) = RO(G, &) was usually called the Smith set and the set
RO(G, p&) primary Smith set. By definition, Sm(G)p) = RO(G, p&).

A finite group G is called a mod P cyclic group if there exists a normal subgroup
- P of G such that P is of prime power order and G/P is cyclic. G is called a mod P
hyperelementary group if there exists a normal series P < H < G such that P and G JH
are of prime power order and H/P is cyclic. G is called an Oliver group if G is not a
mod P hyperelementary group. Thus G is an Oliver group if and only if G admits a
G-action on a disk without fixed points.

Let p be a prime. Let G{?} denote the smallest normal subgroup H of G such that
G/H has the brder of a p-power. We refer G{#} to the Dress subgroup of type p. Let
G™ denote the smallest normal subgroup H of G with nilpotent G/H. It follows that

Gnil — m G{q}
q

Let us adopt the following notation.
PC(G) = {mod-P cyclic subgroups of G}
L(G)={L € S(G) | L > G for some prime p}
M(G) = S(G) \ L(G)
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3. CLASSICAL RESULTS (UNTIL 1996)

There are various affirmative answers to the Smith Problem. It is easy to see that
if V. ~g W then resgV =p resgW for all P € P(G) with |P||4. By Atiyah-Bott
and Milnor, V ~g ... W implies V =5 W. Sanchez showed that V ~g W imples
Resg =p ResgVV for any P of odd-prime-power order.

To the contrary, there are negative answers to the Smith Problem. T. Petrie showed
that if G is an odd-order abelian group containing Cpg,s X Cpqrs, Where p, g, 7, s are
distinct odd primes, then RO(G, p&) # 0. In addtion, Cappell-Shaneson showed that
if G = Cy,, with n > 2 then RO(G, G¢s) # 0.

Here we also recall classical results concerned with ~¢ and ~g5. By Petrie, if G is an
odd-order abelian group, then RO(G, D)%) = RO(G),‘;((?). R. Oliver showed that if G
is not of prime power order, then RO(G, €) = RO(G);,((%); if G is an Oliver group, then
RO(G,D) = RO(G)5},

4. DIMENSION CONDITIONS ON G-MODULES

In order to apply an equivariant surgery theory to a G-manifold M, we require certain
properties for M where H € S(G). If V = T,(M) with z € M, then dim V¥ is
equal to the dimenison of the connected component of M¥ containing the point z.

Let V be a G-module.

(1) We say that V satisfies the strong gap condition if dim VF > 2dim V# + 2 for
all P < H < G with P € P(G).

(2) We say that V satisfies the gap conditionif dim V¥ > 2dim V¥ forall P < H <
G with P € P(G).

(3) We say that V satisfies the weak gap condition if the next dimension condition:

(Dim) dimV? > 2dim V¥ for all P < H < G with P € P(G)
is satisfied and V satisfies the orientation condition:
(Ori) g: V¥ — V¥ preserves orientation for any g € Ng(P) N Ng(H) such that
PeP(G), P<H <G and dimV? = 2dim V¥,
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A finite group G is called a gap group if there exists a G-module V such that V is
L(G)-free and satisfics the gap condition.

5. LAITINEN’S CONJECTURE

E. Laitinen and K. Pawalowski were interested in determining the set RO(G, p&S),
namely RO(G, 6)_1:»(@).‘

Conjecture (E. Laitinen). Let G be an Oliver group. Then RO(G, p&) # 0 holds if
and only if RO(G, D) # 0. ‘

For g € G, let (g) denote the conjugacy class {aga™ € G | a € G}, and let (g)*
denote the real conjugacy class (g) U (g~!). Then a¢ stands for the number of all real
conjugacy classes (g)* such that g € G is not of prime power order. If G is an Oliver

group, since RO(G, D) = RO(G);,?C};), we obtain rankRO(G, D) = ag — 1.

Theorem (E. Laitinen-K. Pawalowski, K. Pawalowski-R. Solomon, M. Morimoto).
Laitinen’s Conjecture has been studied and is affirmative for Oliver gap groups G satis-
fying one of the following conditions.
(1) G is a perfect group [9].
(2) G is a nonsolvable group:
e Case G % PXL(2,27): [20].
e Case G = PLL(2,27): RO(G, &) = RO(G)57}, = Z [12). |
(3) G has a normal subgroup N such that G/N & Cp,, with distinct odd primes p, q
[20].
(4) G is of odd order [20).

Let SG(m,n) denote the nth small group of order m given by the computer software

GAP [5].

Theorem (A. Koto-M. Morimoto-Y. Qi, M. Morimoto, T. Sumi). Laitinen’s Conjecture
fails and RO(G, &) = 0 for Oliver groups G satisfying one of the following conditions.

(1) G = Aut(As) (nongap group, G/G™ = Cy x Cy) [14].
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(2) G = 5G(72,44) (gap group, G/G™ = Cs) [28].

(3) G = SG(288,1025) (gap group, G/G™ = Cg) [28].

(4) G = SG(432,734) (nongap group, G/G™ = C,) [28].

(5) .G = SG(576,8654) (nongap group, G/G™ = C, x C,) [28].
(6) G = SG(1176,220) (gap group, G/G™ = Cj3) [7).

(7) G = SG(1176,221) (gap group, G/G™ = C3) [7].

6. DETERMINATION OF RO(G, p&)

Throughout this section, let G be an Oliver group.

Theorem (K. Pawalowski-R. Solomon [20]). Let G be an Oliver group.
(1) If G is a gap group, then RO(G, G),L,((g)) = RO(G),,E,((?).
(2) If G is either an Oliver group of odd order or a nonsolvable group ¥ Aut(Ag),

PXL(2,27) and if ag > 2, then RO(G);C,((?) # 0.

Let us define the following subsets of RO(G).
RO[H*)(G) = {V -~ W € RO(G) | V, W are L(G)-free and satisfy (Dim)}
ROW~)(G) = {V — W € RO(G) | V, W are L(G)-free and satisfy (Dim), (Ori)}

where (Dim) and (Ori) stand for the dimension condition and the orientation condition,
respecively, appearing in the weak gap condition (see Section 4).
By definition,
2 - RO[H*)(G) ¢ ROWX)(G) € RO[HE(G).

If G is a gap group, then RO[W¥|(G) = RO(G)*(©).
By the Deleting-Inserting Theorem by M. Morimoto stated in {16, Appendix], we

obtain the next basic theorem.

Theorem 6.1. If G is an Oliver group, then

RO[W](G)p) C RO(G, pS) N RO(G, Do.in).
Corollary 6.2. IfG is an Oliver group with RO[HX](G)p(g) # 0, then RO(G, pG) # 0.

X.M. Ju applied the theorem above and obtained the next result.
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Theorem (X.M. Ju). Let X, = Cy x -+ x Cy be the n-fold cartesian product of Cly,
where n > 1. Then G = S5 x X, is a nongap Oliver group,

RO(G, &) = RO(G, p&) = RO(G)L)
and

ranszO(G)g(‘g}) =2" —~1.

Lemma 6.3 ([7]). Let G be a finite group not of prime power order, N a normal
subgroup of G, Ny a Sylow 2-subgroup of N.
(1) IfG/IN=Cy and V ~g W, then VN = 0= WV orres§V 2y res§W.

(2) If G/N = C, with p odd prime, N, is normal in N, and V ~g W then VN =
0=WV orres{V =y resQW.

Lemma 6.4 ([7]). Let G be a finite group not of prime power order and G2 a Sylow
2-subgroup of G.

(1) ]fG/G{z} >~ C’2 X oo X 02’ then RO(G, 6) - RO(G){G{Z’)}.

(2) If G2 is normal in G and G/G¥ = C3x- . -x Cs, then RO(G, &) ¢ RO(G){6™1,

Theorem 6.5 ([12]). Let G be either SG(864,2666) or SG(864,4666). Then G is an
Oliver group with G/G™ = C3 and

RO(G, &) = RO(G, p&) = RO(G)5 7}, = Z.

Let G be a finite Oliver group of order < 2000. T. Sumi (2006) tried to see whether

RO(G,p6) = 0 or not. Putting his computation together with our results, we can
determine whether RO(G, pS) = 0 or not for G except ones in the next list:

G(m,n) ac gap? G/G™
G(864,4663) 3  No  Cs
G(864,4672) 5 Yes Q

G(1152,155470) 2 Yes  Ce
G(1152, 157859) 2  Yes -

List 1
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7. CONJECTURES

We have several conjectures related to the Smith Problem which are not yet proved.

Conjecture (S. E. Cappell-J. L. Shaneson). If V ~g., W and the actions on V and
W are pseudofree, then V ~¢ W (G-homeomorphic).

Conjecture 7.1. If G is an Oliver group with RO(G),E,((((’;)) # 0, then RO(G, 6),‘5((?) # 0.

Let cc denote the number of the conjugacy classes (C) of cyclic subgroup C of G

such that the order of C is not of prime power order. Let I' denote the Galois group

Gal(Q(¢)), where ( = exp (2—7%/;)

Conjecture 7.2. If G is an Oliver group with ¢g > 2, then RO(G, pS)T # 0
Conjecture 7.3. If G is an Oliver group, then RO(G, pS) C RO(G, Da.yin).
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