Tangential Representations at Fixed Points

岡山大学大学院自然科学研究科 森本 雅治 (Masaharu Morimoto)
Graduate School of Natural Science and Technology
Okayama University

1. Basic problems

Let G be a finite group throughout this paper. We mean by a (real) G-module a real G-representation (space) of finite dimension. Let S(G) denote the set of all subgroups of G and let $\mathcal{P}(G)$ denote the subset of S(G) consisting of all subgroups of prime power order. Unless otherwise stated, M will stand for a (smooth) G-manifold. S. Cappell-J. Shaneson referred the next problem to a basic problem on Algebraic and Differential Topology.

Problem (Basic Problem A). Let $x, y \in M^G$. How similar is a neighborhood of x to that of y as G-spaces?

If $x \in M^G$, then we can regard the tangent space $T_x(M)$ at x in M as a G-module. Thus the problem above is equivalent to ask

Problem (Basic Problem B). How similar is $T_x(M)$ to $T_y(M)$ as G-modules?

A specific case of the problem was posed by P. A. Smith.

Problem (Smith Problem). If Σ is a homotopy sphere with exactly two fixed points x and y, then is $T_x(\Sigma)$ isomorphic to $T_y(\Sigma)$ as G-modules?

We would like to study this problem in a slightly generalized form. Now let $\mathfrak{A}(2)$ denote the family of all (smooth) G-actions on manifolds with exactly 2 fixed points and let $\mathfrak{X} \subset \mathfrak{A}(2)$. We say that G-modules V and W are \mathfrak{X} -related, and write $V \sim_{\mathfrak{X}} W$, if there exists a smooth G-action on $M \in \mathfrak{X}$ such that $M^G = \{a,b\}$, $T_a(M) \cong_G V$ and $T_b(M) \cong_G W$. Let RO(G) denote the real representation ring of G. We define the \mathfrak{X} -relation set $RO(G,\mathfrak{X})$ of G by

$$\mathrm{RO}(G,\mathfrak{X}) {=} \{ [V] - [W] \in \mathrm{RO}(G) \mid V \sim_{\mathfrak{X}} W \}$$

Problem (Basic Problem C). Describe $RO(G, \mathfrak{X})$ in terms of Algebra (or Representation Theory)

We say that a G-action on a disk D has a linear boundary action if the boundary ∂D is G-diffeomorphic to the unit sphere S(V) for some G-module V. A G-action on a homotopy sphere Σ is called a G-semilinear sphere if Σ^H is a homotopy sphere for each $H \leq G$. G-modules V and W are called \mathcal{P} -matched if $\operatorname{res}_P^G V \cong_P \operatorname{res}_P^G W$ for all $P \in \mathcal{P}(G)$.

We will discuss Basic Problem C for the following subfamilies of $\mathfrak{A}(2)$.

```
\mathfrak{E} = \{G\text{-actions on Euclidean spaces} \in \mathfrak{A}(2)\}
\mathfrak{D} = \{G\text{-actions on disks} \in \mathfrak{A}(2)\}
\mathfrak{D}_{\partial\text{-lin}} = \{G\text{-actions on disks with linear boundary action} \in \mathfrak{A}(2)\}
\mathfrak{S} = \{G\text{-actions on homotopy spheres} \in \mathfrak{A}(2)\}
\mathfrak{S}_{s\text{-free}} = \{\text{semi free actions} \in \mathfrak{S}\}
\mathfrak{S}_{CS} = \{\Sigma \in \mathfrak{S} \text{ such that } |\Sigma^H| = 2 \text{ or } \Sigma^H \text{ is connected } (\forall H \leq G) \}
\mathfrak{S}_{s\text{-lin}} = \{G\text{-semilinear spheres} \in \mathfrak{A}(2)\}
\mathfrak{P} = \{\Sigma \in \mathfrak{S} \text{ } (\Sigma^G = \{x, y\}) \text{ such that } T_x(\Sigma) \text{ and } T_y(\Sigma) \text{ are } \mathcal{P}\text{-matched}\}
```

With this notation, the Smith Problem is equivalent to ask whether $RO(G, \mathfrak{S}) = 0$ or not.

Here we may remark the following.

Theorem (G. E. Bredon [2]). Let
$$G = C_n$$
 with $n = p^a$ and $\Sigma \in \mathfrak{S}$ with $\dim \Sigma = 2k$ and $x, y \in \Sigma^G$. Then $T_x(\Sigma) - T_y(\Sigma)$ is divisible by p^h in $RO(G)$, where $h = \left[\frac{pk - n}{pn - n}\right]$.

By T. Petrie (e.g. [24]), the theorem above implies that if dim $\Sigma \gg n$ then $T_x(\Sigma) \cong_G T_y(\Sigma)$. Thus, in the case $G = C_n$ with $n = 2^a \geq 8$, the set $RO(G, \mathfrak{S})$ is not additively closed.

2. Preliminary

Let \mathcal{H} be a set of subgroups of G. G-modules V and W are called \mathcal{H} -matched if $\operatorname{res}_H^G V \cong_H \operatorname{res}_H^G W$ for all $H \in \mathcal{H}$. A G-module V is called \mathcal{H} -free if $V^H = 0$ holds for any $H \in \mathcal{H}$. For $M \subset \operatorname{RO}(G)$, and \mathcal{H} , $\mathcal{K} \subset \mathcal{S}(G)$, we define

$$M_{\mathcal{H}} = \{V - W \in M \mid V \text{ and } W \text{ are } \mathcal{H}\text{-matched}\}$$

$$M^{\mathcal{K}} = \{V - W \in M \mid V, W \text{ are } \mathcal{K}\text{-free}\}$$

$$M^{\mathcal{K}}_{\mathcal{H}} = M_{\mathcal{H}} \cap M^{\mathcal{K}}.$$

By Definition, we have $RO(G, \mathfrak{PS}) = RO(G, \mathfrak{S})_{\mathcal{P}(G)}$.

In some other papers, V and W are called Smith equivalent if $V \sim_{\mathfrak{S}} W$; V and W are called s-Smith equivalent if $V \sim_{\mathfrak{S}_{s\text{-lin}}} W$; V and W are called primary Smith equivalent if $V \sim_{\mathfrak{PS}} W$. The set $Sm(G) = RO(G, \mathfrak{S})$ was usually called the Smith set and the set $RO(G, \mathfrak{PS})$ primary Smith set. By definition, $Sm(G)_{\mathcal{P}(G)} = RO(G, \mathfrak{PS})$.

A finite group G is called a $mod \mathcal{P}$ cyclic group if there exists a normal subgroup P of G such that P is of prime power order and G/P is cyclic. G is called a $mod \mathcal{P}$ hyperelementary group if there exists a normal series $P \subseteq H \subseteq G$ such that P and G/H are of prime power order and H/P is cyclic. G is called an Oliver group if G is not a mod \mathcal{P} hyperelementary group. Thus G is an Oliver group if and only if G admits a G-action on a disk without fixed points.

Let p be a prime. Let $G^{\{p\}}$ denote the smallest normal subgroup H of G such that G/H has the order of a p-power. We refer $G^{\{p\}}$ to the *Dress subgroup of type* p. Let G^{nil} denote the smallest normal subgroup H of G with nilpotent G/H. It follows that

$$G^{nil} = \bigcap_{q} G^{\{q\}}.$$

Let us adopt the following notation.

$$\mathcal{PC}(G) = \{ \operatorname{mod-}\mathcal{P} \text{ cyclic subgroups of } G \}$$

$$\mathcal{L}(G) = \{ L \in \mathcal{S}(G) \mid L \supset G^{\{p\}} \text{ for some prime } p \}$$

$$\mathcal{M}(G) = \mathcal{S}(G) \setminus \mathcal{L}(G)$$

3. Classical results (until 1996)

There are various affirmative answers to the Smith Problem. It is easy to see that if $V \sim_{\mathfrak{S}} W$ then $\operatorname{res}_P^G V \cong_P \operatorname{res}_P^G W$ for all $P \in \mathcal{P}(G)$ with |P||4. By Atiyah-Bott and Milnor, $V \sim_{\mathfrak{S}_{s-free}} W$ implies $V \cong_G W$. Sanchez showed that $V \sim_{\mathfrak{S}} W$ implies $\operatorname{Res}_P^G V \cong_P \operatorname{Res}_P^G W$ for any P of odd-prime-power order.

To the contrary, there are negative answers to the Smith Problem. T. Petrie showed that if G is an odd-order abelian group containing $C_{pqrs} \times C_{pqrs}$, where p, q, r, s are distinct odd primes, then $RO(G, \mathfrak{pS}) \neq 0$. In addition, Cappell-Shaneson showed that if $G = C_{4n}$ with $n \geq 2$ then $RO(G, \mathfrak{S}_{CS}) \neq 0$.

Here we also recall classical results concerned with $\sim_{\mathfrak{E}}$ and $\sim_{\mathfrak{D}}$. By Petrie, if G is an odd-order abelian group, then $\mathrm{RO}(G,\mathfrak{D})^{\mathcal{L}(G)}=\mathrm{RO}(G)^{\mathcal{L}(G)}_{\mathcal{P}(G)}$. R. Oliver showed that if G is not of prime power order, then $\mathrm{RO}(G,\mathfrak{E})=\mathrm{RO}(G)^{\{G\}}_{\mathcal{P}(G)}$; if G is an Oliver group, then $\mathrm{RO}(G,\mathfrak{D})=\mathrm{RO}(G)^{\{G\}}_{\mathcal{P}(G)}$.

4. Dimension Conditions on G-Modules

In order to apply an equivariant surgery theory to a G-manifold M, we require certain properties for M^H , where $H \in \mathcal{S}(G)$. If $V = T_x(M)$ with $x \in M^G$, then dim V^H is equal to the dimension of the connected component of M^H containing the point x.

Let V be a G-module.

- (1) We say that V satisfies the strong gap condition if dim $V^P > 2 \dim V^H + 2$ for all $P < H \le G$ with $P \in \mathcal{P}(G)$.
- (2) We say that V satisfies the gap condition if dim $V^P > 2 \dim V^H$ for all $P < H \le G$ with $P \in \mathcal{P}(G)$.
- (3) We say that V satisfies the weak gap condition if the next dimension condition:
 - (Dim) dim $V^P \ge 2 \dim V^H$ for all $P < H \le G$ with $P \in \mathcal{P}(G)$ is satisfied and V satisfies the orientation condition:
 - (Ori) $g: V^H \to V^H$ preserves orientation for any $g \in N_G(P) \cap N_G(H)$ such that $P \in \mathcal{P}(G), P < H \leq G$ and $\dim V^P = 2 \dim V^H$.

A finite group G is called a gap group if there exists a G-module V such that V is $\mathcal{L}(G)$ -free and satisfies the gap condition.

5. Laitinen's Conjecture

E. Laitinen and K. Pawałowski were interested in determining the set $RO(G, \mathfrak{pS})$, namely $RO(G, \mathfrak{S})_{\mathcal{P}(G)}$.

Conjecture (E. Laitinen). Let G be an Oliver group. Then $RO(G, \mathfrak{pS}) \neq 0$ holds if and only if $RO(G, \mathfrak{D}) \neq 0$.

For $g \in G$, let (g) denote the conjugacy class $\{aga^{-1} \in G \mid a \in G\}$, and let $(g)^{\pm}$ denote the real conjugacy class $(g) \cup (g^{-1})$. Then a_G stands for the number of all real conjugacy classes $(g)^{\pm}$ such that $g \in G$ is not of prime power order. If G is an Oliver group, since $RO(G, \mathfrak{D}) = RO(G)_{\mathcal{P}(G)}^{\{G\}}$, we obtain $rankRO(G, \mathfrak{D}) = a_G - 1$.

Theorem (E. Laitinen-K. Pawałowski, K. Pawałowski-R. Solomon, M. Morimoto). Laitinen's Conjecture has been studied and is affirmative for Oliver gap groups G satisfying one of the following conditions.

- (1) G is a perfect group [9].
- (2) G is a nonsolvable group:
 - Case $G \ncong P\Sigma L(2, 27)$: [20].
 - Case $G = P\Sigma L(2, 27)$: $RO(G, \mathfrak{S}) = RO(G)_{\mathcal{P}(G)}^{\{G\}} \cong \mathbb{Z}$ [12].
- (3) G has a normal subgroup N such that $G/N \cong C_{pq}$ with distinct odd primes p, q [20].
- (4) G is of odd order [20].

Let SG(m, n) denote the *n*th small group of order *m* given by the computer software GAP [5].

Theorem (A. Koto-M. Morimoto-Y. Qi, M. Morimoto, T. Sumi). Laitinen's Conjecture fails and $RO(G, \mathfrak{S}) = 0$ for Oliver groups G satisfying one of the following conditions.

(1) $G = \operatorname{Aut}(A_6)$ (nongap group, $G/G^{nil} = C_2 \times C_2$) [14].

- (2) G = SG(72, 44) (gap group, $G/G^{nil} = C_6$) [28].
- (3) G = SG(288, 1025) (gap group, $G/G^{nil} = C_6$) [28].
- (4) G = SG(432,734) (nongap group, $G/G^{nil} = C_2$) [28].
- (5) G = SG(576, 8654) (nongap group, $G/G^{nil} = C_2 \times C_2$) [28].
- (6) G = SG(1176, 220) (gap group, $G/G^{nil} = C_3$) [7].
- (7) G = SG(1176, 221) (gap group, $G/G^{nil} = C_3$) [7].

6. DETERMINATION OF $RO(G, \mathfrak{pS})$

Throughout this section, let G be an Oliver group.

Theorem (K. Pawałowski-R. Solomon [20]). Let G be an Oliver group.

- (1) If G is a gap group, then $RO(G,\mathfrak{S})_{\mathcal{P}(G)}^{\mathcal{L}(G)} = RO(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)}$.
- (2) If G is either an Oliver group of odd order or a nonsolvable group \ncong Aut (A_6) , $P\Sigma L(2,27)$ and if $a_G \geq 2$, then $RO(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)} \neq 0$.

Let us define the following subsets of RO(G).

$$RO[\mathcal{H}^{\mathcal{L}}](G) = \{V - W \in RO(G) \mid V, W \text{ are } \mathcal{L}(G)\text{-free and satisfy (Dim)}\}$$

 $RO[\mathcal{W}^{\mathcal{L}}](G) = \{V - W \in RO(G) \mid V, W \text{ are } \mathcal{L}(G)\text{-free and satisfy (Dim), (Ori)}\}$ where (Dim) and (Ori) stand for the dimension condition and the orientation condition, respecively, appearing in the weak gap condition (see Section 4).

By definition,

$$2 \cdot \text{RO}[\mathcal{H}^{\mathcal{L}}](G) \subset \text{RO}[\mathcal{W}^{\mathcal{L}}](G) \subset \text{RO}[\mathcal{H}^{\mathcal{L}}](G)$$
.

If G is a gap group, then $RO[\mathcal{W}^{\mathcal{L}}](G) = RO(G)^{\mathcal{L}(G)}$.

By the Deleting-Inserting Theorem by M. Morimoto stated in [16, Appendix], we obtain the next basic theorem.

Theorem 6.1. If G is an Oliver group, then

$$\mathrm{RO}[\mathcal{W}^{\mathcal{L}}](G)_{\mathcal{P}(G)} \subset \mathrm{RO}(G, \mathfrak{pS}) \cap \mathrm{RO}(G, \mathfrak{D}_{\partial\text{-}lin}).$$

Corollary 6.2. If G is an Oliver group with $RO[\mathcal{H}^{\mathcal{L}}](G)_{\mathcal{P}(G)} \neq 0$, then $RO(G, \mathfrak{pS}) \neq 0$.

X.M. Ju applied the theorem above and obtained the next result.

Theorem (X.M. Ju). Let $X_2 = C_2 \times \cdots \times C_2$ be the n-fold cartesian product of C_2 , where $n \geq 1$. Then $G = S_5 \times X_2$ is a nongap Oliver group,

$$RO(G, \mathfrak{S}) = RO(G, \mathfrak{pS}) = RO(G)_{\mathcal{P}(G)}^{\{A_5\}}$$

and

$$\operatorname{rank}_{\mathbb{Z}} \operatorname{RO}(G)_{\mathcal{P}(G)}^{\{A_5\}} = 2^n - 1.$$

Lemma 6.3 ([7]). Let G be a finite group not of prime power order, N a normal subgroup of G, N_2 a Sylow 2-subgroup of N.

- (1) If $G/N \cong C_2$ and $V \sim_{\mathfrak{S}} W$, then $V^N = 0 = W^N$ or $\operatorname{res}_N^G V \cong_N \operatorname{res}_N^G W$.
- (2) If $G/N \cong C_p$ with p odd prime, N_2 is normal in N, and $V \sim_{\mathfrak{S}} W$ then $V^N = 0 = W^N$ or $\operatorname{res}_N^G V \cong_N \operatorname{res}_N^G W$.

Lemma 6.4 ([7]). Let G be a finite group not of prime power order and G_2 a Sylow 2-subgroup of G.

- (1) If $G/G^{\{2\}} \cong C_2 \times \cdots \times C_2$, then $RO(G, \mathfrak{S}) \subset RO(G)^{\{G^{\{2\}}\}}$.
- (2) If G_2 is normal in G and $G/G^{\{3\}} \cong C_3 \times \cdots \times C_3$, then $RO(G, \mathfrak{S}) \subset RO(G)^{\{G^{\{3\}}\}}$.

Theorem 6.5 ([12]). Let G be either SG(864, 2666) or SG(864, 4666). Then G is an Oliver group with $G/G^{nil} \cong C_3$ and

$$\mathrm{RO}(G,\mathfrak{S})=\mathrm{RO}(G,\mathfrak{pS})=\mathrm{RO}(G)_{\mathcal{P}(G)}^{\{G\}}\cong\mathbb{Z}.$$

Let G be a finite Oliver group of order ≤ 2000 . T. Sumi (2006) tried to see whether $RO(G, \mathfrak{pS}) = 0$ or not. Putting his computation together with our results, we can determine whether $RO(G, \mathfrak{pS}) = 0$ or not for G except ones in the next list:

G(m,n)	a_G	gap?	G/G^{nil}
G(864, 4663)	3	No	C_8
G(864, 4672)	5	Yes	$Q_8 imes C_3$
G(1152, 155470)	2	Yes	C_6
G(1152, 157859)	2	Yes	C_6

List 1

7. Conjectures

We have several conjectures related to the Smith Problem which are not yet proved.

Conjecture (S. E. Cappell-J. L. Shaneson). If $V \sim_{\mathfrak{S}_{CS}} W$ and the actions on V and W are pseudofree, then $V \simeq_G W$ (G-homeomorphic).

Conjecture 7.1. If G is an Oliver group with $RO(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)} \neq 0$, then $RO(G,\mathfrak{S})_{\mathcal{P}(G)}^{\mathcal{L}(G)} \neq 0$.

Let c_G denote the number of the conjugacy classes (C) of cyclic subgroup C of G such that the order of C is not of prime power order. Let Γ denote the Galois group $Gal(\mathbb{Q}(\zeta))$, where $\zeta = \exp\left(\frac{2\pi\sqrt{-1}}{|G|}\right)$

Conjecture 7.2. If G is an Oliver group with $c_G \geq 2$, then $RO(G, \mathfrak{pS})^{\Gamma} \neq 0$

Conjecture 7.3. If G is an Oliver group, then $RO(G, \mathfrak{pS}) \subset RO(G, \mathfrak{D}_{\partial\text{-lin}})$.

REFERENCES

- [1] M. F. Atiyah and R. Bott, A Lefshetz fixed point formula for elliptic complexes: II. Applications, Ann. of Math. 88 (1968), 451-491.
- [2] G. E. Bredon, Representations at fixed points of smooth actions of compact groups, Ann. of Math. (2) 89 (1969), 515-532.
- [3] S. E. Cappell and J. L. Shaneson, Representations at fixed points, Group Actions on Manifolds (Boulder, Colo., 1983), Contemp. Math., 36, Amer. Math. Soc., Providence, RI, 1985, pp. 151-158.
- [4] A. L. Edmonds and R. Lee, Fixed point sets of group actions on Euclidean space, Topology 14 (1975), 339-345.
- [5] GAP, Groups, Algorithms and Programming, a System for Computational Discrete Algebra, Release 4.3, 06 May 2002, URL: http://www.gap-system.org.
- [6] X.M. Ju, The Smith isomorphism question: A review and new results, RIMS Kokyuroku no. 1569 (2007), Res. Inst. Math. Sci., Kyoto Univ., 43-51.
- [7] A. Koto, M. Morimoto and Y. Qi, The Smith sets of finite groups with normal Sylow 2-subgroups and small nilquotients, J. Math. Kyoto Univ. 48 (2008), 219-227.
- [8] E. Laitinen and M. Morimoto, Finite groups with smooth one fixed point actions on spheres, Forum Math. 10 (1998), 479–520.
- [9] E. Laitinen and K. Pawałowski, Smith equivalence of representations for finite perfect groups, Proc. Amer. Math. Soc. 127 (1999), 297-307.
- [10] J. W. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426.
- [11] M. Morimoto, *The Burnside ring revisited*, in Current Trends in Transformation Groups, eds. A. Bak etal., pp.129–145, Kluwer Academic Publ., Dordrecht-Boston-London, 2002.
- [12] M. Morimoto, Construction of smooth actions on spheres, RIMS Kokyuroku no. 1569 (2007), Res. Inst. Math. Sci., Kyoto Univ., 52-58.
- [13] M. Morimoto, Fixed-point sets of smooth actions on spheres, J. K-Theory 1 (2008), 95-128.
- [14] M. Morimoto, Smith equivalent $Aut(A_6)$ -representations are isomorphic, Proc. Amer. Math. Soc. 136 (2008), 3683-3688.
- [15] M. Morimoto and K. Pawałowski, The equivariant bundle subtraction theorem and its applications, Fund. Math. 161 (1999), 279-303.

- [16] M. Morimoto and K. Pawalowski, Smooth actions of Oliver groups on spheres, Topology 42 (2003), 395–421.
- [17] M. Morimoto, T. Sumi and M. Yanagihara, *Finite groups possessing gap modules*, in: Geometry and Topology, Aarhus 1998, Contemp. Math. 258, Amer. Math. Soc., Providence, 2000, pp. 329–342.
- [18] B. Oliver, Fixed point sets and tangent bundles of actions on disks and Euclidean spaces, Topology 35 (1996), 583-615.
- [19] R. Oliver, Fixed point sets of groups on finite acyclic complexes, Comment. Math. Helv. 50 (1975), 155-177.
- [20] K. Pawalowski and R. Solomon, Smith equivalence and finite Oliver groups with Laitinen number 0 or 1, Algebr. Geom. Topol. 2 (2002), 843-895.
- [21] T. Petrie, Three theorems in transformation groups, Algebraic Topology (Aarhus 1978), Lecture Notes in Math., 763, Springer Verlag, Berlin-Heidelberg-New York, 1979, pp. 549–572.
- [22] T. Petrie, The equivariant J homomorphism and Smith equivalence of representations, Current Trends in Algebraic Topology (London, Ont., 1981), CMS Conf. Proc. 2, Part 2, Amer. Math. Soc., Providence, RI, 1982, pp. 223-233.
- [23] T. Petrie, Smith equivalence of representations, Math. Proc. Cambridge Philos. Soc. 94 (1983), 61-99.
- [24] T. Petrie and J. Randall, Transformation Groups on Manifolds, Marcel Dekker, Inc., New York and Basel, 1984.
- [25] T. Petrie and J. Randall, Spherical isotropy representations, Publ. Math. IHES 62 (1985), 5-40.
- [26] C. U. Sanchez, Actions of groups of odd order on compact orientable manifolds, Proc. Amer. Math. Soc. 54 (1976), 445-448.
- [27] P. A. Smith, New results and old problems in finite transformation groups, Bull. Amer. Math. Soc. 66 (1960), 401-415.
- [28] T. Sumi, Finite groups possessing Smith equivalent, nonisomorphic representations, RIMS Kokyuroku no. 1569 (2007), Res. Inst. Math. Sci., Kyoto Univ., 170–179.