<table>
<thead>
<tr>
<th>Title</th>
<th>Dynamical properties of equivariant holomorphic maps (Geometry of Transformation Groups and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ueno, Kohei</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2008), 1612: 14-20</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/140083</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Dynamical properties of equivariant holomorphic maps

Kohei Ueno

Department of Mathematics
Kyoto University
E-mail: kueno@math.kyoto-u.ac.jp

Abstract
This paper is a resume of [10]. We consider complex dynamics of a holomorphic map from P^k to P^k, which is S_{k+2}-equivariant and critically finite, for each $k \geq 1$. Here S_{k+2} is the $k+2$-th symmetric group. The Fatou set of each map of this family consists of attractive basins of superattracting points. Each map of this family satisfies Axiom A.

1 Introduction

For a finite group G acting on P^k as projective transformations, we say that a rational map f on P^k is G-equivariant if f commutes with each element of G. That is, $f \circ r = r \circ f$ for any $r \in G$, where \circ denotes the composition of maps. P. Doyle and C. McMullen [3] introduced the notion of equivariant maps on P^1 to solve quintic equations. See also [11] for equivariant maps on P^1. In the study of extending P. Doyle and C. McMullen’s result to higher dimensions, S. Crass [2] found a good family of finite groups and equivariant maps for which one may say something about global dynamics. S. Crass [2] conjectured that the Fatou set of each map of this family consists of attractive basins of superattracting points. Our results [10] give affirmative answers for the conjectures in [2].

In section 2 we shall explain an action of the symmetric group S_{k+2} on P^k and properties of our S_{k+2}-equivariant map. In section 3 and 4 we shall denote our results about the Fatou sets and hyperbolicity of our maps. We need the properties of our maps and Kobayashi metrics for the proofs.
2 \(S_{k+2}\)-equivariant maps on \(P^k\)

S. Crass [2] selected the symmetric group \(S_{k+2}\) as a finite group acting on \(P^k\) and found an \(S_{k+2}\)-equivariant map which is holomorphic and critically finite for each \(k \geq 1\). We denote by \(C = C(f)\) the critical set of \(f\) and say that \(f\) is critically finite if each irreducible component of \(C(f)\) is periodic or preperiodic. More precisely, \(S_{k+2}\)-equivariant map \(g_{k+3}\) defined in section 2.2 preserves each irreducible component of \(C(g_{k+3})\), which is a projective hyperplane. The complement of \(C(g_{k+3})\) is Kobayashi hyperbolic. Furthermore restrictions of \(g_{k+3}\) to invariant projective subspaces have the same properties as above. See section 2.3 for details.

2.1 \(S_{k+2}\) acts on \(P^k\)

An action of the \((k+2)\)-th symmetric group \(S_{k+2}\) on \(P^k\) is induced by the permutation action of \(S_{k+2}\) on \(C^{k+2}\) for each \(k \geq 1\). The transposition \((i, j)\) in \(S_{k+2}\) corresponds with the transposition "\(u_i \leftrightarrow u_j\)" on \(C^{k+2}_u\), which pointwise fixes the hyperplane \(\{u_i = u_j\} = \{u \in C^{k+2}_u \mid u_i = u_j\}\). Here \(C^{k+2}_u = C^{k+2} = \{u = (u_1, u_2, \ldots, u_{k+2}) \mid u_i \in C\ \text{for}\ i = 1, \ldots, k+2\}\).

The action of \(S_{k+2}\) preserves a hyperplane \(H\) in \(C^{k+2}_u\), which is identified with \(C^{k+1}_x\) by projection \(A : C^{k+2}_u \rightarrow C^{k+1}_x\),

\[
H = \left\{ \sum_{i=1}^{k+2} u_i = 0 \right\} \overset{A}{\cong} C^{k+1}_x \quad \text{and} \quad A = \begin{pmatrix} 1 & 0 & \ldots & 0 & -1 \\ 0 & 1 & \ldots & 0 & -1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & 1 & -1 \end{pmatrix}.
\]

Here \(C^{k+1}_x = C^{k+1}_x = \{x = (x_1, x_2, \ldots, x_{k+1}) \mid x_i \in C\ \text{for}\ i = 1, \ldots, k+1\}\).

Thus the permutation action of \(S_{k+2}\) on \(C^{k+2}_u\) induces an action of "\(S_{k+2}\)" on \(C^{k+1}_x\). Here "\(S_{k+2}\)" is generated by the permutation action \(S_{k+1}\) on \(C^{k+1}_x\) and a \((k+1, k+1)\)-matrix \(T\) which corresponds to the transposition \((1, k+2)\) in \(S_{k+2}\),

\[
T = \begin{pmatrix} -1 & 0 & \ldots & 0 \\ -1 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & 0 \\ -1 & 0 & \ldots & 1 \end{pmatrix}.
\]

Hence the hyperplane \(\{u_i = u_j\}\) corresponds to \(\{x_i = x_j\}\) for \(1 \leq i < j \leq k+1\). The hyperplane \(\{u_i = u_{k+2}\}\) corresponds to \(\{x_i = 0\}\) for \(1 \leq i \leq k+1\). Each element in "\(S_{k+2}\)" which corresponds to some transposition in \(S_{k+2}\) pointwise fixes one of these hyperplanes in \(C^{k+1}_x\).
The action of "S_{k+2}" on \mathbb{C}^{k+1} projects naturally to the action of "S_{k+2}" on \mathbb{P}^k. These hyperplanes on \mathbb{C}^{k+1} projects naturally to projective hyperplanes on \mathbb{P}^k. Here $\mathbb{P}^k = \{ x = [x_1 : x_2 : \cdots : x_{k+1}] \mid (x_1, x_2, \cdots, x_{k+1}) \in \mathbb{C}^{k+1} \setminus \{0\} \}. Each element in the action of "S_{k+2}" on \mathbb{P}^k which corresponds to some transposition in S_{k+2} pointwise fixes one of these projective hyperplanes. We denote "S_{k+2}" also by S_{k+2} and call these projective hyperplanes transposition hyperplanes.

2.2 Existence of our maps

One way to get S_{k+2}-equivariant maps on \mathbb{P}^k which are critically finite is to make S_{k+2}-equivariant maps whose critical sets coincide with the union of the transposition hyperplanes.

Theorem 1 ([2]). For each $k \geq 1$, g_{k+3} defined below is the unique S_{k+2}-equivariant holomorphic map of degree $k + 3$ which is doubly critical on each transposition hyperplane.

$$g = g_{k+3} = [g_{k+3,1} : g_{k+3,2} : \cdots : g_{k+3,k+1}] : \mathbb{P}^k \rightarrow \mathbb{P}^k,$$

where $g_{k+3,i}(x) = x_i^3 \sum_{s=0}^{k} (-1)^s \frac{s+1}{s+3} x_i^s A_{k-s}$, $A_0 = 1$,

and A_{k-s} is the elementary symmetric function of degree $k-s$ in \mathbb{C}^{k+1}.

Then the critical set of g coincides with the union of the transposition hyperplanes. Since g is S_{k+2}-equivariant and each transposition hyperplane is pointwise fixed by some element in S_{k+2}, g preserves each transposition hyperplane. In particular g is critically finite. Although Crass [2] used this explicit formula to prove Theorem 1, we shall only use properties of the S_{k+2}-equivariant maps described below.

2.3 Properties of our maps

Let us look at properties of the S_{k+2}-equivariant map g on \mathbb{P}^k for a fixed k, which is proved in [2] and shall be used to prove our results. Let L^{k-1} denote one of the transposition hyperplanes, which is isomorphic to \mathbb{P}^{k-1}. Let L^m denote one of the intersections of $(k-m)$ or more distinct transposition hyperplanes which is isomorphic to \mathbb{P}^m for $m = 0, 1, \cdots, k-1$.

First, let us look at properties of g itself. The critical set of g consists of the union of the transposition hyperplanes. By S_{k+2}-equivariance, g preserves each transposition hyperplane. Furthermore the complement of the critical set of g is Kobayashi hyperbolic.
Next, let us look at properties of g restricted to L^m for $m = 1, 2, \cdots, k - 1$. Let us fix any m. Since g preserves each L^m, we can also consider the dynamics of g restricted to any L^m. Each restricted map has the same properties as above. Let us fix any L^m and denote by $g\big|_{L^m}$ the restricted map of g to the L^m. The critical set of $g\big|_{L^m}$ consists of the union of intersections of the L^m and another L^{k-1} which does not include the L^m. We denote it by L^{m-1}, which is an irreducible component of the critical set of $g\big|_{L^m}$. By S_{k+2}-equivariance, $g\big|_{L^m}$ preserves each irreducible component of the critical set of $g\big|_{L^m}$. Furthermore the complement of the critical set of $g\big|_{L^m}$ in L^m is Kobayashi hyperbolic.

Finally, let us look at a property of superattracting fixed points of g. The set of superattracting points, where the derivative of g vanishes for all directions, coincides with the set of L^0's.

Remark 1. For every $k \geq 1$ and every m, $1 \leq m \leq k$, a restricted map of g_{k+3} to any L^m is not conjugate to g_{m+3}.

3 The Fatou sets of the S_{k+2}-equivariant maps

Let us recall theorems about critically finite holomorphic maps. Let f be a holomorphic map from \mathbf{P}^k to \mathbf{P}^k. The Fatou set of f is defined to be the maximal open subset where the iterates $\{f^n\}_{n \geq 0}$ is a normal family. The Julia set of f is defined to be the complement of the Fatou set of f. Each connected component of the Fatou set is called a Fatou component. Let U be a Fatou component of f. A holomorphic map h is said to be a limit map on U if there is a subsequence $\{f^n\}_{s \geq 0}$ which locally converges to h on U. We say that a point q is a Fatou limit point if there is a limit map h on a Fatou component U such that $q \in h(U)$. The set of all Fatou limit points is called the Fatou limit set. We define the ω-limit set $E(f)$ of the critical points by

$$E(f) = \bigcap_{j=1}^{\infty} \bigcup_{n=j}^{\infty} f^n(C).$$

Theorem 2. ([9, Proposition 5.1]) If f is a critically finite holomorphic map from \mathbf{P}^k to \mathbf{P}^k, then the Fatou limit set is contained in the ω-limit set $E(f)$.

Let us recall the notion of Kobayashi metrics. Let M be a complex manifold and $K_M(x, v)$ the Kobayashi quasimetric on M,

$$\inf \left\{ |a| : \varphi : D \to M : \text{holomorphic}, \varphi(0) = x, D\varphi \left(a \left(\frac{\partial}{\partial z} \right) \right) = v, a \in \mathbb{C} \right\}$$
for $x \in M$, $v \in T_x M$, $z \in D$, where D is the unit disk in C. We say that M is Kobayashi hyperbolic if K_M becomes a metric.

Let us recall theorems about dynamics of critically finite holomorphic maps in low dimensions. Theorem 5 is a corollary of Theorem 3 and Theorem 4 for $k = 1$ and 2.

Theorem 3. ([7, Corollary 14.5]) If f is a critically finite holomorphic map from P^1 to P^1, then the only Fatou components of f are attractive components of superattracting points. Moreover if the Fatou set is not empty, then the Fatou set has full measure in P^1.

Theorem 4. ([4, Theorem 7.7]) If f is a critically finite holomorphic map from P^2 to P^2 and the complement of $C(f)$ is Kobayashi hyperbolic, then the only Fatou components of f are attractive components of superattracting points.

We get our first result by using Theorem 2, Kobayashi metrics and the properties of our maps.

Theorem 5. For each $k \geq 1$, the Fatou set of the S_{k+2}-equivariant map g consists of attractive basins of superattracting fixed points which are intersections of k or more distinct transposition hyperplanes.

4 The S_{k+2}-equivariant maps satisfy Axiom A

Let us define hyperbolicity of non-invertible maps and the notion of Axiom A. See [5] for details. Let f be a holomorphic map from P^k to P^k and K a compact subset such that $f(K) = K$. Let \hat{K} be the set of histories in K and \hat{f} the induced homeomorphism on \hat{K}. We say that f is hyperbolic on K if there exists a continuous decomposition $T_{\hat{K}} = E^u + E^s$ of the tangent bundle such that $D\hat{f}(E^{u/s}_{\hat{x}}) \subset E^{u/s}_{\hat{f}(\hat{x})}$ and if there exists constants $c > 0$ and $\lambda > 1$ such that for every $n \geq 1$,

$$|D\hat{f}^n(v)| \geq c\lambda^n |v| \text{ for all } v \in E^u$$

and

$$|D\hat{f}^n(v)| \leq c^{-1}\lambda^{-n} |v| \text{ for all } v \in E^s.$$

Here $|\cdot|$ denotes the Fubini-Study metric on P^k. If a decomposition and inequalities above hold for f and K, then it also holds for \hat{f} and \hat{K}. In particular we say that f is expanding on K if f is hyperbolic on K with unstable dimension k. Let Ω be the non-wandering set of f, i.e., the set of points for any neighborhood U of which there exists an integer n such that
$f''(U)$ intersects with U. By definition, Ω is compact and $f(\Omega) = \Omega$. We say that f satisfies Axiom A if f is hyperbolic on Ω and periodic points are dense in Ω.

Let us introduce a theorem which deals with repelling part of dynamics. Let f be a holomorphic map from P^k to P^k. We define the k-th Julia set J_k of f to be the support of the measure with maximal entropy, in which repelling periodic points are dense. It is a fundamental fact that in dimension 1 the 1st Julia set J_1 coincides with the Julia set J. Let K be a compact subset such that $f(K) = K$. We say that K is a repeller if f is expanding on K.

Theorem 6. ([6]) Let f be a holomorphic map on P^k of degree at least 2 such that the ω-limit set $E(f)$ is pluripolar. Then any repeller for f is contained in J_k. In particular,

$$J_k = \{\text{repelling periodic points of } f\}$$

If f is critically finite, then $E(f)$ is pluripolar. Hence our maps satisfies the condition in the theorem above.

We get our second result by using Theorem 3, Kobayashi metrics and the properties of our maps.

Theorem 7. For each $k \geq 1$, the S_{k+2}-equivariant map g satisfies Axiom A.

Since g satisfies Axiom A, [1, Theorem 4.11] and [8] induces the following corollary.

Corollary 1. The Fatou set of the S_{k+2}-equivariant map g has full measure in P^k for each $k \geq 1$.

Acknowledgments. I would like to thank Professor S. Ushiki and Doctor K. Maegawa for their useful advice. Particularly in order to obtain our second result, K. Maegawa's suggestion to use Theorem 6 was helpful.

References

