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COMPUTING DOMINANT POLES OF TRANSFER FUNCTIONS
GERARD L.G. SLEIJPEN* AND JOOST ROMMES'

Abstract. The transfer function describes the response of a dynamical system to periodic inputs. Dominant
poles are specific eigenvalues of the state space matrix that corresponds to the dynamical system. The number of
these type of eigenvalues is often small as compared to the number of state variables (the dimension of the state
space matrix). The dominant behaviour of the dynamical system can be captured by projecting the state-space
onto the subspace spanned by the eigenvectors corresponding to dominant poles.

In this paper, we discuss numerical methods for computing these poles and corresponding cigenvectors.

Keywords: Transfer function, dominant pole, dynamical system, eigenvectors, Rayleigh quotient iteration,
Jacobi-Davidson.

AMS(MOS) subject classification: 65F15, 65N25.

1. Introduction. We are interested in methods for evaluating the transfer function
(1.1) H(w) = c*(27iwE — A)~'b (w € R),

where A and E are given real N x N matrices and b and c are given real N-vectors. De
function H plays an important role in the analysis of the dynamical behavior of constructions
(linear systems) as buildings, airplanes, electrical circuits (chips), and of phenomena as tidal
movements in oceans and bays, etc. (see §2.1).

In practice, the problem of computing H is a computational challenge. The dimension is
often high (IV is large), the matrices A and E are often sparse, but they can be unstructured.
Although function values H(w) can be obtained by solving linear systems, this approach is
usually not fruitful: the function values have to be computed for a wide range of w (say,
between 0 and 10%), and a preconditioner that is effective for 2miwE — A for one value of w will
not work for another value.

In this paper, we will approximate the system (A,E,b,c) by a (much) smaller one by
projection onto spaces of eigenvectors associated to specific eigenvalues of the pencil (A, E), to
the so-called dominant poles. The number of dominant poles is usually much smaller than N
(see §2.5) and, therefore, this modal approach can be very effective.

We discuss numerical methods as the dominant pole algorithm (DPA [15], see §3.1) and
Rayleigh quotient iteration (RQI [19, 20], see §3.3) for computing these poles and corresponding
eigenvectors. Although DPA, is based on an old variant of inverse iteration (18], we argue that
it has more attractive convergence properties for finding dominant poles than the celebrated
RQI (see §3.5). RQI as well as DPA iterates on single vectors. To accelerate convergence,
extensions of these methods that built search subspace, lead to variants of the Jacobi-Davidson
[28] method in §5. _ N

The fact that a Krylov subspace generated by a matrix A and a vector b equals the Krylov
subspace generated by I —2mi(wp —w)A and b suggests that (unpreconditioned) Krylov solvers
that work well for one value of w might also be effective for other values of w (see §6 for more
details). Moment-matching techniques (see, e.g., [11, 1]) are based on this observation. These
techniques tend to produce approximations that are highly accurate in the neighborhood of
wp. Variants as the rational Krylov sequence (RKS, [25]) method are efficient and allow good
approximations around other values of w as well. These approximations tend to be accurate
on the “smooth” part of H, whereas the modal approach is highly accurately around those
values of w, where H has ‘peaks’. In §6, we will see that combining both approaches improves
accuracy and efficiency.

This paper summarizes the first half of [22].

In this paper, we use the Euclidean norm denoted by || - ||.

2. Transfer functions and dominant poles.

*Mathematical Institute, Utrecht University, P.O. Box 80010, 3508 TA Utrccht, the Netherlands, e-mail:
sleijpen@math.uu.nl

tNXP Semiconductors Corporate I&T / Design Technology & Flows, PostBox WY4-01, NL-5656 AE Eind-
hoven, The Nectherlands, e-mail: joost.rommes@nxp.com



112

2.1. Linear, time invariant, dynamical systems. Linear, time invariant, dynamical
system can often be modelled as (see, e.g., [5]) '

(2.1) E x(t) = Ax(t)+bu(t)
y(t) = c*x(t) +du(t).

Here, A and E are N x N matrices, b, ¢ and d are matrices of size N x m, N x p, and p x m,
respectively, u, x and y are functions of t € R, with values in R™, RY, R?, respectively. The
matrix E may be non-singular, but we will assume that (A,E) is a regular pencil, that is,
s ~ det(sE — A) is non trivial on C. The system (A, E,b,c,d) is given. The control function
u determines the state vector x and, the function of interest, the output y of the system. A is
the state matriz, N is the number of states or order of the system, b is the input map of the
system, and c is the output map.

In this paper, we restrict our discussion to the case where m = p = 1, & SISO (single input
single output) system. In practice, however, one usually has to deal with MIMO (multiple
input multiple output) systems (m > 1, p > 1) (cf., e.g., [23]). Moreover, the systems are often
non-linear. Then, the linear systems arise by linearization (in a Newton process). The number
of states is large (in the range of 10% — 10%), the matrices A and E are sparse and (often)
unstructured.

In this paper, bold face letters refer to high dimensional quantities.

Dynamical systems play an important role in, for instance, the stability analysis of technical
constructions as airplanes, buildings, bridges, etc.. The behavior of such contructions can
be modelled by a set of partial differential equations using laws from structural mechanics.
Discretization of the spatial part leads to high dimensional ordinary differential equations as
in the first equation of (2.1). Motions of the contructions can be induced by dynamical forces
acting on certain points. These action are modelled by the term bu(t). The second equation
of (2.1) models the response at certain (other) points of the contruction.

For instance, a building can shake in an earthquake. The earthquake applies a (periodic) force
at the foundations of the building. The resulting swing at the toplevel may be of interest.
To guarantee that the building survives earthquakes, the swing at, for instance, the top level
should be small. To achieve this, the design of the building may have to be adapted, which
means that (2.1) has to be solved for a different system. Of course, design and computations
have to be performed before the actual construction of the building.

In electrical circuit simulations, the matrices A and E incorporate the incidence matrix of the
directed graph that describes the circuit. The values of the electrical components (as resistors,
capacitors, ...) determine the value of matrix coefficients. These matrices are unstructured
and the values of (neighboring) matrix coefficients may vary orders of magnitude.

2.2. Transfer functions. To analyze system (2.1), apply a control function u of the
form u(t) = exp(st) (t € R) for some s € C, that is, apply a Laplace transform. Then
x(t) = (sE — A)~1bexp(st) and y(t) = [c*(sE — A)~'b + d] exp(st).

The function

(2.2) H(s)=c*(sE-A)"'b+d (s )

is the transfer functign of the system (2.1). The transfer function describes to response of the
system at the output to a (damped) periodic force at the input. The response to harmonic
oscillations, i.e., s = 2miw with frequency w in R, is of particular interest.

Since the computational complexity is not affected by d, we further assume that d = 0.

2.3. Model order reduction. Note that, in principle, H can be computed by only solving
linear systems. Nevertheless, computing the transfer function is often very hard. In practice,
N is large, H is needed for a wide range of w (in R, s = 2wiw), preconditioners are hard to
include (a preconditioner for A is not a preconditioner for sE — A for s # 0), and, specifically
in a design stage, (or in case the system is non-linear) solutions are required for a number of
(slightly different) systems. s

For these reasons, reduced model are constructed, that is, kth order systems ( A E,b, ¢) with
k <« N for which (cf., [2])



e for all u, the error [y(t) — y(¢)|| is ‘small’ in some norm (as the 2-norm, Hankel-
norm,...);!
physical and numerical properties (as, stability, passivity,...) are preserved;
the reduced system can be efficiently and stably computed;
e the error can be efficiently measured when constructing a reduced system.

In practice, there are other restrictions as well. System (2.1) may have a certain (block)
structure. For instance, if the first order differential equation in (2.1) stems from a second order
one. Then x has a block of first order derivative terms. It may be convenient to preserve this
(block) structure (cf., [3]). Designers would like to see reduced models that are realizable. In,
for instance, electrical circuit design, they would like to see reduced models that can be build
as an electrical circuit. Also reduced models require computational efforts. Therefore, it would
be helpful if these smaller models also would ‘fit’ in existing simulation software.

2.4. Approaches for model order reduction. Transfer functions can be expressed in
terms of eigenvalues and eigenvectors as we will see in §2.5 below. Approaches for constructing
reduced models correspond to approaches for computing eigenvalues and eigenvectors. Three
main classes of approaches can be distinguished.

1) Methods based on balanced truncation {16] and Hankel norm approximation [9]. They
form the analogue of the QR and QZ methods for computing eigenvalues.

2) Padé approximation and moment-matching techniques [10]. They are usually based on
Krylov subspace techniques as (shift-and-invert) bi-Lanczos and Arnoldi (see §6.1). There are
block versions, two sided versions and versions based on rational Krylov sequence [25].

3) Modal approximations [7], where, as we will see in §2.5, the reduced model is based on
dominant poles. Such approaches correspond to Jacobi-Davidson type of methods for comput-
ing a few eigenvalues and eigenvectors.

In the second and third type of approach, matrices Vi and Wj, of size n x k are computed,
and the reduced model arises by projection:

(2:3) A=WrAV,, E=WEV,, b=Wb, &= Vjc.

In bi-Lanczos and Arnoldi, the columns of Vi form a basis of the Krylov subspace Ki((soE —
A)71E, (soE — A)~1b) for some s¢ € C. In the modal approaches, the columns of Vi and W,
span appropriate right and left, respectively, eigenvectors of the pair (A, E).

In this paper, we mainly concentrate on the modal approach.

2.5. Dominant poles. Before we explain how dominant poles play an important role in
our approach, we first define a pole and introduce the concept of dominance.

A )€ Cis a pole of H if lim,_,» [H(u)| = oo.

Poles are eigenvalues of the pencil (A, E): non-zero v; and w; are right and left, respectively,
eigenvectors with eigenvalue \; if

(2.4) Av; =X Ev; and w;A =\w'E.

We assume that (A, E) is nondefective. In each right eigenspace corresponding to one eigen-
value, we select the one eigenvector that determines the component of b in that space. Similarly,
for ¢ and left eigenvectors. To be more precise, we select the eigentriples (v, w;, \;) such that

Ai# Ay (L),

n n
b= GEVi+feAVes, €= D HE Wi + Yoo A*Weo,

i=1 i=1

with voo and W in the kernel of E and E*, respectively. In addition, we assume the eigenvectors
to be scaled such that wiEv; = 1 if w!Ev; # 0. Now, note that [13],

n
(2.5) B =3 B s R, where Ry = (*vo)(wib) = Tfh

1'We apologize for using terms as ‘Hankel norm’, ‘stability’ and ‘passivity’ that have not been defined. These
term do not play an essential role in this paper.
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F1G. 2.1: The left figure show that Bode plot of the New Engeland test system [15] (solid line) together

with the approzimation (dashed line) from the modal approach using the 11 most dominant poles out of 66
eigenvalues (N = 66).
The right figure shows part of the complex plane with part of the spectrum (dominant poles are marked with »),
together with a grid of location for the initial shifts so in the complez plane for which DPA (marked with o)
and for which RQI (marked with x) converge to the most dominant pole A = —0.476 + 8.96i. Initial shifts sg
on the displayed grid without marker lead to convergence to less dominant poles.

The R; are called residues. Note that R; = 0 if w;Ev; = 0.

The ‘contribution’ of the pole X; to the transfer function is determined by the size |R;| of
the corresponding residue and the distance |Re(;)] if the pole to the imaginary axis: the pole
A; is said to be dominant if the scaled size Hil%?ﬂ of the correpsonding residue is large.

Dominant poles determine high peaks in the so-called Bode plot, that is, in the graph of
w ~ |H(2miw)| (w € R). For an example, see the left panel of Fig. 2.1, where this graph is
plotted on decibel scale. The value |H(27iw)]| is the gain of the system at frequency w.

In the modal approach, the model is reduced by projecting onto the space spanned by
eigenvectors corresponding to the poles that are most dominant, b onto right eigenvector and
c onto corresponding left eigenvectors. Note that, our scaling implies that E = I (see (2.3) and
use that wiEv; = 0 if A; # A;).

The success of the modal approach comes from the fact that, in practice, the number of
dominant poles is usually much smaller than the number of poles (which is smaller than number
n of relevant eigenvalues, while n < N).

3. Algorithms and convergence. Dominance of poles has been defined (see §2.5) in a
relative and a subjective sense (’large’), relative with respect to the distance from the imaginary
axis. For mathematical reasons, however, we will in this section assume dominance in an
absolute sense [12]: X; is dominant if |R;| > |R;| for all j # <.

3.1. Dominant pole algorithm. The (generalized two-sided) Rayleigh quotient [19, 20]
y*Ax
y*Ex

p(x,y) = p(AE,x,y) = (provided y"Ex # 0),
will play an important role in the algorithms. Note that y*Ex can be 0 even if E is non-singular.
If y = x, we put p(x): p(x) = p(x, x).
Since poles are zeros of the function s ~~ 1/H(s), Newton’s process can be applied:

o c*(skE—-A)"'b
T+l = Sk T (5B — A)—TE(syE — A)-1b’

With x; = (s4)E — A)"!b and y* = c*(sxE — A)™1, sx41 can be expressed as a Rayleigh
quotient: 8x4+1 = p(Xk,¥k). This leads to the algorithm (cf. {15]) represented in the left panel
of Alg. 3.1, where the indices have been suppressed to indicate that new values can replace old
ones (indicated by the same letter). The algorithm is represented in its simplest form: stopping



Select sg € C and tol > 0. Select sp € C and tol > 0.
Set v=1,s5 =3 Set v=1, 5 =39
x=(sE~A)'b,y =(sE - A)"*c
‘While v > tol repeat While v > tol repeat ,
b=Ex/|lx|l, <€=Ey/|y|
Solve (sE — A)x = b for x Solve (sE — A)x = b for x
Solve ‘(sE —A)'y=cfory Solve (SE — A)*y =¢ for y
v = ||Ax — sEx|| v = ||Ax — sEx||
end while end while

Alg. 3.1: The left panel represents the dominant pole algorithm, while the right panel represents Rayleigh

quotient iteration. An approzimate eigentriple is formed by (x,y,s). v is the residual of the approzimate right
eigenvector. '

criteria that are more sophisticated (and more appropriate) than ‘v; = ||Axg —sp+1Exi|| < tol’
can be exploited as well.

We refer to this algorithm as the dominant pole algorithm (DPA), since, as we will argue
below, this algorithm tends to find dominant poles first.

The algorithm is applicable in practice if it is feasible to form the LU-decomposition of
sE — A. We will come back to this restriction in §5.5.

3.2. Convergence. DPA represents a Newton process. Therefore, the sequence (sx) will
converge quadratically to an eigenvalue A provided that the initial value sg is sufficiently close
to A. The xx and yj, form approximate eigenvectors and they converge quadratically as well:

THEOREM 3.1 ([24], Th. 4.2). If (v,w,]) is an eigentriple and DPA has been applied to
produce (X, Yk, Sk+1), then

lim ¢y =v & limyr=w < lim spx= A\
k—o0 ko0 k—o0
Convergence implies gquadratic convergence: for some x > 0, we have

v = xer1ll S kv = xkll |lWw—yill  and ||w —yrta1ll < s llv — xill lw — yell

3.3. Rayleigh quotient iteration. DPA uses the best available eigenvector approxima-
tions to update the approximate eigenvalue: sg41 = p(xk,¥k). The approximate eigenvec-
tors can also be exploited in the computation of the new approximate eigenvectors: x; =
(skE — A)"1Ex4_1, and yf = y}_,E(skE — A)~!. This leads to the celebrated (two-sided)
Rayleigh quotient iteration (RQI [19, 20], see the right panel of Alg. 3.1) for which faster con-
vergence is to be expected: of RQI it is known that convergence implies cubic convergence [20,
p.689].

3.4. Initiation. Both methods, DPA as well as RQI, require initiation. The selection
so = p(b,c) in DPA may seem reasonable. It corresponds to a choice of xg = b and yo = ¢
in RQIL In the symmetric case, where A* = A, E = I and ¢ = b, this choice works well.
Unfortunately, in the general case, c*Eb can be zero (or very small), and, in practice, we
observed that it often is. Then p(b,c) is not defind (or very large). Therefore, we select an sq
and we proceed as indicated in the algorithms in Alg. 3.1.

3.5. Convergence regions. Both methods, DPA and RQI, converge fast (if they con-
verge). However, we are not just interested in (quickly) finding eigentriples. We want the
dominant ones, that is, the dominant poles with associated eigenvectors. Since, local conver-
gence is guaranteed, both algorithms are able to detect these, but detection depends on how
close the initial sq is to the wanted dominant poles. The question is what is ‘close’? The con-
vergence region of a pole ) and a method is the collection of s in C for which the sequence (sx)
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F1G. 3.1: The figures show convergence regions for DPA and RQI for two ezamples (Ez. 3.2). The most
dominant pole in the displayed part of the complez plain is at A = —20.5 & 1.1% in the left panel and at
A= —0.14 £ 5.41 in the right panel. For a description of the symbols used in the figures, see Fig. 2.1.

produced by the method converges towards A. Experiments (as in the right panel of Fig. 2.1
and in the examples below) indicate that the region of convergence of the dominant poles is
much larger for DPA than for RQIL. This advantage compensates for a slightly slower conver-
gence (recall that both methods locally converge fast and it is not clear in advance whether
in practice there is any advantage associated to cubic convergence over quadratic convergence.
We observed that RQI typically needed only 10%-20% less iteration steps than DPA).

Fig. 3.1 displays the results for following two examples (see [24]).

ExXAMPLE 3.2. a. The left panel displays the convergence regions for the “Brazilian In-

terconnect Power System” [21]. The order of this test model is n = 13,251. The matrix E
is singular, b and ¢ only have one nonzero entry and c*Eb = 0. The most dominant poles
appear in complex conjugate pairs. From the figure, we learn that for many initial shifts DPA
converges to the most dominant pole, where RQI does not, while for a small number of initial
shifts, RQI converges to the most dominant pole where DPA does not.
b. The second test model, with results displayed in the right panel, is the PEEC system [6],
a well-known benchmark system for model order reduction. One of the difficulties with this
system of order n = 480 is that it has many equally dominant poles that lie close to each other
in a relatively small part [—1,0] x [—10,10]¢ in the complex plane. Although the difference is
less prononced than the previous example, DPA converges to the most dominant pole in more
cases than RQI.

The examples show that the convergence region of the dominant pole for DPA is much larger
than for RQI. For an heuristic explanation, recall that dominance of a pole A; is determined
by the size of the associated residue R; = (c¢*v;)(w;b), which depends on both b and c. DPA
uses information from b and c in each step (recall that x; = (sxE — A)~'b, ...), whereas b
and c enter the RQI process in the initiation phase only. RQI converges fast, but it tends to
converge towards the eigenvalue closest to s¢ rather than to the one for which |c*v;| and |w;b|
are large.

In the next subsection, we will see that, for the symmetric case, there are mathematical
arguments that underline this explanation.

3.6. Convergence in the symmetric case. In this subsection, we assume that A* = A,
E =1, and ¢ = b, and will concentrate on the eigenpair (v,): Av = Av.

The gap v = min{|A; — A | A; # A} between X and the other eigenvalues X; of A will play
a role and ¢ = |tan £(v,b)|, which expresses the angle between the eigenvector v and b. The
initial sg is selected in R.

If (xx) is a sequence of approximate eigenvector, then, for k > 0, we put

xEAx Sk — A
kTR ap= —l—i——-—l— Cry1 = tan Z(v,Xg).

Sk+1 = x;Xk ’ - |3k, — AI,



THEOREM 3.3 ([24], Th.4.3-5). a. If (A — syI)xz = b (DPA), then

1
g < Qppa = z implies that s — A and ag1¢? < (p¢?)? < 1.

b. If x_1 = b and (A — s;xI)x; = x,_1 (RQI), then

ap < Qneg = % implies that sx — X and
k1 < (0kr)?,  Cort € ol arp1lrer < (onle)® < 1.

The last estimate in Th.3.3.b expresses cubic convergence. Note that this estimate is the
product of the two preceding ones. The estimate in Th.3.3.a expresses quadratic convergence.

The theorem is of interest for two reasons. The use of a scaled error a4 in the eigenvalue
approximation leads to the elegant estimates of Th.3.3, and the estimates are sharp (for any
symmetric matrix A, there is a vector b such that for any sy between A and A, (s;) converges
to A only if the condition in the theorem is satisfied. Here, ¢ is such that v = |A — A;,|.) and
sharper than previous results in literature: for instance, for DPA, see [18], and for RQI, see [4].

Note that ¢ < 1 implies that X\ is dominant, because the residue associated with A is
[v*b|? > 1|b||2, whence the residues for the other eigenvalues are < $Ibl%. Moreover, if
¢ < 1, then 1/¢ < 1/¢? and the theorem tells us that the convergence region for the dominant
eigenvalue A is larger for DPA than for RQI.

4. Deflation. For the modal approach, eigentriples with poles that are most dominant
are required. Suppose one (dominant) eigentriple (v, w, A) has been detected. Then, one can
select a new initial shift sp, hoping that this leads to another (dominant) eigentriple. But it is
not unlikely that the same eigentriple will be detected. A more reliable strategy for avoiding
this situation is deflation, where the detected eigentriple is removed from the process of finding
dominant eigentriples.

DPA allows efficient dellation as follows (see, [21, Th.3.1])

THEOREM 4.1. With b= (I-Evw*)b and € =c*(I - vw*E), we have that
H(s)=¢"(sE— A)"'b

has the same poles and residues as H(s) = c*(sE — A)~'b, except for the residue associated
with A which is transformed to 0. -

Since the ‘new’ residue is zero, A is not dominant for the system (A, E, b, <€), while for all
other poles the residues are unchanged. In particular, DPA can be applied to this ‘deflated’
system to detect the eigentriple that is next in dominance. Of course, this deflation strategy
can be repeated to find the third dominant eigentriple, etc..

This deflation is cheap: it has to be applied to two vectors only, to b and ¢ for finding the
second eigentriple, to b and € for finding the third triple, etc..

Theoretically, the same deflation strategy can be applied in combination with RQI (and to
other methods, as Jacobi-Davidson, for computing eigentriples). Unfortunately, in practice, due
to rounding errors, this efficient strategy will not prevent RQI from finding the same eigentriple.
To see this, recall that the inverse power method

Xp = %k/|Rkl,  Kes1 = (0B — A)T'Exy

is likely to convergence to the eigentriple (v;,w;, A;) with X; such that 1/(so — A;) is the
absolute largest eigenvalue of (soE — A)~E. When v; is deflated from an initial guess xo (by
multiplication by I — vjw;-‘E),2 then the next iterate x; will have a component in the direction
of v; due to rounding errors. Though the component will be small, it will be amplified in the
next iterations and will eventually lead to the same eigentriple (v;, w;, A;): the inverse power
method blows up small unwanted components. To prevent this from happening, the deflation

2Note that, for Exg, this is equivalent to multiplying Exo by I-Ev; wi, which is the projection that deflates
b in Th. 4.1. .
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(multiplication by I — v;w>E) has to be performed to each of the iterates x), which makes
the deflation relatively expensive. A similar remark applies to RQI. Such an amplification of
unwanted small components does not play a role in DPA, because the vector to which the
inversion is applied to is the same deflated vector b in each step.

5. Acceleration. Subspace acceleration is very effective for solving linear systems (com-
pare Richardson iteration and GMRES) and for eigenvalue computation (compare the power
method and Arnoldi). Similar improvements are to be expected in the computation of dominant
eigentriples [21]. The acceleration is an iterative process that, in each step, requires expansion
of the search subspace (see §§5.1-5.2) and extraction of the approximate eigentriple from the
search subspace (see §5.1). When the search subspace becomes too large (too high dimensional),
some restart strategy is needed (cf. §5.4).

5.1. Subspace acceleration. Suppose X is an N x k matrix of which the columns span a
search subspace for right eigenvectors. For computational convenience, suppose X is orthonor-
mal.

Ezpansion. To expand X,

Solve (sxE — A)x =b for x.
(5.1) Orthonormalize x against X to X.
Expand X : X ~ [X,X]

Similarly, expand the matrix N x k matrix Y that spans the search subspace of left eigenvectors.
The Gram-Schmidt process x — XX *x orthogonalizes x against X. Then, normalization leads
to X, and we have orthonormalized x against X to X. In practice, a more stable variant (as
repeated Gram-Schmidt) will be required.

Extraction [21]. The approximate eigentriple (X, Y&, Sk+1) is computed from the ‘best’ eigen-
triple (v,w, 8kx+1) from the projected system (Y*AX,Y*EX,Y*b,X*c). Here, ‘best’ is the
cigentriple with absolute largest residue (c*v)(w*b), where ¢ = X*c and b = Y*b. Then,
x, = Xv and yx = Yw.

Note that the expansion only requires the updated sk41. Nevertheless, having the approx-
imate eigenvectors is useful too. They can be exploited in the stopping criterion. Obviously,
they are needed when the approximations are sufficiently accurate.

The suggested extraction strategy, is taylored to finding dominant poles. The expansion
strategy is the standard one for computing eigentriples.

5.2. Orthogonalization or bi-E-orthogonalization. As an alternative to the orthonor-
malization as suggested in (5.1), the expansion vectors x and y can also be ‘bi-E-orthogonalized’:
X =(I-XY*E)x and §* = y*(I - EXY"*). The resulting vectors can be scaled to X and ¥
such that ¥"EX = 1. If this strategy has been applied for obtaining all column vectors of X
and Y, then YEX = 1.

This approach fits the fact that W*EV =1 (see §2.5), where V and W is the matrix with
columns v; and wj, respectively. Another advantage is that the projected system (see (2.3))
reduces to a standard eigenvalue problem.

Unfortunately, the scaling may fail if y*Ex = 0, or may be less stable if y*Ex is small.
Moreover, the inclusion of E in the bi-orthogonalization makes the approach more costly.

5.3. Why subspace acceleration. The single vector iteration (DPA algorithm 3.1) offers
only one choice for an approximate pole: 8gy1 = p(x,y). Searching a subspace offers more
possibilities for finding better approximations of the dominant pole: we select the eigenvalue
- with absolute largest projected residue (c*v)(w*b). Note that, since x and y are in the span
of the expanded X and Y, respectively, the ‘DPA residue’ (c*x)(y*b)/(lix|| ly|}) is in absolute
value less than or equal to the selected ‘best’ residue. Therefore, we can state that acceleration
leads to faster convergence and offers more control on the convergence: it enlarges the region
of convergence of the dominant pole.

In addition, a better start is available after deflation, that is, after detection of one (domi-
nant) eigentriple, we already have a space that will contain (good) approximations for the next
(dominant) eigentriple. Note that it may be helpful to deflate the detected eigentriple not only



from b and c (as explained in §4) but also from X and Y. When combined with a restart
strategy (see §5.4), these matrices have a few columns only, and deflation is not costly.

These three advantages (faster convergence, better control, better restart) compensate for
the more expensive steps.

Block versions of DPA also employ subspaces (see [14]), but they miss the advantages
mentioned above [21].

5.4. Thick restart. When the subspaces, that is, the X and Y, are expanded in each
step, the memory requirements grow and the steps become computationally and increasingly
more expensive. Therefore, a restart may become desirable, that is, a maximum acceptable
dimension k.., has to be selected and the search subspaces have to be reduced when they reach
a dimension k larger than k......

We suggest the following restart strategy.

Select a k.. Consider the projected kth order system

(5.2) (Y*AX,Y*EX,b,c) with b=7Y"b, c= X*c.

If £ > k.ux, then
e find the eigentriples (v;, w;, p;) of (5.2)
e compute the associated residues (c*v;)(w;b)
e order the eigentriples such that the absolute value of the residues decrease
e continue with X «— X[vy,..., vk}, Y « Y[ws,..., Weyil-

A thick restart [8, 29] with k., > 1 is usually more effective than a complete restart where
kann = 1. With k... > 1, we we also keep an approximation in the search subspace for the
eigentriple that is second in dominance. As explained in §5.3, this is helpful for starting the
search to the next eigentriple. In eigenvalue computations, when an extraction strategy is
based on Ritz-values closest to some target value, maintaining a search subspace of dimension
larger than 1 is also helpful to diminish the effects of selecting a ‘wrong’ (ghost) Ritz-value (cf.,
e.g.,[17, 8]. Since our extraction strategy here, is based angles between vectors (via the inner
products ¢*Xv; and w;Y*b), there is less danger of misselection.

We have good experience with the values k., = 6 and k., = 2.

5.5. Subspace expansion. As an alternative to the DPA expansion strategy as explained
in §5.1, one can consider other expansion strategies, as RQI (cf. §3.3), but also JD (Jacobi-
Davidson) [28].

Let (v, w, 8x) be the best eigentriple of the projected system (5.2), where, with v = Xv and
w = Yw, the vectors v and w are scaled such that w*Ev = 1.

Alternative expansion strategies.

DPA: solve (sx)E - A)x = b for x
RQI: solve (s E — A)x = Ev for x
JD: solve (I — Evw*)(s;E — A)(I - “’,}'; Jt=r=(s)tE—-A)vfort
Similar equations for expanding the search subspace for left eigenvectors have to be included.

JD solves for the (bi-E)orthogonal correction t of the best available eigenvector approxima-
tions v. The JD approach as compared to RQI has better stability properties: the system that
is to be solved is better conditioned and it solves for a correction. Even when the correction is
small, the JD expansion equation allows accurate computation, while in the RQI approach the
small correction has to be computed as a difference of two relatively large vectors (two vectors
that approximate the same eigenvector!).

We have the following surprising result (see also [27])

THEOREM 5.1 ([22], Th.3.4.3). With subspace acceleration, with ezact solves of the ex-
pansion equations, no restart and appropriate initiation the three approaches produce the same
approrimate eigentriples in each step.

The initiation of RQI and JD is related to initiation of DPA as indicated in Alg. 3.1 (see
also §3.4): xo = (soE — A)~'b and y = (soE — A)~*c. The initiation xo = (soE — A)"'Eb
may seem to be more appropriate for RQI. However, in general, we often find in practise that
Eb = 0 or E*c = 0, and the more ‘appropriate’ initiation will fail then.
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Fi1G. 5.1: The left panel shows the convergence history (the norm of the residual for the approzimate right
eigenvector) of subspace accelerated DPA (SADPA, the solid line) and JD (BiJD, the dashed line) for the PEEC
model [6] when solving the linear systems ezactly (with a new LU-decomposition for each system). The right
panel show the result for the Brazilian Interconnected Power System [21] when solving the linear system with
only 10 steps of preconditioned GMRES. The same preconditioner (an L U-decomposition) is used in each step.

Recall that DPA allows efficient deflation, which is not the case for RQI and JD. This
explains why subspace accelerated DPA is the method of choice when exact solves are affordable
(that is, when dealing with systems of moderate order) [22, §3.3.3]. It should be noted, however,
that DPA allows only limited accuracy. Because, if s; does not change, then DPA does not lead
to expansion. In this context, it is of interest to recall that the eigenvalue approximation is often
much more accurate than the approximation of the eigenvector (since we approximate right and
left eigenvectors at the same time, the error in the eigenvalue is proportional to the square of
the error in the angle of the eigenvector): s, can have full accuracy while the eigenvectors are
still inaccurate.

If exact solves are not feasible, then JD is the method of choice [22, §3.6]. The system
for expansion is better conditioned, and solves for a residual (small correction), it produces
effective corrections even if s, stagnates, preconditioners can be included. This is illustrated
by the convergence histories in Fig. 5.1. The deflation, however, can become very expensive
if many eigentriples are required (recall that the number of eigentriples is determined by the
number of dominant eigentriples that are required for an accurate representation of the transfer
function).

If, for instance, the expansion equation has been (inexactly) solved with a fixed number of
Bi-CG steps, then subspace accelerated RQI and JD are still equivalent (in exact arithmetic,
with appropriately matching initiation, no preconditioner, no restarts, see [27, 26]), but they
are not equivalent to subspace accelerated DPA [22].

JD performs better in the left panel of Fig. 5.1 since it produces more accurate eigenvectors
than subspace accelerated DPA. This is due to the fact that JD expands with corrections of the
eigenvectors, rather than with approximate eigenvector eigenvectors as DPA does. The right
panel shows the stabilizing effect of including projection in the expansion equations for JD.

6. Modal approach or moment matching. Moment matching (see §6.1 below) and
modal approach are the two principal approaches for approximating the transfer function using
models of reduced dimension. They have different effects. Moment matching tends to produce
approximate transfer functions with small error in the ‘smooth’ part of the transfer function,
while the error with the modal approach tends to be small in the high peaks and surroundings.
Combining these two approaches can efficiently improve accuracy (see §6.3).

6.1. Moment matching. If sy € Cis in the range of interesting values of s and soE— A is
non-singular, then, for s close to sg, we can form Neumann expansions: with A = (s)E—A)'E



and b = (soE — A)~!b, we have

H(s) = c*(sE - A)™'b =c*(I - (5o — )A) b = imj(so _ sy,

J=0

where m; = c*A’b are the so-called shifted moments. Projection onto the Krylov subspaces
Kir(A,b) and K (A*,c) leads to accurate approximations if the Neumann series converge
quickly (if H is ‘smooth’ around sg).

For instance, if Vi and W}, are the ‘bi-Lanczos bases’ of these Krylov subspaces and T}
is the associated tridiagonal, then the first 2k moments of the transfer function associated to
the kth order system (soTx — I, Tk, Wb, V*c) match the first 2k moments of H. Here, for
both functions, expansions are taken around sg, Tk is the k x k upper block of the (k+1) x k
tridiagonal bi-Lanczos matrix T'y: KLV;c = Vi41T;. There are variants based on (two-sided),
shift and invert Arnoldi that is, Arnoldi for the shifted and inverted operator ’g&

Note that (soTk — I, T, Wb, V;*c) is a reduced model for (spA — I, A, b, c) rather than
for (A,E,b,c). Nevertheless, the matrices Vi and Wi, can represent the interesting part of
the spaces well, and the system (W;AVg, WrEV,, Wb, V¢) may form a better and more
natural reduced system. It often preserves properties as stability (Re(\;) < 0 for all eigenvalues
A;) and passivity better.

The rational Krylov sequence (RKS, [25]) method (and two sided variants [11]) is a variant
of shift and invert Arnoldi that allows to select different shifts sq, ..., $;n in each expansion step.
The transfer function of the resulting reduced system tends to approximate H accurately in a
neighborhood of each of the s; (with accuracy depending on the number of iterates in which
the same shift s; is used). The neighborhood of accurate approximation tends to be larger if
H is ‘smooth’ around s;.

Fig. 6.1 (see [22]) shows approximation results for a configuration of the Brazilian Intercon-
nected Power System [21]. The left panel shows the effect of working with a single shift so = 0
(and k = 85) and with a second at s; = i (s; = o;, k = 80) using a rational Krylov Arnoldi
(RKA) variant. The second shift is located at a peak. With one shift, we have an accurate
approximation around the shift, but the good accuracy does not extend beyond the peak at
s1 = i. Including the peak as second shift extends the area of accurate approximation.

6.2. Modal approach. As observed in §2.5, the transfer function H tends to peak on
values g along the imaginary axis that are equal to the imaginary part of dominant poles A;, with
peaks being larger if the scaled residue R;/Re();) is larger. The modal approach computes
dominant poles and projects onto the spaces spanned by the associated eigenvectors. As a
consequence, the peaks in the transfer function are extremely well represented by the transfer
function of the reduced model (cf. §2.5).

6.3. The effect of combining approaches. In the left panel of Fig. 6.1, subspace accel-
erated DPA detected 36 dominant poles (20 poles in the upper upper half plain where required.
Some poles show up in conjugate pairs, others are real). The relative error in the resulting ap-
proximate transfer function is displayed by the dotted line. An reduced model of order 18 was
computed with RKA using shifts at 0,2, 4, 6,8, 10 times i, 6 moments for each of the shifs (that
is, Krylov spaces of order 3). The solid line gives the resulting relative error. DPA detected the
peaks (the dip in the dotted line at w = 1), but RKA produces a better approximation away
from the peaks (even with a smaller model). Note that neither of these two reduced models
produce accurate approximations. Applying RKA to a model from which dominant triples (de-
tected by DPA) have been removed, leads to a high accuracy in a wide range of w values: see
the dashed line that corresponds to a reduced system of order k = 37. This system has been
obtained by removing 19 poles (10 poles in upper half plane) with DPA and 18 RKA vectors.
The dashed-dotted line represents the reduced model that uses 36 dominant eigentriples (as
was the case for the dotted line) plus 18 RKA vectors (as for the solid line). The combination
is much more accurate than will be anticipated from the ‘pure’ approaches. For more details
on this discussion, see [22, §3.8].
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Fi1G. 6.1: The left panel displays the bode plot of the transfer function of the original system and of two
reduced systems obtained with RKA, a rational Arnoldi variant. The right panel displays for the same system
the relative error in approzimations of the transfer function using subspace accelerated DPA, using RKA with
siz shifts, and using a combinations of these two methods (two combinations).

7. Conclusions. Models of reduced dimension can be formed by projecting the original
system onto eigenvectors associated with dominant poles (the modal approach). The resulting
approximate transfer functions tend to be accurate specifically around the peaky parts.

Although the Rayleigh quotient iteration (RQI) for computing eigentriples converges asymp-
totically faster than the dominant pole algorithm (DPA), the convergence regions of dominant
poles tend to be much larger for DPA. This explains why DPA is more attractive than RQI for
the modal approach for computing models of reduced dimension.

Inclusion of subspace acceleration in DPA and in RQI improves the efficiency of these
methods. The accelerated versions of both DPA and RQI have the same convergence properties
as Jacobi-Davidson (JD). In particular, the regions of convergence of all three methods coincide.
Nevertheless, also when accelerated, DPA is more attractive than RQI (and JD): DPA allows
efficient deflation of detected eigentriples. This makes the steps of DPA in the iterative search
for subsequent eigentriples more efficient. All methods require the solution of linear systems.
The observations so far refer to the case where the linear systems are solved exactly. For high-
dimensional systems, this is not feasible. With inexact solves, JD has better stability properties
and is the preferred method.

Moment matching techniques that project onto (rational) Krylov subspaces tend to produce
approximate transfer function that are accurate on the smooth part. A combination with the
modal approach for high accuracy of the peaky part of the transfer function can efficiently be
performed and leads to high accuracy for a wide range of values of w (cf., (1.1)).
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