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Abstract. The transfer function describes the response of a dynamical system to periodic inputs. Dominant
poles arc specific cigenvalues of the state space matrix that corresponds to the dynamical system. The number of
thcsc type of cigenvaJues is often small as compared to the number of state variables (the dimension of the state
space matrix). The dominant behaviour of the dynamical system can be captured by projccting the state-space
onto the subspace spanncd by the eigenvectors corresponding to dominant poles.

In this paper, we discuss numerical methods for computing these poles and corresponding eigcnvectors.
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1. Introduction. We are interested in methods for evaluating the transfer function

(1.1) $H(\omega)\equiv c^{*}(2\pi i\omega E-A)^{-1}b$ $(\omega\in \mathbb{R})$ ,

where Aaiid $E$ are given real $N\cross N$ matrices and $b$ and $c$ are given leal $N$-vectors. De
function $H$ plays an importaiit role in the $analysis^{7}$ of the dynamical behavior of coiistructions
$($ lineai $sys^{\neg}telns)$ as buildings, airplaiies, electlical circuits (chips), arid of phenomena as tidal
movements in oceans and bays, etc. (see \S 2.1).

In $pi^{\backslash }actice$ , tlie problem of computing $H$ is acomputational challenge. The dimeiision is
often high ( $N$ is large), the matrices Aand $E$ are often sparse, but they can be uiistructured.
Although function values $H(\omega)$ can be obtained by solving liiiear systems, this approach is
usually iiot fruitful; the function values have to be computed $fo1$ awide range of $\omega$ (say,
between $0$ and $10^{4}$), and apreconditioner that is cffective for $2\pi i\omega E-A$ for one value of $\omega$ will
not work $fo1$ another value.

In this paper, we will approximate the system $(A, E, b, c)$ by a(much) smaller one by
projection onto spaces of eigenvectors associated to specific eigeiivalues of the peiicil $(A, E)$ , to
$t1_{1}e$ so-called dominant poles. The nunlbel$\cdot$ of $domina\iota it$ poles is usually niuch smaller than $N$

(see \S 2.5) and, therefore, this modal approach can be very eflective.
We discuss nunierical rnethods as $t1_{1e}$ dominant pole algorithm (DPA [15], see \S 3.1) and

Rayleigh quotient iteratiori (RQI [19, 20], see \S 3.3) for coinputing these poles and $coli\cdot espondillg$

eigenvectors. Altliough DPA, is based on an old variant of inverse iteration [18], we argue that
it has niore attractive $convei\cdot gence$ properties $foI$ finding dominant poles than the celebrated
RQI (see \S 3.5). RQI as well as DPA iterates on single vectors. To accelerate convergence,
extensioiis of these methods that built search subspace, lead to variants of the Jacobi-Davidsoii
[28] method in \S 5.

The fact that aKrylov subspace generated by amatrix $\tilde{A}$ and avector $\tilde{b}$ equals $t1_{1}eKi\cdot ylov$

subspace generated by $I-2\pi i(\omega_{0}-\omega)\tilde{A}$ and $\tilde{b}$ suggests tliat (unpreconditioned) $K1^{\backslash }ylov$ solvers
that work well for one value of $\omega$ might also be effective for other values of $\omega$ (see \S 6 for more
details). Moment-matching techniques (see, e.g., [11, 1]) are based on this observation. These
techniques tend to produce $appl\cdot oxiniations$ that are higlily accurate in the neighborliood of
$\omega_{0}$ . Variants as the rational Krylov sequence (RKS, [25]) method are efficieiit and allow good
$a’$pproxiinations $ai\cdot ound$ other values of $\omega$ as well. These approximations tend to be accuiate
on the sinooth” part of $H$ , whereas the inodal approach is liighly accurately around those
values of $\omega$ , where $H$ has ‘peaks’. In \S 6, we will see that combining both approaches $improv$
accuracy and efficiency.

This papei$\cdot$ $summari^{r}zes$ the first half of [22].
In this paper, $v^{\gamma}e$ use the Euclidean iiorm deiioted by $||\cdot||$ .
2. Transfer functions and dominant poles.
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2.1. Linear, time invariant, dynamical systems. Linear. time invariant, dynamical
system can often be modelled as (see, e.g., [5])

(2.1) $\{\begin{array}{l}E \dot{x}(t) = A x(t)+bu(t)y(t) = c^{*}x(t)+du(t).\end{array}$

Here, A and $E$ are $N\cross N$ matrices, $b,$ $c$ and $d$ are matrices of size $N\cross m,$ $N\cross p$ , and $p\cross 7n$ ,
respectively, $u,$ $x$ and $y$ are functions of $t\in \mathbb{R}$ , with values in $\mathbb{R}^{m},$ $\mathbb{R}^{N},$ $\mathbb{R}^{p}$ , respectively. The
matrix $E$ may be non-singular, but we will assume that $(A, E)$ is a regular pencil, that is,
$s\infty\det(sE-A)$ is non trivial on $\mathbb{C}$ . The system $(A, E, b, c, d)$ is given. The control function
$u$ determines the state vector $x$ and, the function of interest, the output $y$ of the system. A is
the state matrix, $N$ is the number of states or order of the system, $b$ is the input map of the
system, and $c$ is the output map.

In this paper, we restrict our discussion to the case where $m=p=1$ , a SISO (single input
single output) system. In practice, however, one usually has to deal with MIMO (multiple
input multiple output) systems $(m>1, p>1)$ (cf., e.g., [23]). Moreover, the systems are often
non-linear. Then, the linear systems arise by linearization (in a Newton process). The number
of states is large (in the range of $10^{4}-10^{8}$ ), the matrices A and $E$ are sparse and (often)
unstructured.

In this paper, bold face letters refer to high dimensional quantities.
Dynamical systems play an important role in, for instance, the stability analysis of technical

constructions as airplanes, buildings, bridges, etc.. The behavior of such contructions can
be modelled by a set of partial differential equations using laws from structural mechanics.
Discretization of the spatial part leads to high dimensional ordinary diffcrential equations as
in the first equation of (2.1). Motions of the contructions can be induced by dynamical forces
acting on certain points. These action are modelled by the term $bu(t)$ . The second equation
of (2.1) models the response at certain (other) points of the contmction.
For instance, a building can shake in an earthquake. The earthquake applies a (periodic) force
at the foundations of the building. The resulting swing at the toplevel may be of interest.
To guarantee that the building survives earthquakes, the swing at, for instance, the top level
should be small. To acliieve this, the design of the building may have to be adapted, which
means that (2.1) has to be solved for a different system. Of course, design and computations
have to be performed before the actual constmction of the building.
In electrical circuit simulations, the matrices A and $E$ incorporate the incidence matrix of the
directed graph that describes the circuit. The values of the electrical components (as resistors,
capacitors, . . . ) determine the value of matrix coefficients. These matrices are unstructured
and the values of (neighboring) matrix coefficients may vary orders of magnitude.

2.2. Transfer functions. To analyze system (2.1), apply a control function $u$ of the
form $u(t)=\exp(st)(t\in \mathbb{R})$ for some $s\in \mathbb{C}$ , that is, apply a Laplace transform. Then
$x(t)=(sE-A)^{-1}$bexp$(st)$ and $y(t)=[c^{*}(sE-A)^{-1}b+d]\exp(st)$ .

The function

(2.2) $H(s)\equiv c^{*}(sE-A)^{-1}b+d$ $(s\in \mathbb{C})$

is the transfer $functi_{Q}n$ of the system (2.1). The transfer function describes to response of the
system at the output to a (damped) periodic force at the input. The response to harmonic
oscillations, i.e., $s=2\pi i\omega$ with frequency $\omega$ in $\mathbb{R}$ , is of particular interest.

Since the computational complexity is not affected by $d$ , we further assume that $d=0$ .

2.3. Model order reduction. Note that, in principle, $H$ can be computed by only solving
linear systems. Nevertheless, computing the transfer function is often very hard. $\ln$ practice,
$N$ is large, $H$ is needed for a wide range of $\omega$ $(in \mathbb{R}, s=2\pi i\omega)$ , preconditioners are hard to
include (a preconditioner for A is not a preconditioner for $sE-A$ for $s\neq 0$), and, specifically
in a design stage, (or in case the system is non-linear) solutions are required for a number of
(slightly different) systems.

For these reasons, reduced model are constructed, that is, kth order systems $(A, E, b, \tilde{c})$ with
$k\ll N$ for which (cf., [2])
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. for all $u$ , the error $\Vert y(t)-\tilde{y}(t)\Vert$ is ‘small’ in some norm (as the 2-norm, Hankel-
norm,. . . );1. physical and numerical properties (as, stability, passivity,. . . ) are preserved;. the reduced system can be efficiently and stably computed;. the error can be efficiently measured when constructing a reduced system.

In practice, there are other restrictions as well. System (2.1) may have a certain (block)
structure. For instance, if the first order differential equation in (2.1) stems from a second order
one. Then $x$ has a block of first order derivative terms. It may be convenient to preserve this
(block) structure (cf., [3]). Designers would like to see reduced models that are realizable. In,
for instance, electrical circuit design, they would like to see reduced models that can be build
as an electrical circuit. Also reduced models require computational efforts. Therefore, it would
be helpful if $tIiese$ smaller models also would ‘fit’ in existing simulation software.

2.4. Approaches for model order reduction. $hai_{B}fer$ functions can be expressed in
terms of eigenvalues and eigenvectors as we will see in \S 2.5 below. Approaches for constructing
reduced models correspond to approaches for computing eigenvalues and eigenvectors. Three
main classes of approaches can be distinguished.

1 $)$ Methods based on balanced truncation [16] and Hankel norm approximation [9]. They
form the analogue of the QR and QZ methods for computing eigenvalues.

2 $)$ Pad\’e approximation and moment-matching techniques [10]. They are usually based on
Krylov subspace techniques as (shift-and-invert) bi-Lanczos and Arnoldi (see \S 6.1). There are
block versions, two sided versions and versions based on rational Krylov sequence [25].

3 $)$ Modal approximations $[7|$ , where, as we will see in \S 2.5, the reduced model is based on
dominant poles. Such approaches correspond to Jacob$arrow Davidson$ type of methods for comput-
ing a few eigenvalues and eigenvectors.

In the second and third type of approach, matrices $V_{k}$ and $W_{k}$ of size $n\cross k$ are computed,
and the reduced model arises by projection:

(2.3) $\tilde{A}=W_{k}^{*}AV_{k}$ , $\tilde{E}=W_{k}^{*}EV_{k}$ , $\tilde{b}=W_{k}^{*}b$ , $\tilde{c}=V_{k}^{*}c$ .
In bi-Lanczos and Arnoldi, the columns of $V_{k}$ form a basis of the Krylov subspace $\mathcal{K}_{k}((s_{0}E-$

$A)^{-1}E,$ $(s_{0}E-A)^{-1}b)$ for some $s_{0}\in \mathbb{C}$ . In the modal approaches, the columns of $V_{k}$ and $W_{k}$

span appropriate right and left, respectively, eigenvectors of the pair $(A, E)$ .
In this paper, we inainly concentrate on the modal approach.

2.5. Dominant poles. Before we explain how dominant poles play an important role in
our approach, we first define a pole and iiltroduce the concept of dominance.

A $\lambda\in \mathbb{C}$ is a pole of $H$ if $\lim_{\muarrow\lambda}|H(\mu)|=\infty$.
Poles are eigenvalues of the pencil $(A, E)$ : non-zero $v_{i}$ and $w_{i}$ are right and left, respectively,

eigenvectors with eigenvalue $\lambda_{i}$ if

(2.4) $Av_{i}=\lambda_{i}Ev_{i}$ and $w_{t}^{*}A=\lambda_{i}w^{*}E$ .

We assume that $(A, E)$ is nondefective. In each right eigenspace corresponding to one eigen-
value, we select tlie one eigenvector that determines the component of $b$ in that space. Similarly,
for $c$ and left eigenvectors. To be more precise, we select the eigentreples $(v_{i}, w_{i}, \lambda_{i})$ such that
$\lambda_{i}\neq\lambda_{j}$ $(i\neq j)$ ,

$b=\sum_{i=1}^{n}\beta_{i}Ev_{i}+\beta_{\infty}Av_{\infty}$ , $c=\sum_{i=1}^{n}\gamma iE^{*}w_{i}+\gamma_{\infty}A^{*}w_{\infty}$ ,

with $v_{\infty}$ and $w_{\infty}$ in the kernel of $E$ and $E^{*}$ , respectively. In addition, we assume the eigenvectors
to be scaled such that $w_{i}^{*}Ev_{i}=1$ if $w_{i}^{*}$ Ev$i\neq 0$ . Now, note that [13],

(2.5) $H(s)= \sum_{i=1}^{n}\frac{R_{\dot{t}}}{s-\lambda_{i}}+R_{\infty}$ , where $R_{i}\equiv(c^{*}v_{i})(w_{i}^{*}b)=\overline{\gamma}i\beta_{i}$ .

$\overline{1We}$apologize for using terms as ‘Hankel norm’, ‘stability’ and ‘passivity’ that have not been dcfined. These
term do not play an essential role in this papcr.
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FIG. 2.1: The left figure show that Bode plot of the New Engeland test system [15] (solid line) together
unth the approinmation (dashed line) from the modal approach using the 11 most dominant poles out of 66
eigenvalues $(N=66)$.
The nght figure shows part of the complex plane unth part of the spectrum (dominant poles are marked $unth*$),
together vnth a gtid of location for the initial shifts so in the complex plane for which $DP\mathcal{A}$ (marked with o)
and for which $RQI$ (markcd with x) converge to the most dominant pole $\lambda=-0.476\pm 8.96i$ . Initial shifts $s_{0}$

on the displayed gred without marker lead to convergence to less dominant poles.

The $R_{i}$ are called residues. Note that $R_{i}=0$ if $w_{i}^{*}$Ev$i=0$ .
The ‘contribution’ of the pole $\lambda_{i}$ to the transfer function is determined by the size $|R_{i}|$ of

the corresponding residue and the distance $|{\rm Re}(\lambda_{i})|$ if the pole to the imaginary axis: the pole
$\lambda_{i}$ is said to be dominant if the scaled size $\frac{|R_{l}|}{|{\rm Re}(\lambda_{1})|}$ of the correpsonding residue is large.

Dominant poles determine high peaks in the so-called Bode plot, that is, in the graph of
$\omega\sim|H(2\pi i\omega)|$ $(\omega\in \mathbb{R})$ . For an example, see the left panel of Fig. 2.1, where this graph is
plotted on decibel scale. The value $|H(2\pi i\omega)|$ is the gain of the system at frequency $\omega$ .

In the modal approach, the model is reduced by projecting onto the space spanned by
eigenvectors corresponding to the poles that are most dominant, $b$ onto right eigenvector and
$c$ onto corresponding left eigenvectors. Note that, our scaling implies that $E=I$ (see (2.3) and
use that $w_{j}^{*}Ev_{i}=0$ if $\lambda_{i}\neq\lambda_{j}$ ).

The success of the modal approach comes from the fact that, in practice, the number of
dominant poles is usually much smaller than the number of poles (which is smaller than number
$n$ of relevant eigenvalues, while $n\leq N$).

3. Algorithms and convergence. Dominance of poles has been defined (see \S 2.5) in a
relative and a subjective sense (’large’), relative with respect to the distance from the imaginary
axis. For mathematical reasons, however, we will in this section assume dominance in an
absolute sense [12]: $\lambda_{i}$ is dominant if $|R_{i}|>|R_{j}|$ for all $j\neq i$ .

3.1. Dominant pole algorithm. The (generalized two-sided) Rayleigh quotient [19, $20|$

$\rho(x, y)\equiv\rho(A, E,x, y)\equiv\frac{y^{*}Ax}{y^{*}Ex}$ (provided $y^{*}$ Ex $\neq 0$),

will play an important role in the algorithms. Note that $y^{*}$ Ex can be $0$ even if $E$ is non-singular.
If $y=x$, we put $\rho(x):\rho(x)\equiv\rho(x, x)$ .

Since poles are zeros of the function $srightarrow 1/H(s)$ , Newton’s process can be applied:

$s_{k+1}=s_{k}- \frac{c^{*}(s_{k}E-A)^{-1}b}{c^{*}(s_{k}E-A)^{-1}E(s_{k}E-A)^{-1}b}$ .

With $x_{k}\equiv(s_{k}E-A)^{-1}b$ and $y^{*}\equiv c^{*}(s_{k}E-A)^{-1},$ $s_{k+1}$ can be expressed as a Rayleigh
quotient: $s_{k+1}=\rho(x_{k)}y_{k})$ . This leads to the algorithm (cf. [15]) represented in the left panel
of Alg. 3.1, where the indices have been suppressed to indicate that new values can replace old
ones (indicated by the same letter). The algorithm is represented in its simplest form: stopping
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Alg. 3.1: The left panel rcpresents the dominant pole algonthm, while the nght panel represents Rayleigh
quotient iteration. An approsrmate eigentrt,$ple$ is formed by $(x, y, s)$ . $v$ is the residual of the approximate nght
eigenvector.

criteria that are more sophisticated (and more appropriate) than ‘
Iノ$k\equiv\Vert Ax_{k}-s_{k+1}$Ex$k\Vert<tol$ ’

can be exploited as well.
We refer to this algorithm as the dominant pole algorithm (DPA), since, as we will argue

below, this algorithm tends to find dominant poles first.
The algorithm is applicable in practice if it is feasible to form the LU-decomposition of

$sE-A$ . We will come back to this restriction in \S 5.5.

3.2. Convergence. DPA represents a Newton process. Therefore, the sequence $(s_{k})$ will
converge quadratically to an eigenvalue $\lambda$ provided that the initial value $s_{0}$ is sufficiently close
to $\lambda$ . The $x_{k}$ and $yk$ form approximate eigenvectors and they converge quadratically as well:

THEOREM 3.1 ([24], Th. 4.2). If $(v, w, \lambda)$ is an eigentnple and $DPA$ has been applied to
produce $(x_{k}, yk, Sk+1)$ , then

$\lim_{karrow\infty}x_{k}=v$
$\Leftrightarrow$

$\lim_{karrow\infty}yk=w$
$\Leftrightarrow$

$\lim_{karrow\infty}sk=\lambda$ .

Convergence implies quadratic $\omega nvergence$ : for some $\kappa>0$ , we have

$||v-x_{k+1}\Vert\leq\kappa\Vert v-x_{k}\Vert\Vert w-yk\Vert$ and $||_{W-yk+1}\Vert\leq\kappa\Vert v-x_{k}\Vert\Vert_{W-yk}\Vert$

3.3, Rayleigh quotient iteration. DPA uses the best available eigenvector approxima-
tions to update the approximate eigenvalue: $s_{k+1}=\rho(x_{k}, y_{k})$ . The approximate eigenvec-
tors can also be exploited in the computation of the new approximate eigenvectors: $x_{k}=$

$(s_{k}E-A)^{-1}Ex_{k-1}$ , and $y_{k}^{*}=y_{k-1}^{*}E(s_{k}E-A)^{-1}$ . This leads to the celebrated (two-sided)
Rayleigh quotient iteration (RQI [19, 20], see the right panel of Alg. 3.1) for which faster con-
vergenoe is to be expected: of RQI it is known that convergence implies cubic convergence [20,
p.689].

3.4. Initiation. Both methods, DPA as well as RQI, require initiation. The selection
$s_{0}=\rho(b, c)$ in DPA may seem reasonable. It corresponds to a choice of $x_{0}=b$ and $y_{0}=c$

in RQI. In the symmetric case, where $A^{*}=A,$ $E=$ I and $c=b$ , this choice works well.
Unfortunately, in the general case, $c^{*}$ Eb can be zero (or very small), and, in practice, we
observed that it often is. Then $\rho(b, c)$ is not defind (or very large). Therefore, we select an $s_{0}$

and we proceed as indicated in the algorithms in Alg. 3.1.
3.5. Convergence regions. Both methods, DPA and RQI, converge fast (if they con-

verge). However, we are not just interested in (quickly) finding eigentriples. We want the
dominant ones, that is, the dominant poles with associated eigenvectors. Since, local conver-
gence is guaranteed, both algorithms are able to detect these, but detection depends on how
close the initial $s_{0}$ is to the wanted dominant poles. The question is what is ‘close ? The con-
vergence region of a pole $\lambda$ and a method is the collection of $s_{0}$ in $\mathbb{C}$ for which the sequence $(s_{k})$
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FIG. 3.1: The figures show convergence regions for $DPA$ and $RQI$ for two examples (Ex. 3.2). The most
dominant pole in the displayed part of the complex plain is at $\lambda\approx-20.5\pm 1.1i$ in the left panel and at
$\lambda\approx-0.14\pm 5.4i$ in the nght panel. For a $descr\iota ption$ of the symbols used in the figures, see Fig. 2.1.

produced by the method converges towards $\lambda$ . Experiments (as in the right panel of Fig. 2.1
and in the examples below) indicate that the region of convergence of the dominant poles is
much larger for DPA than for RQI. This advantage compensates for a slightly slower conver-
gence (recall that both inethods locally converge fast and it is not clear in advance whether
in practice there is any advantage associated to cubic convergenoe over quadratic convergence.
We observed that RQI typically needed only 10%-20% less iteration steps than DPA).

Fig. 3.1 displays the results for following two examples (see [24]).
EXAMPLE 3.2. $a$ . The left panel displays the convergence regions for the “Brazilian In-

terconnect Power System“ [21]. The order of this test model is $n=13,251$ . The matrix $E$

is singular, $b$ and $c$ only have one nonzero entry and c’Eb $=0$ . The most dominant poles
appear in complex conjugate pairs. From the figure, we leam that for many initial shifts DPA
converges to the most dominant pole, where RQI does not, while for a small number of initial
shifts, RQI converges to the most dominant pole where DPA does not.
$b$ . The second test model, with results displayed in the right panel, is the PEEC system [6],
a well-known benchmark system for model order reduction. One of the difficulties with this
system of order $n=480$ is that it has many equally dominant poles that lie close to each other
in a relatively small part $[$ -1, $0]x[-10,10]i$ in the complex plane. Although the difference is
less prononced than the previous example, DPA converges to the most dominant pole in more
cases than RQI.

The examples show that the convergence region of the dominant pole for DPA is much larger
than for RQI. For an heuristic explanation, recall that dominance of a pole $\lambda_{i}$ is determined
by the size of the associated residue $R_{i}=(c^{*}v_{i})(w_{i}^{*}b)$ , which depends on both $b$ and $c$ . DPA
uses information from $b$ and $c$ in each step (recall that $x_{k}=(s_{k}E-A)^{-1}b,$ $\ldots$ ), whereas $b$

and $c$ enter the RQI process in the initiation phase only. RQI converges fast, but it tends to
converge towards the eigenvalue closest to $s_{0}$ rather than to the one for which $|c^{*}v_{i}|$ and $|w_{i}^{*}b|$

are large.
In the next subsection, we will see that, for the symmetric case, there are mathematical

arguments that underline this explanation.

3.6. Convergence in the symmetric case. In this subsection, we assume that $A^{*}=A$ ,
$E=I$ , and $c=b$ , and will concentrate on the eigenpair $(v, \lambda)$ : Av $=\lambda v$ .

The gap $\gamma\equiv\min\{|\lambda_{i}-\lambda||\lambda_{i}\neq\lambda\}$ between $\lambda$ and the other eigenvalues $\lambda_{i}$ of A will play
a role and $\zeta\equiv|\tan\angle(v, b)|$ , which expresses the angle between the eigenvector $v$ and $b$ . The
initial $s_{0}$ is selected in $\mathbb{R}$ .

If $(x_{k})$ is a sequence of approximate eigenvector, then, for $k\geq 0$ , we put

$s_{k+1} \equiv\frac{x_{k}^{*}Ax_{k}}{x_{k}^{*}x_{k}}$ , $\alpha_{k}\equiv\frac{|s_{k}-\lambda|}{\gamma-|s_{k}-\lambda|}$ , $\zeta_{k+1}\equiv\tan\angle(v, x_{k})$ .
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THEOREM 3.3 ([24], Th.4.3-5). $a$ . If $(A-s_{k}I)x_{k}=b(DPA)$ , then

$\alpha_{0}<\alpha_{DPA}\equiv\frac{1}{\zeta^{2}}$ implies that $s_{k}arrow\lambda$ and $\alpha k+1\zeta^{2}\leq(c\iota k\zeta^{2})^{2}<1$ .

$b.$ If $x_{-1}=b$ and $(A-s_{k}I)x_{k}=x_{k-1}$ (RQI), then

$\alpha 0<\alpha_{RQI}\equiv\frac{1}{\zeta}$ implies that $s_{k}arrow\lambda$ and
$\alpha_{k+1}\leq(\alpha_{k}\zeta_{k})^{2}$ , $\zeta_{k+1}\leq\alpha k\zeta_{k}$ , $\alpha k+1\zeta_{k+1}\leq(\alpha k\zeta_{k})^{3}<1$ .

The last estimate in Th3. $3.b$ expresses cubic convergence. Note that this estimate is the
product of the two preceding ones. The estimate in Th.3.3.a expresses quadratic convergence.

The theorem is of interest for two reasons. The use of a scaled error $\alpha k$ in the eigenvalue
approximation leads to the elegant estimates of Th.3.3, and the estimates are sharp (for any
symmetric inatrix $A$ , there is a vector $b$ such that for any $s_{0}$ between $\lambda$ and $\lambda_{i_{0}},$ $(s_{k})$ converges
to $\lambda$ only if the condition in the theorem is satisfied. Here, $i_{0}$ is such that $\gamma=|\lambda-\lambda_{i_{0}}|.)$ and
sharper than previous results in literature: for instance, for DPA, see [18], and for RQI, see [4].

Note that $\zeta<1$ implies that $\lambda$ is dominant, because the residue associated with $\lambda$ is
$| v^{*}b|^{2}>\frac{1}{2}\Vert b\Vert^{2}$ , whence the residues for the other eigenvalues are $< \frac{1}{2}\Vert b\Vert^{2}$ . Moreover, if
$\zeta<1$ , then $1/\zeta<1/\zeta^{2}$ and the theorem tells us that the convergence region for the dominant
eigenvalue $\lambda$ is larger for DPA than for RQI.

4. Deflation. For the modal approach, eigentriples with poles that are most dominant
are required. Suppose one (dominant) eigentriple $(v, w, \lambda)$ has been detected. Then, one can
select a new initial shift $s_{0}$ , hoping that this leads to another (dominant) eigentriple. But it is
not unlikely that the same eigentriple will be detected. A more reliable strategy for avoiding
this situation is deflation, where the detected eigentriple is removed from the process of finding
dominant eigentriples.

DPA allows efficient deflation as follows (see, [21, Th.3.1])
THEOREM 4.1. With $\tilde{b}\equiv$ $(I-$ Evw$*)b$ and $\tilde{c}^{*}\equiv c^{*}(I- vw*E)$ , we have that

$\tilde{H}(s)\equiv\hat{c}^{*}(sE-A)^{-1}\tilde{b}$

has the same poles and residues as $H(s)=c^{*}(sE-A)^{-1}b$ , except for the residue associated
with $\lambda$ which is transformed to $0$ .

Since the ‘new’ residue is zero, $\lambda$ is not dominant for the system $(A, E,\tilde{b}, \tilde{c})$ , while for all
other poles the residues are unchanged. In particular, DPA can be applied to this’deflated’
system to detect the eigentriple that is next in dominance. Of course, this deflation strategy
can be repeated to find the third dominant eigentriple, etc..

This deflation is cheap: it has to be applied to two vectors only, to $b$ and $c$ for finding the
second eigentriple, to $\tilde{b}$ and $\tilde{c}$ for finding the third triple, etc..

Theoretically, the same deflation strategy can be applied in combination with RQI (and to
other methods, as Jacobi-Davidson, for computing eigentriples). Unfortunately, in practice, due
to rounding errors, this efficient strategy will not prevent RQI from finding the same eigentriple.
To see this, recall that the inverse power method

$x_{k}=\tilde{x}_{k}/\Vert\tilde{x}_{k}\Vert$ , $\tilde{x}_{k+1}=(s_{0}E-A)^{-1}Ex_{k}$

is likely to convergence to the eigentriple $(v_{j},w_{j}, \lambda_{j})$ with $\lambda_{j}$ such that $1/(s_{0}-\lambda_{j})$ is the
absolute largest eigenvalue of $(s_{0}E-A)^{-1}E$ . When $v_{j}$ is deflated from an initial guess $x_{0}$ (by
multiplication by $I-v_{j}w_{j}^{*}E)^{2}$ then the next iterate $x_{1}$ will have a component in the direction
of $v_{j}$ due to rounding errors. Though the component will be small, it will be amplified in the
next iterations and will eventually lead to the same eigentriple $(v_{j}, w_{j}, \lambda_{j})$ : the inverse power
method blows up small unwanted components. To prevent this $h\cdot om$ happening, the deflation

$binTh.4l\overline{2Notc}that$ , for $Ex_{0}$ , this is equivalent to multiplying $Ex0$ by $I-Ev_{j}w_{j}^{*}$ , which is the projection that deflates
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(multiplication by $I-v_{j}w_{j}^{*}E$ ) has to be performed to each of the iterates $x_{k)}$ which makes
the deflation relatively expensive. A similar remark applies to RQI. Such an amplification of
unwanted small components does not play a $role_{-}$ in DPA, because the vector to which the
inversion is applied to is the same deflaLed vector $b$ in each step.

5. Acceleration. Subspace acceleration is very effective for solving linear systems (com-
pare Richardson iteration and GMRES) and for eigenvalue computation (compare the power
method and Arnoldi). Similar iniprovements are to be expected in the computation of dominant
eigentriples [21]. The acceleration is an iterative process that, in each step, requires expansion
of the search subspace (see b\S 5.1-5.2) and extraction of the approximate eigentriple from the
search subspace $($see $\int 5.1)$ . When the search subspace becomes too large (too high dimensional),
some restart strategy is needed (cf. \S 5.4),

5.1. Subspace acceleration. Suppose X is an $N\cross k$ matrix of which the colunms span a
search subspace for right eigenvectors. For computational convenience, suppose X is orthonor-
mal.
Expansion. To expand X,

Solve $(skE-A)x=b$ for $x$ .
(5.1) Orthonormalize $x$ against X to $\tilde{x}$ .

Expand X: $Xarrow[X,\tilde{x}]$

Similarly, expand the matrix $N\cross k$ matrix $Y$ that spans the search subspace of left eigenvectors.
The Gram-Schmidt process $x-$ XX$*x$ orthogonalizes $x$ against X. Then, normalization leads
to $\tilde{x}$ , and we have orthonormalized $x$ against X to $\tilde{x}$ . In practice, a more stable variant (as
repeated Gram-Schmidt) will be required.
Extraction [21]. The approximate eigentriple $(x_{k,yk}, s_{k+1})$ is computed from the ‘best’ eigen-
triple $(v, w, s_{k+1})$ from the projected system $(Y^{*}AXY^{*}EXY^{*}b, X^{*}c)$ . Here, ‘best’ is the
eigentriple with absolute largest residue $(c^{*}v)(w^{*}b)$ , where $c\equiv X^{*}c$ and $b\equiv Y^{*}b$ . Then,
$x_{k}=Xv$ and $yk=Yw$ .

Note that the expansion only requires the updated $s_{k+1}$ . Nevertheless, having the approx-
imate eigenvectors is useful too. They can be exploited in the stopping criterion. Obviously,
they are needed when the approximations are sufficiently accurate.

The suggested extraction strategy, is taylored to finding doininant poles. The expansion
strategy is the standard one for computing eigentriples.

5.2. Orthogonalization or bi-E-orthogonalization. As an alternative to the orthonor-
malization as suggested in (5.1), the expansion vectors $x$ and $y$ can also be (bi-E-orthogonalized’:
$\hat{x}=$ (I–XY$*$ E)x and $\hat{y}^{*}=y^{*}(I-$ EXY$*)$ . The resulting vectors can be scaled to $\tilde{x}$ and $\tilde{y}$

such that $\tilde{y}^{*}$ Ex $=1$ . If this strategy has been applied for obtaining all column vectors of X
and $Y$ , then $Y^{*}$EX $=I$ .

This approach fits the fact that $W^{*}$ EV $=I$ (see \S 2.5), where V and $W$ is the matrix with
columns $v_{j}$ and $w_{j}$ , respectively. Another advantage is that the projected system (see (2.3))
reduces to a standard eigenvalue problem.

Unfortunately, the scaling may fail if $y^{*}$ Ex $=0$ , or may be less stable if $y^{*}$ Ex is small.
Moreover, the inclusion of $E$ in the bi-orthogonalization makes the approach more costly.

5.3. Why subspace acceleration. The single vector iteration (DPA algorithm 3.1) offers
only one choice for an approximate pole: $s_{k+1}=\rho(x, y)$ . Searching a subspace offcrs more
possibilities for finding better approximations of the dominant pole: we select the eigenvalue
with absolute largest projected residue $(c^{*}v)(w^{*}b)$ . Note that, since $x$ and $y$ are in the span
of the expanded X and $Y$ , respectively, the ‘DPA residue’ $(c^{*}x)(y^{*}b)/(||x||\Vert y\Vert)$ is in absolute
value less than or equal to the selected ‘best’ residue. Therefore, we can state that acceleration
leads to faster convergence and offers more control on the convergence: it enlarges the region
of convergence of the dominant pole.

In addition, a better start is available after deflation, that is, after detection of one (domi-
nant) eigentriple, we already have a space that will contain (good) approximations for the next
(dominant) eigentriple. Note that it may be helpful to deflate the detected eigentriple not only
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from $b$ and $c$ (as explained in \S 4) but also from X and Y. When combined with a restart
strategy (see \S 5.4), these matrices have a few columns only, and deflation is not costly.

These three advantages (faster convergence, better control, better restart) compensate for
tlie more expensive steps.

Block versions of DPA also employ subspaces (see [14]), but they miss the advantages
mentioned above [21].

5.4. Thick restart. When the subspaces, that is, the X and $Y$ , are expanded in each
step, the memory requirements grow and the steps become computationally and increasingly
more expensive. Therefore, a restart may become desirable, that is, a maximum acceptable
dimension $k_{\max}$ has to be selected and the search subspaces have to be reduced when they reach
a dimension $k$ larger than $k_{m\infty}$ .

We suggest the following restart strategy.
Select a $k_{\min}$ . Consider the projected kth order system

(5.2) $(Y^{*}AXY^{*}EX_{z}b, c)$ with $b\equiv Y^{*}b,$ $c\equiv X^{*}c$ .

If $k>k_{mr}$ , then. find the eigentriples $(v_{j}, w_{j}, \mu_{j})$ of (5.2)
1 compute the associated residues $(c^{*}v_{j})(w_{j}^{*}b)$. order the eigentriples such that the absolute value of the residues decrease. continue with $Xarrow X[v_{1}, \ldots, v_{k_{111}}i\iota\tau],$ $Yarrow Y[w_{1},$

$\ldots,$
$w_{k_{1nin}}|$ .

A thick restart [8, 29] with $k_{\min}>1$ is usually more effective than a complete restart where
$k_{n1}in=1$ . With $k_{111}i_{l1}>1$ , we we also keep an approximation in the search subspace for the
eigentriple that is second in dominance. As explained in \S 5.3, this is helpful for starting the
search to the next eigentriple. In eigenvalue computations, when an extraction strategy is
based on Ritz-values closest to some target value, maintaining a search subspace of dimension
larger than 1 is also helpful to diminish the effects of selecting a ‘wrong’ (ghost) Ritz-value (cf.,
e.g.,[17, 8]. Since our extraction strategy here, is based angles between vectors (via the inner
products $c^{*}Xv_{j}$ and $w_{k}^{*}Y^{*}b$ ), there is less danger of misselection.

We have good experience with the values $k_{\max}=6$ and $k_{\min}=2$ .
5.5. Subspace expansion. As an alternative to the DPA expansion strategy as explained

in \S 5.1, one can consider other expansion strategies, as RQI (cf. \S 3.3), but also JD (Jacobi-
Davidson) [28].

Let $(v, w, s_{k})$ be the best eigentriple of the projected system (5.2), where, with $v\equiv Xv$ and
$w\equiv Yw$ , the vectors $v$ and $w$ are scaled such that $w^{*}$ Ev $=1$ .

Altemative expansion strategies.
DPA: solve $(s_{k}E-A)x=b$ for $x$

RQI: solve $(s_{k}E-A)x=$ Ev for $x$

JD: solve (I–Ev $w^{*}$ ) $(sk E-A)(I-\frac{vv^{*}}{v^{*}v})t=r\equiv(skE-A)v$ for $t$

Similar equations for expanding the search subspace for left eigenvectors have to be included.
JD solves for the (bi-E)orthogonal correction $t$ of the best available eigenvector approxima-

tions $v$ . The JD approach as compared to RQI has better stability properties: the system that
is to be solved is better conditioned and it solves for a correction. Even when the correction is
small, the JD expansion equation allows accurate computation, while in the RQI approach the
small correction has to be computed as a difference of two relatively large vectors (two vectors
that approximate the same eigenvector!).

We have the following surprising result (see also [27])
THEOREM 5.1 ([22], Th.3.4.3). With subspace acceleration, with exact solves of the ex-

pansion equations, no restart and appropriate initiation the three approaches produce the same
approximate eigentrt,ples in each step.

The initiation of RQI and JD is related to initiation of DPA as indicated in Alg. 3.1 (see
also \S 3.4): $x_{0}=(s_{0}E-A)^{-1}b$ and $y=(s_{0}E-A)^{-*}c$ . The initiation $x_{0}=(s_{0}E-A)^{-1}$Eb
may seem to be more appropriate for RQI. However, in general, we often find in practise that
Eb $=0$ or $E^{*}c=0$ , and the more ‘appropriate’ initiation will fail then.
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FIG. 5.1: The left panel shows the convergence history (the norm of the residual for the appro vimate mght
eigenvector) of subspace accelemted DPA (SADPA, the solid line) and JD ($BiJD$ , the dashed line) for the PEEC
modcl [6] when solv $ng$ the linear systems exactly (utth a new LU-decomposition for each system). The nght
panel show the result for the Brazilian Interconnected Power System [21] when solving the linear system with
only 10 steps of preconditioned GMRES. The same preconditioner (an L U-decomposition) $\iota s$ used in each step.

Recall that DPA allows efficient deflation, which is not the case for RQI and JD. This
explains why subspace accelerated DPA is the method of choice when exact solves are affordable
(that is, when dealing with systems of moderate order) [22, \S 3.3.3]. It should be noted, however,
that DPA allows only limited accuracy. Because, if $s_{k}$ does not change, then DPA does not lead
to expansion. In this context, it is of interest to recall that the eigenvalue approximation is often
much more accurate than the approximation of the eigenvector (since we approximate right and
left eigenvectors at the same time, the error in the eigenvalue is proportional to the square of
the error in the angle of the eigenvector): $s_{k}$ can have full accuracy while the eigenvectors are
still inaccurate.

If exact solves are not feasible, then JD is the method of choice [22, \S 3.6]. The system
for expansion is better conditioned, and solves for a residual (small correction), it produces
effective corrections even if $s_{k}$ stagnates, preconditioners can be included. This is illustrated
by the convergence histories in Fig. 5.1. The deflation, however, can become very expensive
if many eigentriples are required (recall that the number of eigentriples is determined by the
number of dominant eigentriples that are required for an accurate representation of the transfer
function).

If, for instance, the expansion equation has been (inexactly) solved with a fixed number of
Bi-CG steps, then subspace accelerated RQI and JD are still equivalent (in exact arithmetic$
with appropriately matching initiation, no preconditioner, no restarts, see [27, 26] $)$ , but they
are not equivalent to subspaoe accelerated DPA [22].

JD performs better in the left panel of Fig. 5.1 since it produces more accurate eigenvectors
than subspace accelerated DPA. This is due to the fact that JD expands with corrections of the
eigenvectors, rather than with approximate eigenvector eigenvectors as DPA does. The right
panel shows the stabilizing effect of including projection in the expansion equations for JD.

6. Modal approach or moment matching. Moment matching (see \S 6.1 below) and
modal approach are the two principal approaches for approximating the transfer function using
models of reduced dimension. They have different effects. Moment matching tends to produce
approximate transfer functions with small error in the ‘smooth’ part of the transfer function,
while the error with the modal approach tends to be small in the high peaks and surroundings.
Combining these two approaches can efficiently improve accuracy (see \S 6.3).

6.1. Moment matching. If $s_{0}\in \mathbb{C}$ is in the range of interesting values $\sim ofs$ and $s_{0}E-A$ is
non-singular, then, for $s$ close to $s_{0}$ , we can form Neumann expansions: with A $\equiv(s_{0}E-A)^{-1}E$
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and $\tilde{b}\equiv(s_{0}E-A)^{-1}b$ , we have

$H(s)= c^{*}(sE-A)^{-1}b=c^{*}(I-(s_{0}-s)\tilde{A})^{-1}b=\sum_{j=0}^{\infty}m_{j}(s_{0}-s)^{j}$ ,

where $m_{j}\equiv c^{*}$ Ji $j_{\tilde{b}}$ are the so-called shifted moments. Projection onto the Krylov subspaces
$\mathcal{K}_{k}(\tilde{A},\overline{b})$ and $\mathcal{K}_{k}(\tilde{A}^{*}, c)$ leads to accurate approximations if the Neumann series converge
quickly (if $H$ is ‘smooth$\dot{\prime}$ around $s_{0}$ ).

For instance, if $V_{k}$ and $W_{k}$ are the ‘bi-Lanczos bases’ of these Krylov subspaces and $T_{k}$

is the associated tridiagonal, then the first $2k$ moments of the transfer function associated to
the kth order system $(s_{0}T_{k}-I, T_{k}, W_{k}^{*}\tilde{b}, V_{k}^{*}c)$ match the first $2k$ moments of $H$ . Here, for
both functions, expansions are taken around $s_{0},$ $T_{k}$ is the $k\cross k$ upper block of the $(k+1)xk$
tridiagonal bi-Lanczos matrix $\underline{T}_{k}:\tilde{A}V_{k}=V_{k+1}\underline{T}_{k}$ . There are variants based on (two-sided),
shift and invert Arnoldi that is, Arnoldi for the shifted and inverted operator A.

Note that $(s_{0}T_{k}-I, T_{k},W_{k}^{*}\tilde{b}, V_{k}^{*}c)$ is a reduced model for $(s_{0}\tilde{A}-I,\overline{A},\tilde{b}, c)$ rather than
for $(A, E, b, c)$ . Nevertheless, the matrices $V_{k}$ and $W_{k}$ can represent the interesting part of
the spaces well, and the system $(W_{k}^{*}AV_{k}, W_{k}^{*}EV_{k},W_{k}^{*}b, V_{k}^{*}c)$ may form a better and more
natural reduced system. It often preserves properties as stability $({\rm Re}(\lambda_{i})<0$ for all eigenvalues
$\lambda_{i})$ and passivity better.

The rational Krylov sequenoe (RKS, [25]) method (and two sided variants [11]) is a variant
of shift and invert Arnoldi that allows to select different shifts $s_{0},$ $\ldots,$ $s_{m}$ in each expansion step.
The transfer function of the resulting reduced system tends to approximate $H$ accurately in a
neighborhood of each of the $s_{i}$ (with accuracy depending on the number of iterates in which
the same shift $s_{i}$ is used). The neighborhood of accurate approximation tends to be larger if
$H$ is ‘smooth’ around $s_{i}$ .

Fig. 6.1 (see [22]) shows approximation results for a configuration of the Brazilian Intercon-
nected Power System [21]. The left panel shows the effect of working with a single shift $s_{0}=0$

$($ and $k=85)$ and with a second at $s_{1}=i(s_{j}=\sigma_{j}i, k=80)$ using a rational Krylov Arnoldi
(RKA) variant. The second shift is located at a peak. With one shift, we have an accurate
approximation around the shift, but the good accuracy does not extend beyond the peak at
$s_{1}=i$ . Including the peak as second shift extends the area of accurate approximation.

6.2. Modal approach. As observed in \S 2.5, the transfer function $H$ tends to peak on
values $s$ along the imaginary axis that are equal to the imaginary part of dominant poles $\lambda_{j}$ , with
peaks being larger if the scaled residue $R_{j}/{\rm Re}(\lambda_{j})$ is larger. The modal approach computes
dominant poles and projects onto the spaces spanned by the associated eigenvectors. As a
consequence, the peaks in the traiisfer function are extremely well represented by the transfer
function of the reduced model (cf. \S 2.5).

6.3. The effect of combining approaches. In the left panel of Fig. 6.1, subspace accel-
erated DPA detected 36 dominant poles (20 poles in the upper upper half plain where required.
Some poles show up in conjugate pairs, others are real). The relative error in the resulting ap-
proximate transfer function is displayed by the dotted line. An reduced model of order 18 was
computed with RKA using shifts at $0,2,4,6,8,10$ times $i,$ $6$ moments for each of the shifs (that
is, Krylov spaces of order 3). The solid line gives the resulting relative error. DPA detected the
peaks (the dip in the dotted line at $\omega=1$ ), but RKA produces a better approximation away
from the peaks (even with a smaller model). Note that neither of these two reduced niodels
produce accurate approximations. Applying RKA to a model from which dominant triples (de-
tected by DPA) have been removed, leads to a high accuracy in a wide range of $\omega$ values: see
the dashed line that corresponds to a reduced system of order $k=37$ . This systeni has been
obtained by removing 19 poles (10 poles in upper half plane) with DPA and 18 RKA vectors.
The dashed-dotted line represents the reduced model that uses 36 dominant eigentriples (as
was the case for the dotted line) plus 18 RKA vectors (as for the solid line). The combination
is much more accurate than will be anticipated from the ‘pure’ approaches. For more details
on this discussion, see $[$22, \S 3.8 $]$ .
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FIC. 6.1: The left panel displays the bode plot of the transfer function of the onginal system and of two
reduced systems obtain$ed$ vyith $RKA$ , a rational Amoldi vareant. The nght panel displays for the same systcm
the relative erro$r$ in appronmations of the transfer function using subspace accelerated $DPA$ , using $RKA$ with
six shifts, and using a combinations of these two methods $($two combinations$)$ .

7. Conclusions. Models of reduced dimension can be formed by projecting the original
system onto eigenvectors associated with dominant poles (the modal approach). The resulting
approximate transfer functions tend to be accurate specifically around the peaky parts.

Although the Rayleigh quotient iteration (RQI) for computing eigentriples converges asymp-
totically faster than the dominant pole algorithm (DPA), the convergenoe regions of dominant
poles tend to be much larger for DPA. This explains why DPA is more attractive than RQI for
the niodal approach for computing models of reduced diinension.

Inclusion of subspace acceleration in DPA and in RQI improves the efficiency of these
inethods. The accelerated versions of both DPA and RQI have the same convergence properties
as Jacobi-Davidson (JD). In particular, the regions of convergence of all three methods coincide.
Nevertheless, also when accelerated, DPA is more attractive than RQI (and JD): DPA allows
efficient deflation of detected eigentriples. This makes the steps of DPA in the iterative search
for subsequent eigentriples more efficient. All methods require the solution of linear systems.
The observations so far refer to the case where the linear systems are solved exactly. For high-
dimensional systems, this is not feasible. With inexact solves, JD has better stability properties
and is the preferred method.

Moment matching techniques that project onto (rational) Krylov subspaces tend to produce
approximate transfer function that are accurate on the smooth part. A combination with the
modal approach for high accuracy of the peaky part of the transfer function cari efficiently be
performed and leads to high accuracy for a wide range of values of $\omega$ (cf., (1.1)).
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