goooboooogn 28
0 16150 2008 O 28-33

QUICK REVIEW ON PROPERTY (X)

YOSHIMICHI UEDA (#H #8)

ABSTRACT. We will review some materials that are useful to prove the uniqueness of preduals.

Those were used crucially in our recent work on the uniqueness of predual of any ‘finite’ non-
commutative H°.

1. INTRODUCTION

In [12] we established, among other things, the uniqueness of predual of any ‘finite’ non-
commutative H*-algebra H°°(M, ), which was introduced by Bill Arveson modeled after the
usual pair H*(D) — L°°(T) with the aid of operator algebra theory. The class of finite non-
commutative H > -algebras contains H>° (D) as well as its abstract generalizations. Thus (12,
Theorem 2] covers any existing generalization of the famous result due to Tsuyoshi Ando [3].

The most key ingredient of our proof of the uniqueness of predual of H (M, ) is to provide
a non-commutative analog of Amar-Lederer’s peak set result [2] (also see [4]), which we fully
explained in [12]. However, our proof of the uniqueness of predual also uses two purely Banach
space theoretic techniques — Property (X) due to Godefroy and Talagrand and a very clever
trick, both of which we just borrowed from some references without any detailed explanation.

Here we will give detailed accounts (for non-experts like us) on those techniques as supplements
to {12, Theorem 2].

In closing, we should mention our sincere thanks to Professor Kichi-Suke Saito for giving
this opportunity.

2. GODEFROY-TALAGRAND’S PROPERTY (X)

This section mainly follows Gedefroy and Talagrand’s elegant work [6]. The key ingredient
behind Godefroy-Talagrand’s property (X) is the next proposition.

Proposition 2.1. Let E and G be Banach spaces with E* = G*. If a sequence {zn} C E*
satisfies

(i) 2 — 0 in o(E*, E); and

(ii) fo;l [Y(Tnt1 — Tn)| < 400 for all € E**,
then x, — 0 in o(E*,G).

Proof. Set uo := x1, u1 1= z3 — x1, and Up = Tny1 — T, and then by (i)

Zuk =Tpy1 —— 0 in o(E*, E). (1)
k=0
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For each n € Ng := {0,1,2,...} we consider the map T}, : & = (a) € £°(Np) D o kUK €
E* (< E*** via the canonical embedding). Then one has, by (ii),

sup{|(Tna)(9)] : loflso < 1, m € No} <D [(ur)| < +00
k=0
for all ¢ € E**, and hence the uniform boundedness principle shows that there is K > 0 such
= [Tho| gae < K (2)

that
n
S o
k=0 E*

for all n € Ny and for all oy € C with |ag| < 1.

Choose an arbitrary free ultrafilter w € B(Np) \ Ny and put &, := lim,_, 3 p_,ux in
o(E*,G). Let us choose arbitrary ny < ny < -+ < ng_; < ng. Then, using (2) with

ak:{l ”Zj—lﬁki’nw, jzla"-al.\

0 otherwise

we get
n2 Ma n2
Dukt+ D et + > w| <K
k=nq k=ng k=ng;_1

Here we have

T2 ng n9y no 4 ng nai—1
_S_ U + E Ug + o+ E U = Uk + Ug + -+ E Up — E Uk
k k=0 k=0

k=n, k=na k=ng;_1 k=n1 =ng
ng ng4 na-1
— > ur+ > uk+t+be— Y ue ino(EY,G)
k=n1 k=ngz k=0
as ng; — w but ny,...,ny_1 are fixed. Then it follows that
ng [on T21—1
Dur+ Y uptoctbo— > wkl| <K
k=n1 k=ng k=0
for any fixed n1 < ng < --- < ng_1. We also have, by (1),
ng g nai—1
Z ug + Z up + -+ € — Z Uk
k=n4 k=ngz k=0

nz T4
— > up+ Y up+-+E& —0 ino(E*E)

=nj k=n3

as ng;_1 — 00 but ni,...,nq_o are fixed. Therefore, we get

ny n4 n2y—2

Zuk—i- uk + -+ Z up + || £ K

k=nj k=ns k=ngi_3
for any fixed n; < ng < --- < ng;_p. Clearly, this procedure can be continued for ngj_s, 7214
and so on, and we finally get [ - ||, || = ||léw]] < K. Since I can be arbitrarily large, £, must

. . - n .

be zero for any w € B(Np) \ Ng, which means that lim,—co Znt1 = limpoo Y p gtk = 0 in
o(E*,G). O

Based on the lemma, Godefroy and Talagrand introduced property (X).
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Definition 2.1. A Banach space E has property (X) if for any ¢ € E** the following conditions
are equivalent:
(a) ¥ € E with the canonical embedding E — E**.
(b) For any sequence {z,,} C E* with the properties
— Zp — 0 in o(E*, E),
= ot 18(Zng1 — )| < 400 for all ¢ € E**,
one has ¥ (z,) — 0.

This definition gives, in some sense, a criterion of w*-continuity for bounded linear functionals
on the dual E* of a Banach space E with property (X).

Definition 2.2. A Banach space F is said to be the unique predual of its dual E* if another
Banach space G with G* = E* must coincide with E inside the dual E** of E* (= G*) via the
canonical embedding,.

Corollary 2.2. If a Banach space E has property (X), then E must be the unique predual of
its dual E*.

Proof. Assume another Banach space G satisfies G* = E*. Embed G — (E*)* = E** by
g9(z) = z(g) for z € E* = G* and g € G. Let {z,} C E* be chosen in such a way that
Tn — 0 ino(E£*. E) and 377 | [¢(Zn1 ~ zn)| < +oo for all ¢ € E**, By Proposition
2.1 we get z, — 0 in o(E*,G), which shows that 9(zn) = xn(g) — 0 for all g € G.
Thus, Property (X) ensures that any g must fall in £ < E**, that is, G C F inside E**. If
G g E inside E**, then by the Hahn-Banach extension theorem there is * € E* such that
x # 0 but z|g = 0. (Indeed, there is e € E\ G by the assumption, and thus [e] € E/G
with [e] # 0. Then by the Hahn-Banach extension theorem there is ¢ € (E/G)* sending [e]

to ||[e]ll = inf{lle — g|| : ¢ € G} # 0. Hence the z := ¢ o Q € E* with the quotient map
Q : E — E/G becomes a desired element.) This z is a non-zero element in G* = E* but it is
identically zero on G, a contradiction. Hence G = E inside E**. O

The next proposition has been known, but we do give one proof, which is a prototype of our
proof of the uniqueness of predual of H> (M, 7).

Proposition 2.3. Let M be a o-finite von Neumann algebra and M, be its predual. Then, M,
has property (X).

Proof. Tt suffices to show that, if ¢ € M* satisfies o(xn) — 0 for any {z,} C M with the
properties

® £, —> 0in o(M,M,) and

o 3ol |d(@ny1 — xp)| < 400 for all ¢ € M*,
then ¢ must fall in M, < M*. Here we need the following standard facts on von Neumann
algebras (see e.g. [9] and [11] for their proofs):

(1) Any ¢ € M* can be decomposed into ¥ = Ynor + Ysing With ¥nor € M, and Ysing €
M* © M., and [[Y|| = |[¥norl| + ||*sing|| holds. (This is the so-called non-commutative
Lebesgue decomposition due to Takesaki.) We call M, the normal part and M* \ M,
the singular part. Remark that the notation here is a little bit different from that in
(12].

(2) For any ¢ € M* (or ¢ € M,) there are a unique positive linear functional |¢)| € M,
(resp. [¢| € M,) and a unique partial isometry v € M** (resp. v € M,) such that
(.x) = (||, zv) as well as (|o|,z) = (,zv*) for £ € M**, where () + M* x
M** — C stands for the canonical pairing. (This is the so-called polar decomposition
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of linear functionals due to Sakai and also Tomita.) Remark here that the second dual
M™* becomes a von Neumann algebra, which naturally contains the original M as a
subalgebra via the canonical embedding M < A**.

(3) Both the closed subspaces M, and M* & M, of M* are closed under the operation
Y € M* — [¢| € M*. (This follows from the construction of the decomposition in (1)
together with (2).)

(4) For a positive linear functional ¢ € M* the following are equivalent:

e e M M,.
e For every nonzero projection e € M there is a non-zero projection eqg € M such
that eg < e and ¥(eg) = 0.
(This is Takesaki’s criterion for ‘singularity’ of linear functionals.)

(5) Any ¢ € M* (or M,) can be written as a linear combination of four pos1t1ve linear
functionals in Af* (resp. M,).

Let us decompose the given ¢ into ¢ = @nor + Psing 28 in (1), and what we have to show
iS Ysing = 0, i.e., ¢ = Ynor € M,. For contrary we suppose @sing # 0. Then, by (2) and
(3), |@sing] # 0 and |Psing] € M* © M, still holds. Clearly, the orthogonal families of non-
zero projections in Ker|ysging| forms an inductive set by inclusion, and Zorn’s lemma ensures
the existence of a maximal family {gx}, which is at most countable since M is o-finite. Put
90 = D> . qx in M, and then gy = 1 since gy # 1 clearly contradicts to the above (4). Also, if
{gx} is a finite family, then |@pying|(1) = 3, |sing|(gx) = 0, a contradiction. Therefore, {gi}
must be a countably infinite family with >°, g = 1 in M. Letting pp :=1 -3 k<n 9k We have
Prn \ 0 in o (M, M,) but |@sing|(Pn) = |@s|(1) for all n. The latter says that p, converges a
non-zero projection p € M** in o(M™**, M*) with (|sing|,P) = {|@sing|, 1) (= |@sing|(1)) since
Pn is a decreasing sequence. Let u € ]\J and v € M** be the partial isometries for the polar
decompositions of @nor and @sing, respectively. Then, for z € M** one has |{Pging, (1 — p)z)| =
[{[Pang. (1= D)0 < ([ing]: 1 = §)/* (| eing], 0*2*50)"/2 = 0 50 that (psing: Z) = (¢oing, P2)
since (lz/)smgi,p) (|singl, 1). Similarly, for £ € M** one has |(¢nor, PT)| = |{|Pnor|, PTU)| <
(I®norls DY/ 2(|nor|, u*z*zu) /2. Since |pnor| still falls in My, (|@norl, P) = limy oo [©nor|(Pn) =
0 so that (¢nor, pz) = 0. Consequently, we get (¢, pz) = (@nor + Psing, PT) = Psing(z) for z € M.

Let x € M be arbitrary. Clearly, p,z — 0 in o(M,M,). Let ¢ € M* be arbitrary,
and decompose y € M +— ¢(yz) into a linear combination of four positive linear functionals
¢; € M*,i=1,2,3,4, thanks to the above (5). Since S0 |¢i(Pns1 —Pp)| = SN i(gne1) =
gbi.(L,]:"le qn) < ¢i(1) < +oo for all N € N, it follows that > -7 | |¢(Pnt1Z — PpT)| < +oo.
Therefore, by the assumption here one has ¢(p,z) — 0. On the other hand, ¢(p,z) =
(0, PnT) — (P, PT) = Psing(Z) S0 that pgne = 0, a contradiction. O

The heart of the above proof is as follows. Although ¢nor and @sing are ‘orthogonal’, we
cannot find a projection in M that distinguishes those. (Of course, we can find such a projection
in M™* since both functionals can be regarded as ‘normal’ ones on AM**.) Thus we first construct
a projection p € M™* in such a way that it can be ‘nicely’ approximated by projections in M and
p is greater than ‘the support of ¢gin,’ but ‘disjoint’ from ‘the support of ¢no:’. This essentially
says that M ‘remembers’ the decomposition ‘M* = M, & (J\I * o M*)’ of M* (the second dual
of M,). This suggests us that such a decomposition of the second dual should be related to
property (X) of a Banach space in question. This was quite recently answered affirmatively by
Hermann Pfitzner when a Banach space in question is separable, see [8].

Further accounts on the present topics can be found in [5].
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3. ADDENDUM — A CLEVER TRICK DUE TO PELCZYNSKI

The essential idea of our proof of the uniqueness of predual of H°*(M, 7) is similar to that
of Proposition 2.3. However, the luck of self-adjointness of our algebra H (M, 7) (thus we
cannot use the order structure) makes some trouble, which we overcame with a clever trick
borrowed from the proof of {7, Proposition 1.c.3]. (The trick is due to Aleksander Pelczyriski,
see [10, p.637] for this credit, and it was originally used for proving that if a Banach space has
Pelczyrniski’s property (u) then so does any closed subspace, see [7] or more recent [1].) Here we
will explain it. The situation we deal with is as follows. Let M be a von Neumann algebra and
A be its o-weakly closed (possibly non-self-adjoint) unital subalgebra. Assume that we have
two sequences {a,} C A and {b,} C M such that

(i) both a, and b, converge to the same p € M** in o(M**, M*), and

(i) Yo7, |P(bnt1 — bn)| < +oo for all ¢ € M*.
What we want to do is to replace a, by a new one with keeping (i) and further satisfying (ii).
This can be done by utilizing the above-mentioned clever trick in Banach space theory.

Proposition 3.1. There is another {al,} C A such that
(") a;, — p in o(M**, M*), and
(i) Yomeq |#(any, — al)| < oo for all ¢ € M*.
We need one elementary lemma due to Stanistaw Mazur.

Lemma 3.2. Let E be a normed space and {x,} C E be such that z,, — 0 in d(E, E*). Then,

for each € > 0 and each m € N there is a conver combination y = 2 n>m AnTn with [yl < <.

Proof. Let C,, be the closed convex hull of {zn}n>m in E. It suffice to show 0 € C,,. Thus, for
contrary, suppose 0 € C,,,. Then there is a small open ball B centered at 0 with C,, N B = 0.
The Hahn-Banach separation theorem ensures that there are ¢ € E* and t € R such that
Rep(b) St < Rep(c) for all b € B and ¢ € Cr,. This is impossible since z, —- 0 in o(E, E*)
(implying ¢ < 0) and 0 € B (implying ¢ = 0). Thus 0 € C,,, which means the desired
assertion. g

Proof. (Proposition 3.1) Putting by := 0 we have > °0  |¢(b, — b,_1)| < 400 for all ¢ € M*.
Set u,, 1= a, — ZZ=1 by, — bx_1, and then u, = a, — b, — 0 in o(M, M*) by (i). By Lemma
3.2 there are convex combinations u;. = Zﬁ’;p,-_l +1 /\,(f )un such that 0 = py < p1 < pa < ---

and ||uj|| < 277. Then We define aj = fl"___pj_ 41 Aa, € 4 and put ag := 0 for convenience.
Let us prove that this {a}} gives a desired sequence.
Since a, — p in o(M**, M*), for any ¢ > 0 and any ¢ € M* there is ny € N such that

l{an, ) — (p, )| < € for all n > ng, where (-,-) : M** x M* — C is the canonical pairing. If j, is

chosen so that pj,—1+1 > no, then one has [(a}, §)—(p, ¢)| < 371, 1. AP (@, ) — (p, Pl <«
for all 7 > jo. Thus a; — pin o(M**,M*) as j — oc.
One has
Pj+1 o Pj .
Qjy1 — @5 = Uiy + Z A (an — un) — uj — Z AP (an — un)
n=p;+1 n=pj-i1+1
Pj+1 ' n Pj ) 7
=ui—wt D ATVQ b —be-) = D0 AP be —bi)
n=p;+1 k=1 n=p;_141 k=1
Pj+1

= Uiy —u;+ Z D (b — bn_1)
n=p;_1+1
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with some 0 < uff ) < 1. Hence,

oo
Z |¢(a;+1 - a;)|
§=0

Pj+1

<D lBllall + Dol + 3" S0 4 — bas)]
=0 =0

J=ln=p;_1+1

<2} llllefll + 3 1¢(bn — bay)|
j=0 n=1

<4l + D [p(bn — bp-1)| < 400

n=1

by |luj|| <277 and (ii). O

Remark here that the argument presented above uses only the linear structure; hence clearly
it can be applied to more general situations.
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