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Vector valued Siegel modular forms
of degree 2 with small levels
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1 Introduction

On the structure theorem of Siegel modular forms of degree 2, Igusa [Igl, Ig2)
determined the structure of Siegel modular forms with respect to the full
modular group Sp(2,Z). There are five generators of weight 4,6, 10, 12 and
35. First four generators are algebraically independent and the square of the
last generator is in the subring generated by first four.

Recently, Aoki and Ibukiyama [AI] indicated that the ring of Siegel mod-
ular forms with small level has similar structure. That is, on the ring of Siegel
modular forms of degree 2 with respect to the congruent subgroup of level
N =1,2,3,4 (for N = 3, 4, taking Neven-type case with character), there are
five generators, among which four generators are algebraically independent
and the square of the last generator is in the subring generated by first four.

On the structure of vector valued Siegel modular forms of degree 2 with
respect to the symmetric tensor of degree 2, Satoh [Sa] and Ibukiyama [Ib3]
determined the structure with respect to the full modular group. There are
ten generators with some relations.

The original proofs of above structure theorems are various. However,
now we can prove all of them by using the elementary estimation of the
dimension of the space of Siegel modular forms. In this exposition, we study
this method.

By this method, we also determined the structure of vector valued Siegel
modular forms with small level. This structure is similar to the structure
with respect to the full modular group.
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2 Main theorem

2.1 Complex scalar valued case

We denote the Siegel upper half plane of degree 2 by

H, :={Z=tZ= (Z j) € M(C) | ImZ>0}.

The symplectic group

Sp(2,R) := { M= (g g) € My(R) | tMIM = J := (g: *015272) }

acts on H, transitively by
Hy > Z— M(Z):=(AZ+ B)(CZ + D) € Ha.
For M € Sp(2,R), k € Z and a holomorphic function F : Hy — C, we write
(F|lxM)(Z) := det(CZ + D) *F(M(Z)).

Let
Sp(2, Z) := Sp(2, R) N M4(Z)

and I' C Sp(2,R) be a commensurable subgroup with Sp(2,Z), namely, I' N
Sp(2,Z) is a finite index subgroup of I"' and also a finite index subgroup of
Sp(2,Z).

Definition 1. For a holomorphic function F : Hy — C and k € Z, we say
F is a Siegel modular forms of weight k with respect to T' if F satisfies the
condition F(Z) = (F|xM)(Z) for any M €T.

We remark that this F' is bounded at each cusps by Kocher principle.
We denote by Ax(T") the space of all Siegel modular forms of weight k with
respect to I'. The space A,(T") := @,z Ax(T") is a graded ring.

Put

To(N) 1= { M= (é g) €Sp(2,Z) | C=0; (mod N) }

for any natural number N € N:= {1,2,3,...}.

In this exposition, our interest is the case N = 1,2,3,4. When N = 3,4,
we take a character because the structure theorem become simple. That is,
for N = 1,2, we assume I' := I'y(N) and for N = 3,4, we assume

= Toyn(N) i= { M € To(N) | un(M) =11},
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where we denote by 3 the character defined by Y3(M) = (H‘J_(QDS) and by

14 the character defined by ¥4 (M) = (211?1?(1137 )

In these cases, the structure of A,(I") is already known.

Theorem 1. For eachI" = Sp(2,7Z),To(2), Toys(3) or Loy, (4), the graded
ring A.(I") is generated by five modular forms. First four generators are
algebraically independent and the square of the last generator is in the subring
- generated by first four.

T The weights of The weights of References
first four generators | the last generators
Sp(2,Z) 4,6,10,12 | 35 Igusa [Igl, Ig2]
T'o(2) 2,4,4,6 19 Ibukiyama [Ibl]
Ibukiyama [Ibl]
Toys(3) 1,3,3,4 14 Aoki-Ibukiyama [Al]
o, (4) 1,2,2,3 11 | Hayashida-Ibukiyama [HI]

We remark that, in all cases, the last generators are obtained from the
first four using by Rankin-Cohen-Ibukiyama differential operators in [AI].

2.2 Vector valued case

Let s be a non-negative integer, V be a (s+1)-dimensional C-vector space and
p: GL(2,C) — GL(V) be a rational representation. It is well-known that p is
a rational irreducible representation if and only if p = p , := Sym*®det*. For
the sake of simplicity, in this exposition, we fix a coordinate of Sym® ® det®.
Namely, put V := C**! and px,(A) := (det A)*pos(A), where pos(A) is
defined by

(u®, v o, ..., v°) = (z°, 2" 1y,..., ¥ )pos(A)  ((u,v) = (z,9)A).

For M € Sp(2,R) and a holomorphic function F : H; — C*+1, we write
(FI,M)(2) := p(CZ + D) F(M(Z)).

Definition 2. We say F is a Siegel modular forms of weight p with respect
to T if F satisfies the condition F(Z) = (F|,M)(Z) for any M €T.
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We remark that this F' is bounded at each cusps by Kocher principle.
We denote by A s(I") the space of all Siegel modular forms of weight py ,
with respect to I'. We remark Ay o(I') = Ag(T"). It is easy to show that if s
is odd and if —E4 € T, then A;,(T") = {0}. Put A, () := Pz Ar,s(T).
The space A, (T) is a graded module of A,(I") or R, where R is a subring of
A,(T) generated by the first four generators in Theorem 1.

The aim of this exposition is to determine the structure of A, 2(I") as a
graded module of R. The structure of A. 2(Sp(2,Z)) was already determined
by Satoh [Sa] and Ibukiyama [Ib3]. There are ten generators, whose weights
are

10=4+6, 16=6+ 10, 21 =4 +6+ 10+ 1,
14=4+10, 18=6+12, 23=4+6+12+ 1,
16 =4+12, 22=10+ 12, 27 =4+10+12+1

and 29=6+10+12+ 1.

To show this, they used the dimension formula of modular forms. In
this exposition we will give this result by another way. By our way, we can
determine the module structure of A, (") for ' = T'o(2), To,p5 (3) or I'g 4, (4).

Theorem 2. For each T’ = Sp(2,Z),T¢(2),To4,(3) or I'oy,(4), the graded
module A, (") is generated by ten modular forms.

T The wel?,};;p:f 1g)ene1‘ators The Welil;:p(;fzg)enerators References
Sp(2,Z) | 10,14, 16, 16,18, 22 21,23, 27,29 Ibuska;;r(;}:ngs?l]m]
To(2) 6,6,8,8,10, 10 11,13,13,15
To.s(3) 4,4,5,6,7,7 8,9,9,11 Aoki [Ad]
To.y, (4) 3,3,4,4,5,5 6,7,7,8

We remark two points. The first point is, in all cases, these generators are
obtained from the generators of R using by differential operators. Indeed, the
first six generators are obtained from two generators of R using by Rankin-
Cohen type differential operators in [Sa]. And the last four generators are
obtained from two generators of R using by Rankin-Cohen-Ibukiyama type
differential operators in [Ib3]. The second point is, in all cases, these modules
are not free. There are relations called Jacobi Identities.
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3 Proof

For the sake of simplicity, in this exposition, we give a proof only on the
simplest case: scalar valued full modular case. Hence, from now on, we
assume I' := Sp(2,Z) and s = 0. But we insist that our proof is available for
all cases in Theorem 1 and Theorem 2.

Anyway, to prove the theorem, we prepare some notations. Let T =
SL(2,Z), q := e(7) := exp(2mv/—17), ¢ := e(2) and p := e(w).

3.1 Elliptic modular forms
We denote the complex upper half plane by

H={r € C| Im(r) > 0}.

For a holomorphic function f : H — C and k € Z, we say f is an elliptic
modular form of weight k¥ with respect to I if f satisfies the following two
conditions: _

(1) For any M €T, f|xM = f.

(2) f is bounded at all the cusps.
Let a(n) be the Fourier coefficients of f defined by

f(r) = Z a(n)q".
n=0
We denote by Mg (T') the space of all elliptic modular forms of weight k£ with
respect to I. Put M, (T) := Drcz My(T'). The space M, (T) is a graded ring.
For r € NU {0}, define subspaces of M, (T) by

M, (T; 7) :={f€Mk(f) ‘ a(n)=Oifn<'r}.

the structure of M, (f) is already known. Namely, the graded ring M., (T) is
generated by algebraically independent two modular forms of weight 4 and
6. Its Poincaré series is given by

le'r

T 1=z —-2z5)

P.(z) := Z (dimc Mk(f,r)) xk
keNu{o} '
3.2 Witt modular forms

For a holomorphic function f : HH x H — C and k,l € Z, we say f is a Witt
modular form of weight (k,1) with respect to T if f satisfies the following two
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conditions:

(1) For any fixed wo € H, the function f(7,wp) on 7 € H belongs to M ().
(2) For any fixed 7o € H, the function f(7p,w) on w € H belongs to M;(T’).
We denote by Mkz(F) the space of all Witt modular forms of weight (k, )
with respect to I. For r,s € NU {0}, define subspaces of My ;(T') by

_ M(fr) for any wo € H
My (T 7, ) == My (F) | £{Tw0) € M X
ki(L57,8) { f € Mg(T) f(1o,w) € M,(I‘ s) forany 7o € H

By Witt [Wi, Satz A], we have
My, (T; 7, 8) = My(T; ) ®c My(TS; 9).

Hence its Poincaré series is given by

P (f;m)(m’ y) == Z (dimc Mk,z(f‘; 7, s)) zkqy!
k,leNU{0}
=P (%) Pg.(y)

:L.12ry12s

T (1 -2 (1 —yN) (1 —¢5)

Put Mk;(f r) = Mkl(f r,r). We say f € M k(f‘; r) is symmetric or
skew-symmetric if f(7,w) = f(w,7) or f(r,w) = —f(w,7) and denote by

f e MYy (T;r) or f € Mis” (T;7), respectively. The structure of these
spaces are easily determmed Thelr Poincaré series are given by

A r)(x) Z (dimc My (T 7')) ¥
keNU{0}
m12r

-z (1 —x5)(1 —z7)’
PEY koW (1) 1= Z (dimc Myev (T r)) x*

keNu{0}

Z12(r+1)
Q-9 (1-25(1—z2)

3.3 Differential operator

For a complex domain X, we denote by Hol(X, C) the set of all holomorphic
functions from X to C. For r € Ny := {0,1,2,...}, define a differential
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operator D, : Hol(H,, C) — Hol(H?, C) by

carnear - (5) )

Ap(Tsr) :={ F € Ax(T") | D,(F) = 0 for any ¢t < r}.

and put

We remark that there is a descent sequence of vector spaces

Ap(T) = Ap(T;0) D Ax(T;1) D Ax(T;2) D Ax(T;3) O - -

and

(] Ax(T;r) = {0}.

reNp

Lemma 3. There ezists an exact sequence

0 — Ap(Ty7r+1) —— AR(T;7) —2— Hol(H?,C).

This lemma insists that, if we can know the dimension of D,(Ax(T;r))
possibly, we have the dimension of Ax(T") by

dimg Ax(T) = _dime D, (Ax(T;7)).

r=0

Indeed, from the next section, we will calculate the upper bound of the dimen-
sion of D,(Ak(T;r)). Hence we will have the upper bound of the dimension
of Ax(T"). Therefore, by constructing sufficiently many modular forms, we
can show this upper bound is the true dimension of Ax(T").

3.4 Estimation

The following lemma is easy to show from the transformation formula of
modular forms.

Lemma 4. The image by D, has the following properties.
(1) If k is even and if r is even, D, (Ax(T;7)) € MES(T).
(2) If k is even and if r is odd, D.(Ax(T;7)) = {0}.

(8) If k is odd and if v is even, D,.(Ax(T;7)) = {0}.

(4) If k is odd and if r is odd, D,(Ak(T;7)) C Mikew(T).

Hence we can improve the exact sequence given by Lemma 3.
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Corollary 5. There exist two ezact sequences.
(1) If k is even, Ag(T') = Ax(T';0) and

0 — A(T;2r +2) —— Ag(T;2r) 225 MY (T).

(2) If k is odd, Ax(T) = Ax(T';1) and

0 —— Ak(T;2r +3) —— Ag(T;2r +1) 22 Mkew (T),

To study the image D,(Ax(T';7)) more precisely, we will investigate the
Fourier coefficients of modular forms. Let F € Ag(l'). Put the Fourier
coefficients of F' by

F(Z)= Y a(n,l,m)g"¢'p™.

n,l,meZ

Because

(Dr(F))(ryw) = Y (Z (znﬁz)’a(n,z,m)) o™

n,meZ leZ

if F € Ag(T';7), foranyn € Z,m e Z and t < r,

Z lta(n,l,m) = 0.

lez

Lemma 6. The Fourier coefficients of F' satisfy the following equations:
(1) a(n1 _la m) = (—-l)ka'(n7 l, m)

(2) a(m,l,n) = (=1)*a(n,l,m).

(8) a(n + zl + z°m,l + 2zm, m) = a(n,l,m) for any z € Z.

(4) a(n,l + 2zn,m + zl + z?n) = a(n,l,m) for any x € Z.

(5) If k is odd, then a(n,0,m) =0 and a(n,l,n) = 0.

(6) If inm — 12 < 0, n < 0 or m < 0, then a(n,l,m) = 0.

Proof. The equations (1)-(5) are easy to show from the transformation for-
mula of modular forms. The equation (6) is well-known as Kocher princi-

ple. (]
Next lemma is easy, but this is a key of our story.

Lemma 7. If|l| > min{n,m} and a(n,l,m) # 0, there exist n',l',m' such
that min{n’, m'} < min{n, m} and a(n/,l',m’) # 0.

Proof. It is obvious from Lemma 6 (3)(4). O
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Lemma 8. The Fourier coefficients of F' has the following properties:
(1) If k is even, F € Ax(T;2r) and min{n, m} < r, then a(n,l,m) = 0.
(2) Ifk is odd, F € Ag(T;2r + 1) and min{n,m} < r+2, then a(n,l,m) = 0.

Proof. First, we show (1). Assume k is even and F € Ag(T';2r). Put

_ J 2a(n,l,m)  (f1#0)
b(n,l,m) -—{ ;(::0,2) (;fl=0)

Then for any n,m € Z and t € {0,1,...,r — 1}, we have

2/nm
> #b(n,1,m) =0

=0

It is sufficient to show b(n,{,m) = 0 if min{n,m} < r. We will show this by
induction on min{n,m}. If min{n,m} = 0, this lemma is trivial. Now we
assume that b(n,l,m) = 0 if min{n,m} < u < r — 1 and consider the case
min{n,m} = v+ 1. From Lemma 7, b(n,l,m) = 0if [ > u+ 1. Then we

have
u+1

Z 12b(n,l,m) =0
1=0
for any t € {0,1,...,7 — 1}. Hence, by the Vandermonde formula, we have
b(n,l,m) = 0.
Second, we show (2). Assume k is odd and F € Ax(T;2r+1). Put
b(n,l,m) := 2a(n,l,m). We remark that a(m,l,m) =0, a(n,n, m) = 0 and
a(n,m,m) = 0. Then for any n,m € Z and ¢t € {0,1,...,r — 1}, we have

2/nm

> 1#*p(n,l,m) =0
=1

It is sufficient to show b(n,l,m) = 0 if min{n, m} < r. We will show this by
induction on min{n,m}. If min{n,m} = 0, this lemma is trivial. Now we
assume that b(n,l,m) = 0 if min{n,m} < u < r + 1 and consider the case
min{n,m} = u+ 1. From Lemma 6, b(n,l,m) = 0if [ > u+ 1. Then we

have
u+1

Z 12+ 1p(n,l,m) =0
=1

for any t € {0,1,...,r — 1}. Hence, by the Vandermonde formula, we have
b(n,l,m) = 0. O
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Corollary 9. The image by D, has the following properties.
(1) If k is even, Do, (Ax(T;2r)) € MR (T;7).

k+2r

(2) If k is odd, Dapy1(Ak(T;2r +1)) € Mgkey (T 7 + 2).

Corollary 10. There ezist two ezact sequences.
(1) If k is even, Ag(T') = Ax(T';0) and

0 —— Ap([52r+2) —— Ai(T;2r) —— Mk+2r(I‘;r).
(2) If k is odd, Ag(T") = Ax(T'; 1) and

0 —— A(T32r+3) —— Ap(T;2r +1) 220 Mekew (Tr +2).

Corollary 11. We have the upper bounds for tiie dimensions of Ax(T).
(1) If k is even, dimg Ax(T) < Y°22 , dim¢ MZ’;_“;,.(I‘Lr)
(2) If k s Odd, dim¢ Ak(l“) < Z;’;o dim¢ M?_’ST_!_](P; r+ 2).

Now we calculate the Poincaré series of this upper bound. If k is even,
we have

12r—2r

22 (dimc M (T 7‘)) = = Z (1—z4)(1 — z8)(1 — z12)

keZ r=0

1
(1= 2% (1 — 25)(1 — 20)(1 — z12)°

If k£ is odd, we have

xlz(r+2+1)-—(2r+1)

Z Z (dimC Mi“i%”m(f; T+ 2)) z* = rgo (1= z4)(1 — z8)(1 — z12)

k€Z r=0

$35

(1= 24)(1 — 25)(1 — 20)(1 — z22)’

Hence, if we construct algebraically independent modular forms of weight
4,6,10,12, and if we construct a modular forms of weight 35, we finish the
proof of Theorem 1 for N = 1. Indeed, Igusa [Igl, Ig2] constructed these
modular forms from the theta functions.
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