PERIODS OF AUTOMORPHIC FORMS AND L-VALUES

TAMOTSU IKEDA

1. Introduction

This article is a proceeding of an expository talk, in which I discussed a possibility to relate a period integral to some L-values.

Let G be a connected reductive algebraic group defined over an algebraic number field k. Let π be an irreducible cuspidal automorphic representation of $G(\mathbb{A})$. Let $H \subset G$ be a connected algebraic subgroup. Let $\theta: H(\mathbb{A}) \to \mathbb{C}^{\times}$ a character which is trivial on H(k).

Definition 1.1. An integral of the form

$$\mathcal{P}_{H, heta}(arphi) = \int_{H(k)\setminus H(\mathbf{A})} arphi(h) \overline{ heta(h)} \, dh$$

is called an (H, θ) -period.

Remark 1.2. Some people say that the terminology "period" is inadequate in this context.

The automorphic representation π is said to be (H, θ) -distinguished if $\mathcal{P}_{H,\theta}(\phi) \neq 0$ for some $\varphi \in \pi$. If there is no fear of confusion, we simply say that π is distinguished.

If $\dim_{\mathbb{C}} \operatorname{Hom}_{H_v}(\pi_v, \theta_v) < \infty$ for all v, then it is believed that the period integral $\mathcal{P}_{H,\theta}(\varphi)$ is related to some L-values. More precisely, we are looking for a formula, which is of the form

$$\frac{|\mathcal{P}_{H,\theta}(\varphi)|^2}{\langle \varphi, \varphi \rangle} = \frac{1}{\sharp \mathcal{S}_{\pi}} \cdot C_H \frac{\Delta_G}{\Delta_H} \frac{L(1/2, \pi, \rho)}{L(1, \pi, \mathrm{Ad})} \prod_{v} l_v(\varphi_{1,v}, \bar{\varphi}_{1,v}).$$

Here, S_{π} is a certain finite group depending only on the L-packet of π . The constant Δ_H (reps. Δ_G) is a product of certain L-value determined by the motive (see Gross [8]) of reductive part of H (resp. G). The constant C_H is a constant depending only on the choice of the local and global Haar measure on $H(\mathbb{A})$. The representation ρ is a finite dimensional symplectic representation of ${}^L\!G$. The local homomorphism $l_v \in \operatorname{Hom}_{H_v \times H_v}(\pi_v \times \tilde{\pi}_v, \theta \times \bar{\theta})$ should depends only on local data. We call this kind of equation a "period formula" in this manuscript. A

typical (conjectural) example of a period formula is the Gross-Prasad type conjecture for orthogonal groups (joint work with Ichino [15]), which we recall in the next section.

2. Gross-Prasad type conjectures

Let k be a global field with $\operatorname{char}(k) \neq 2$. Let (V_1, Q_1) and (V_0, Q_0) be quadratic forms over k with rank n+1 and n, respectively. We assume $n \geq 2$. When n=2, we also assume (V_0, Q_0) is not isomorphic to the hyperbolic plane over k. We denote the special orthogonal group of (V_i, Q_i) by G_i (i=0,1). In this section, the subscript i will indicate either 0 or 1, except for some obvious situation. We assume there is an embedding $\iota: V_0 \hookrightarrow V_1$ of quadratic spaces. Then we have an embedding of the corresponding special orthogonal group $\iota: G_0 \hookrightarrow G_1$. We regard G_0 as a subgroup of G_1 by this embedding. The group $G_i(k_v)$ of k_v -valued points of G_i is denoted by $G_{i,v}$.

For even-dimensional quadratic form (V,Q), the discriminant field K_Q is defined by $K_Q = k(\sqrt{(-1)^{\dim V/2} \det Q})$. We put $K = K_{Q_0}$ (resp. $K = K_{Q_1}$), if dim V_0 is even (resp. if dim V_1 is even). We call K the discriminant field for the pair (V_1, V_0) . Let $\chi = \chi_{K/k}$ be the Hecke character associated to K/k by the class field theory.

Put

$$\Delta_{G_i,v} = \begin{cases} \zeta_v(2)\zeta_v(4)\cdots\zeta_v(2l) & \text{if } \dim V_i = 2l+1, \\ \zeta_v(2)\zeta_v(4)\cdots\zeta_v(2l-2)\cdot L_v(l,\chi) & \text{if } \dim V_i = 2l, \end{cases}$$

$$\Delta_{G_i} = \begin{cases} \zeta(2)\zeta(4)\cdots\zeta(2l) & \text{if } \dim V_i = 2l+1, \\ \zeta(2)\zeta(4)\cdots\zeta(2l-2)\cdot L(l,\chi) & \text{if } \dim V_i = 2l. \end{cases}$$

Let $\pi_i \simeq \otimes_v \pi_{i,v}$ be an irreducible square-integrable automorphic representation of $G_i(\mathbb{A})$. There is a canonical inner product $\langle *, * \rangle$ on forms on $G_i(k) \setminus G_i(\mathbb{A})$ defined by

$$\langle \varphi_i, \varphi_i' \rangle = \int_{G_i(k) \backslash G_i(\mathbf{A})} \varphi_i(g_i) \overline{\varphi_i'(g_i)} dg_i,$$

where dg_i is the Tamagawa measure on $G_i(\mathbb{A})$. We choose a Haar measure $dg_{i,v}$ on $G_{i,v}$ for each v. There exist a positive numbers C_i such that $dg_i = C_i \prod_v dg_{i,v}$, when the right hand side is well-defined. Since $\pi_{i,v}$ is an unitary representation, there is an inner product $\langle *, * \rangle_v$ on $\pi_{i,v}$ for any place v of k. We put $\|\varphi_{i,v}\| = \langle \varphi_{i,v}, \varphi_{i,v} \rangle_v^{1/2}$, as usual. There exists a positive constant C_{π_i} such that $\langle \varphi_i, \varphi_i' \rangle = C_{\pi_i} \prod_v \langle \varphi_{i,v}, \varphi_{i,v}' \rangle_v$ for any decomposable vectors $\varphi_i = \otimes_v \varphi_{i,v} \in \otimes_v \pi_{i,v}$ and $\varphi_i' = \otimes_v \varphi_{i,v} \in \otimes_v \pi_{i,v}$

We fix maximal compact subgroups $\mathcal{K}_1 = \prod_v \mathcal{K}_{1,v} \subset G_1(\mathbb{A})$ and $\mathcal{K}_0 = \prod_v \mathcal{K}_{0,v} \subset G_0(\mathbb{A})$ such that $[\mathcal{K}_0 : \mathcal{K}_1 \cap \mathcal{K}_0] < \infty$. We choose a \mathcal{K}_i -finite decomposable vector $\varphi_i = \otimes_v \varphi_{i,v} \in \otimes_v \pi_{i,v}$. In this section, we consider the period $\langle \varphi_1|_{G_0}, \varphi_0 \rangle$ where $\varphi_1|_{G_0}$ is the restriction of φ_1 to $G_0(\mathbb{A})$.

Let S be a finite set of bad places containing all archimedean places. We may and do assume the following conditions hold for $v \notin S$:

- (U1) G_i is unramified over k_v .
- (U2) $\mathcal{K}_{i,v}$ is a hyperspecial maximal compact subgroup of $G_{i,v}$.
- (U3) $\mathcal{K}_{0,v} \subset \mathcal{K}_{1,v}$.
- (U4) $\pi_{i,v}$ is an unramified representation of $G_{i,v}$.
- (U5) The vector $\varphi_{i,v}$ is fixed by $\mathcal{K}_{i,v}$ and $\|\varphi_{i,v}\| = 1$.
- (U6) $\int_{\mathcal{K}_{i,v}} dg_{i,v} = 1.$

When G_i is unramified over k_v , we shall say that a Haar measure on $G_{i,v}$ is the standard Haar measure if the volume of a hyperspecial maximal compact subgroup is 1. Thus the condition (U6) means that the measure $dg_{i,v}$ is the standard Haar measure.

The L-group ${}^{L}G_{i}$ of G_{i} is a semi-direct product $\hat{G}_{i} \rtimes W_{k}$. Here, W_{k} is the Weil group of k and

$$\hat{G}_i = \begin{cases} \operatorname{Sp}_l(\mathbb{C}) & \text{if } \dim V_i = 2l+1, \\ \operatorname{SO}(2l, \mathbb{C}) & \text{if } \dim V_i = 2l. \end{cases}$$

We denote by st the standard representation of LG_i . The completed standard L-function for π_i is denoted by $L(s, \pi_i, \operatorname{st})$ for an irreducible automorphic representation π_i of $G_i(\mathbb{A})$. For simplicity, we sometimes denote $L(s, \pi_i, \operatorname{st})$ by $L(s, \pi_i)$. For $v \notin S$, the Euler factor for $L(s, \pi_i)$ is given by $\det(1 - \operatorname{st}(A_{\pi_i,v}) \cdot q_v^{-s})^{-1}$, where, $A_{\pi_i,v}$ is the Satake parameter of $\pi_{i,v}$. We consider the tensor product L-function $L(s, \pi_1 \boxtimes \pi_0)$. The Euler factor of $L(s, \pi_1 \boxtimes \pi_0)$ for $v \notin S$ is given by $\det(1 - \operatorname{st}(A_{\pi_1,v}) \otimes \operatorname{st}(A_{\pi_0,v}) \cdot q_v^{-s})^{-1}$.

Consider the adjoint representation Ad: ${}^LG_i \to \operatorname{GL}(\operatorname{Lie}(\hat{G}_i))$. The associated L-function $L(s, \pi_i, \operatorname{Ad})$ is called the adjoint L-function. We assume that $L(s, \pi_1 \boxtimes \pi_0)$ and $L(s, \pi_i, \operatorname{Ad})$ can be analytically continued to the whole s-plane.

We put

$$\mathcal{P}_{\pi_1,\pi_0}(s) = \frac{L(s,\pi_1 \boxtimes \pi_0)}{L(s+(1/2),\pi_1,\mathrm{Ad})L(s+(1/2),\pi_0,\mathrm{Ad})}.$$

TAMOTSU IKEDA

Let $\pi_{i,v}$ be an irreducible admissible representation of $G_{i,v}$. We denote the complex conjugate of $\pi_{i,v}$ by $\bar{\pi}_{i,v}$. It is believed that

(MF)
$$\dim_{\mathbb{C}} \operatorname{Hom}_{G_{0,v}}(\pi_{1,v} \otimes \bar{\pi}_{0,v}, \mathbb{C}) \leq 1$$

for non-archimedean place v of k. Recently, Aizenbud, Gourevitch, Rallis, and Schiffmann wrote a preprint, in which they obtained closely related results. For archimedean place, (MF) is verified in many cases, but not in general.

We consider the matrix coefficient

$$\Phi_{\varphi_{i,v},\varphi'_{i,v}}(g_i) = \langle \pi_{i,v}(g_i)\varphi_{i,v}, \varphi'_{i,v}\rangle_v, \quad g_i \in G_{i,v}$$

for a $\mathcal{K}_{1,v}$ -finite vector $\varphi_{1,v}, \varphi'_{1,v} \in \pi_{1,v}$ and a $\mathcal{K}_{0,v}$ -finite vector $\varphi_{0,v}, \varphi'_{0,v} \in \pi_{0,v}$. Put

$$I(\varphi_{1,v},\varphi'_{1,v};\varphi_{0,v},\varphi'_{0,v}) = \int_{G_{0,v}} \Phi_{\varphi_{1,v},\varphi'_{1,v}}(g_{0,v}) \overline{\Phi_{\varphi_{0,v},\varphi'_{0,v}}(g_{0,v})} \, dg_{0,v},$$

$$\alpha_{v}(\varphi_{1,v},\varphi'_{1,v};\varphi_{0,v},\varphi'_{0,v}) = \Delta_{G_{1},v}^{-1}\mathcal{P}_{\pi_{1,v},\pi_{0,v}}(1/2)^{-1}I(\varphi_{1,v},\varphi'_{1,v};\varphi_{0,v},\varphi'_{0,v}).$$

When $\varphi_{1,v} = \varphi'_{1,v}$ and $\varphi_{0,v} = \varphi'_{0,v}$, we simply denote these objects by $I(\varphi_{1,v},\varphi_{0,v})$ and $\alpha_v(\varphi_{1,v},\varphi_{0,v})$, respectively. If both $\pi_{1,v}$ and $\pi_{0,v}$ are tempered, then the integral $I(\varphi_{1,v},\varphi_{0,v})$ is absolutely convergent and $I(\varphi_{1,v},\varphi_{0,v}) \geq 0$ for any $\mathcal{K}_{i,v}$ -finite vector $\varphi_{i,v} \in \pi_{i,v}$. Moreover, if v is a non-archimedean place, and the conditions (U1), (U2), (U3), (U4), (U5), and (U6) hold, then we can show that $\alpha_v(\varphi_{1,v},\varphi_{0,v}) = 1$.

Conjecture 2.1. Assume that both $\pi_{1,v}$ and $\pi_{0,v}$ are tempered. Then $\dim_{\mathbb{C}} \operatorname{Hom}_{G_{0,v}}(\pi_{1,v} \otimes \bar{\pi}_{0,v}, \mathbb{C}) \neq \{0\}$ if and only if $\alpha_v(\varphi_{1,v}, \varphi_{0,v}) > 0$ for some $\mathcal{K}_{i,v}$ -finite vector $\varphi_{i,v} \in \pi_{i,v}$.

Now let $\pi_i \simeq \otimes_v \pi_{i,v}$ be irreducible cuspidal automorphic representation of $G_i(\mathbb{A})$. We shall say that π_i is almost locally generic if π_i satisfies the following condition (ALG).

(ALG) For almost all v, the constituent $\pi_{i,v}$ is generic.

It is believed that π_i is almost locally generic if and only if π_i is tempered (generalized Ramanujan conjecture).

Conjecture 2.2. Let $\pi_i \simeq \otimes_v \pi_{i,v}$ be an irreducible cuspidal automorphic representation of $G_i(\mathbb{A})$. We assume both π_1 and π_0 are almost locally generic. Then

- (1) The integral $I(\varphi_{1,v}, \varphi_{0,v})$ should be absolutely convergent and $I(\varphi_{1,v}, \varphi_{0,v}) \geq 0$ for any $\mathcal{K}_{i,v}$ -finite vector $\varphi_{i,v} \in \pi_{i,v}$.
- (2) dim_C Hom_{G_{0,v}} $(\pi_{1,v} \otimes \bar{\pi}_{0,v}, \mathbb{C}) \neq \{0\}$ if and only if $\alpha_v(\varphi_{1,v}, \varphi_{0,v}) > 0$ for some $\mathcal{K}_{i,v}$ -finite vector $\varphi_{i,v} \in \pi_{i,v}$.

Now we state our global conjecture.

Conjecture 2.3. Let $\pi_1 \simeq \otimes_v \pi_{1,v}$ and $\pi_0 \simeq \otimes_v \pi_{0,v}$ are irreducible cuspidal automorphic representations of $G_1(\mathbb{A})$ and $G_0(\mathbb{A})$, respectively. We assume π_1 and π_0 are almost locally generic. Then there should be an integer β such that

$$\frac{|\langle \varphi_1|_{G_0}, \varphi_0 \rangle|^2}{\langle \varphi_1, \varphi_1 \rangle \langle \varphi_0, \varphi_0 \rangle} = 2^{\beta} C_0 \Delta_{G_1} \mathcal{P}_{\pi_1, \pi_0}(1/2) \prod_{v \in S} \frac{\alpha_v(\varphi_{1,v}, \varphi_{0,v})}{\|\varphi_{1,v}\|^2 \cdot \|\varphi_{0,v}\|^2}$$

for any non-zero vectors $\varphi_1 = \bigotimes_v \varphi_{1,v} \in \pi_1$ and $\varphi_0 = \bigotimes_v \varphi_{0,v} \in \pi_0$.

It seems that the integer β is related to the order of the groups, which appear in the theory of endoscopy.

It is possible to formulate a similar conjecture for non-tempered automorphic representations (cf. [15]).

3. The relative trace formula

For low rank groups, some periods formula are proved by using theta correspondence and Rankin-Selberg formulas (see, e.g, [3], [12], [13], [14], [19], [22]). For higher rank groups, it seems some sophisticated tool such as relative trace formula is necessary. In this section, we will discuss how a relative trace formula can be applied to period formulas.

Let G be a connected reductive algebraic group defined over k. We assume, for simplicity, $G(k)\backslash G(\mathbb{A})$ is compact.

We recall the Selberg trace formula. Let $f \in C_0^{\infty}(G(\mathbb{A}))$ be a test function. The kernel function $K_f(g_1, g_2)$ is defined by

$$K_f(g_1, g_2) = \sum_{\gamma \in G(k)} f(g_1^{-1} \gamma g_2).$$

For an automorphic form φ on $G(\mathbb{A})$,

$$\begin{split} \rho(f)\varphi(g_2) &= (\varphi * f)(g_2) = \int_{G(\mathbf{A})} \varphi(g_1) f(g_1^{-1}g_2) \, dg_1 \\ &= \int_{G(k)\backslash G(\mathbf{A})} \varphi(g_1) \sum_{\gamma \in G(k)} f(g_1^{-1}\gamma g_2) \, dg_1 \\ &= \int_{G(k)\backslash G(\mathbf{A})} \varphi(g_1) K_f(g_1, g_2) \, dg_1. \end{split}$$

It follows that

$$\begin{split} \operatorname{tr} & \rho(f) = \int_{G(k)\backslash G(\mathbb{A})} K_f(g,g) \, dg \\ & = \int_{G(k)\backslash G(\mathbb{A})} \sum_{\gamma \in G(k)} f(g^{-1}\gamma g) \, dg \\ & = \sum_{\{\gamma\}} \int_{G(k)\backslash G(\mathbb{A})} \sum_{\gamma' \in G_{\gamma}(k)\backslash G(k)} f(g^{-1}\gamma'^{-1}\gamma \gamma' g) \, dg \\ & = \sum_{\{\gamma\}} \operatorname{Vol}(G_{\gamma}(k)\backslash G_{\gamma}(\mathbb{A})) \int_{G_{\gamma}(\mathbb{A})\backslash G(\mathbb{A})} f(g^{-1}\gamma g) \, dg. \end{split}$$

Here, $\{\gamma\}$ is a conjugacy class of $\gamma \in G(k)$ and G_{γ} is the centralizer of γ . Set $a(\gamma) = \operatorname{Vol}(G_{\gamma}(k) \setminus G_{\gamma}(\mathbb{A}))$.

Note that the orbital integral $O(\gamma, f) = \int_{G_{\gamma}(A)\backslash G(A)} f(g^{-1}\gamma g) dg$ is decomposed as a local product

$$\int_{G_{\gamma}(\mathbb{A})\backslash G(\mathbb{A})} f(g^{-1}\gamma g) \, dg = \prod_{v} \int_{G_{\gamma}(k_{v})\backslash G(k_{v})} f(g_{v}^{-1}\gamma g_{v}) \, dg_{v}.$$

The right regular representation ρ is a sum of automorphic representations $\rho = \bigoplus_{\pi} m_{\rho}(\pi) \cdot \pi$. Here, $m_{\rho}(\pi)$ is the multiplicity of π . The distribution character $\chi_{\pi}(f)$ is defined by $\chi_{\pi}(f) = \operatorname{tr}(f)$ for a test function $f \in C_0^{\infty}(G(\mathbb{A}))$. Then we have

$$\mathrm{tr}
ho(f) = \sum_{\pi} m_{
ho}(\pi) \chi_{\pi}(f).$$

Thus we have the Selberg trace formula

$$\sum_{\{\gamma\}} a(\gamma)O(\gamma.f) = \sum_{\pi} m_{\rho}(\pi)\chi_{\pi}(f).$$

Note that in the right hand side, π extends over the isomorphism classes of irreducible automorphic representations.

Now, we consider the relative trace formula. Let $H_1, H_2 \subset G$ be connected algebralic subgroups of G. Let $\theta_i : H_i(\mathbb{A}) \to \mathbb{C}^{\times}$ be a character which is trivial on $H_i(k)$ for i = 1, 2. As before, the kernel function $K_f(g_1, g_2)$ is defined by

$$K_f(g_1, g_2) = \sum_{\gamma \in G(k)} f(g_1^{-1} \gamma g_2)$$

for a test function $f \in C_0^{\infty}(G(\mathbb{A}))$.

Consider the integral

$$\begin{split} &\int_{H_1(k)\backslash H_1(\mathbb{A})} \int_{H_2(k)\backslash H_2(\mathbb{A})} K_f(h_1,h_2)\theta_1(h_1)\overline{\theta_2(h_2)} \, dh_1 \, dh_2 \\ &= \sum_{\gamma \in H_1(k)\backslash G(k)/H_2(k)} \int_{H_1(\mathbb{A})} \int_{H_2,\gamma(k)\backslash H_2(\mathbb{A})} f(h_1^{-1}\gamma h_2)\theta_1(h_1)\overline{\theta_2(h_2)} \, dh_1 \, dh_2. \end{split}$$

Here, $H_{2,\gamma} = \gamma^{-1}H_1\gamma \cap H_2$. In this sum, γ contributes only when $\theta_1(\gamma h_2\gamma^{-1}) = \theta_2(h_2)$ for any $h_2 \in H_{2,\gamma}(\mathbb{A})$, in which case γ is said to be (θ_1, θ_2) -relevant (or simply "relevant"). Set

$$\begin{split} a(\gamma) = & \operatorname{Vol}(H_{2,\gamma}(k) \backslash H_{2,\gamma}(\mathbb{A})), \\ I_{\gamma}(\theta_1,\theta_2;f) = & \int_{H_1(\mathbb{A})} \int_{H_{2,\gamma}(\mathbb{A}) \backslash H_2(\mathbb{A})} f(h_1^{-1} \gamma h_2) \theta_1(h_1) \overline{\theta_2(h_2)} \, dh_1 \, dh_2. \end{split}$$

Then we have

$$\begin{split} &\int_{H_1(k)\backslash H_1(\mathbf{A})} \int_{H_2(k)\backslash H_2(\mathbf{A})} K_f(h_1,h_2)\theta_1(h_1) \overline{\theta_2(h_2)} \, dh_1 \, dh_2 \\ &= \sum_{\substack{\gamma \in H_1 \backslash G/H_2 \\ \text{relevant}}} a(\gamma) I_{\gamma}(\theta_1,\theta_2;f). \end{split}$$

On the other hand, note that

$$\begin{split} \rho(f)\varphi_1(g_2) &= \int_{G(k)\backslash G(\mathbf{A})} K_f(g_1,g_2)\varphi_1(g_1)\,dg_1 \\ &= \sum_{\pi} \sum_{\substack{\varphi_2 \in \pi \\ \text{CONS}}} \int_{G(k)\backslash G(\mathbf{A})} K_f(g_1,g_2)\varphi_1(g_1)\varphi_2(g_2')\,dg_1\,dg_2' \cdot \overline{\varphi_2(g_2)} \\ &= \sum_{\pi} \sum_{\substack{\varphi_2 \in \pi \\ \text{CONS}}} \langle K_f, \bar{\varphi}_1 \times \bar{\varphi}_2 \rangle \cdot \overline{\varphi_2(g_2)}. \end{split}$$

Here, φ_2 extends over a complete orthonormal system (CONS) for π . It follows that

$$K_f(g_1, g_2) = \sum_{\substack{\pi \text{ CONS} \\ \text{CONS}}} \langle K_f, \bar{\varphi}_1 \times \bar{\varphi}_2 \rangle \cdot \overline{\varphi_1(g_1)\varphi_2(g_2)}$$
$$= \sum_{\substack{\pi \text{ CONS} \\ \text{CONS}}} \overline{\varphi(g_1)} \cdot \rho(f)\varphi(g_2).$$

Therefore we have

$$\int_{H_{1}(k)\backslash H_{1}(\mathbb{A})} \int_{H_{2}(k)\backslash H_{2}(\mathbb{A})} K_{f}(h_{1}, h_{2})\theta_{1}(h_{1})\overline{\theta_{2}(h_{2})} dh_{1} dh_{2}$$

$$= \int_{H_{1}(k)\backslash H_{1}(\mathbb{A})} \int_{H_{2}(k)\backslash H_{2}(\mathbb{A})} \left[\sum_{\pi} \sum_{\substack{\varphi \in \pi \\ \text{CONS}}} \overline{\varphi(g_{1})} \cdot \rho(f)\varphi(g_{2}) \right] \theta_{1}(h_{1})\overline{\theta_{2}(h_{2})} dh_{1} dh_{2}$$

$$= \sum_{\pi} \sum_{\substack{\varphi \in \pi \\ \text{CONS}}} \overline{\mathcal{P}_{H_{1},\theta_{1}}(\varphi)} \mathcal{P}_{H_{2},\theta_{2}}(\rho(f)\varphi).$$

Set

$$I_{\pi}(\theta_1, \theta_2; f) = \sum_{\substack{\varphi \in \pi \\ \text{CONS}}} \overline{\mathcal{P}_{H_1, \theta_1}(\varphi)} \mathcal{P}_{H_2, \theta_2}(\rho(f)\varphi).$$

The automorphic representation π is said to be (θ_1, θ_2) -distinguished (or simply "distinguished") if it is (H_1, θ_1) -distinguished and (H_2, θ_2) -distinguished. Then we have the relative trace formula

$$\sum_{\substack{\gamma \in H_1 \setminus G/H_2 \\ \text{relevant}}} a(\gamma) I_{\gamma}(\theta_1, \theta_2; f) = \sum_{\substack{\pi: \text{distinguished}}} I_{\pi}(\theta_1, \theta_2; f).$$

Note that in the right hand side, π extends over some orthogonal decomposition $\rho = \sum_{\pi} \pi$. (Therfore different π 's can be isomorphic.)

Remark 3.1. Assume that G is the product $G = G' \times G'$. Let H_1 be the diagonal subgroup $H_1 = \Delta(G') = \{(g', g') | g' \in G'\}$ and H_2 be the second factor $H_2 = \{(1, g') | g' \in G'\}$. Set $\theta_1 = \theta_2 = 1$. Then the double coset $H_1 \setminus G/H_2$ can be identified with the conjugacy calsses of G'. If $\gamma \in H_1 \setminus G/H_2$ correspond to the conjugacy class γ' of G', then we have

$$I_{\gamma}(\theta_1, \theta_2; f) = O(\gamma', f'),$$

where

$$f'(g') = \int_{G'(\mathbf{A})} f(g'_1, g'_1 g') dg_1.$$

Moreover, an irreducible automorphic representation $\pi = \pi'_1 \boxtimes \pi'_2$ is (θ_1, θ_2) -distinguished if and only if $\pi'_1 \simeq \tilde{\pi}'_2$. In this case, we have $I_{\pi}(\theta_1, \theta_2; f) = \operatorname{tr} \pi'_2(f')$. Thus the Selberg trace formula can be considered as a special case of the relative trace formula.

Let G', H'_1 , θ'_1 , H'_2 , and θ'_2 be another set of data. We assume there exists a bijection

$$\{\gamma \in H_1 \setminus G/H_2 \mid \gamma : \text{ relevant}\} \simeq \{\gamma' \in H_1' \setminus G'/H_2' \mid \gamma' : \text{ relevant}\}$$

with the following properties:

- (1) (matching) For each test function $f \in C_0(G(\mathbb{A}))$, there exists a test function $f' \in C_0(G'(\mathbb{A}))$ such that $I_{\gamma}(\theta_1, \theta_2; f) = I_{\gamma'}(\theta_1, \theta_2'; f')$.
- (2) (fundamental lemma) For almost all unramified v, there exists a Hecke algebra homomorphism

$$\mathcal{H}(K_{G,v}\backslash G_v/K_{G,v}) \to \mathcal{H}(K_{G',v}\backslash G'_v/K_{G',v})$$

which is compatible with the matching.

Then it is expected that there exists a correspondence for the L-packets of $G(\mathbb{A})$ and $G'(\mathbb{A})$ such that

$$I_{\Pi}^{\kappa}(\theta_1, \theta_2; f) = I_{\Pi'}^{\kappa'}(\theta_1', \theta_2'; f').$$

Here, Π is an L-packet for $G(\mathbb{A})$, and κ is certain function on the L-packet and

$$I_{\Pi}^{\kappa}(\theta_1, \theta_2; f) = \sum_{\pi \in \Pi} \kappa(\pi) I_{\pi}(\theta_1, \theta_2; f).$$

In the right hand side, Π' is the *L*-packet of $G'(\mathbb{A})$ corresponding to Π , and $I_{\Pi'}^{\kappa'}(\theta'_1, \theta'_2; f')$ is defined in a similar way.

This equation would imply that there exists a certain relation between period integrals for $G(\mathbb{A})$ and $G'(\mathbb{A})$. In this way, it would be possible to reduce a period formula for $G(\mathbb{A})$ to an analogous formulas for $G'(\mathbb{A})$.

Recently, H. Jacquet [16] proposed a program to attack an analogue of the Gross-Prasad type conjecture for the unirary groups.

REFERENCES

- [1] A. Aizenbud, D. Gourevitch, S. Rallis and G. Schiffmann, Multiplicity one theorems, (2007), preprint.
- [2] _____, Unipotent automorphic representations: conjectures, Astérisque 171-172 (1989), 13-71.
- [3] S. Böcherer, M. Furusawa, and R. Schulze-Pillot, On the global Gross-Prasad conjecture for Yoshida liftings, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, (2004), 105–130.
- [4] P. Deligne, Valeurs de fonctions L et périodes d'intégrales, Automorphic forms, representations and L-functions, Proc. Sympos. Pure Math. 33, Part 2, Amer. Math. Soc., (1979), 313-346.
- [5] D. Ginzburg, D. Jiang, and S. Rallis, On the non-vanishing of the central value of the Rankin-Selberg L-functions, J. Amer. Math. Soc. 17 (2004), 679-722.
- [6] _____, On the non-vanishing of the central value of the Rankin-Selberg L-functions II, Automorphic Representations, L-Functions and Applications: Progress and Prospects, Ohio State University Mathematical Research Institute Publications 11, (2005) 157-191.

TAMOTSU IKEDA

- [7] D. Ginzburg, I. I. Piatetski-Shapiro, and S. Rallis, L functions for the orthogonal group, Mem. Amer. Math. Soc. 611, 1997.
- [8] B. H. Gross, On the motive of a reductive group, Inv. math. 130 (1997), 287–313.
- [9] B. H. Gross and D. Prasad, On the decomposition of a representation of SO_n when restricted to SO_{n-1} , Canad. J. Math. 44 (1992), 974-1002.
- [10] _____, On irreducible representations of $SO_{2n+1} \times SO_{2m}$, Canad. J. Math. 46 (1994), 930-950.
- [11] K. Hiraga and H. Saito, On L-packets for inner forms of SL_n , preprint.
- [12] _____, Pullbacks of Saito-Kurokawa lifts, Inv. Math. 162, (2005), 551-647.
- [13] _____, Trilinear forms and the central values of triple product L-functions, to appear in Duke Math. J.
- [14] A. Ichino and T. Ikeda, On Maass lifts and the central critical values of triple product L-functions, Amer. J. of Math. 130 (2008), 75-114.
- [15] A. Ichino and T. Ikeda, On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture, preprint.
- [16] H. Jacquet, On the Gross-Prasad conjecture for unitary groups, http://www.cirm.univ-mrs.fr/videos/2007/exposes/19/Jacquet.pdf
- [17] S. Kato, A. Murase and T. Sugano, Whittaker-Shintani functions for orthogonal groups, Tohoku Math. J. 55 (2003), 1-64.
- [18] W. Kohnen and N.-P. Skoruppa, A certain Dirichlet series attached to Siegel modular forms of degree two, Invent. Math. 95 (1989), 541-558.
- [19] W. Kohnen and D. Zagier, Values of L-series of modular forms at the center of the critical strip, Invent. Math. 64 (1981), 175-198.
- [20] J.-P. Labesse and R. P. Langlands, L-indistinguishability for SL(2), Canad. J. Math. 31 (1979), 726-785.
- [21] J. Tate, Number theoretic background, Automorphic forms, representations and L-functions, Proc. Sympos. Pure Math. 33, Part 2, Amer. Math. Soc., (1979), 3-26.
- [22] J.-L. Waldspurger, Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie, Compositio Math. 54 (1985), 173-242.

Graduate school of mathematics, Kyoto University, Kitashirakawa, Kyoto, 606-8502, Japan

E-mail address: ikeda@math.kyoto-u.ac.jp