<table>
<thead>
<tr>
<th>Title</th>
<th>Hilbert-Jacobi forms of a certain index of $\mathbb{Q} (\sqrt{5})$ (Automorphic Representations, Automorphic Forms, L-functions, and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hayashida, Shuichi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2008, 1617: 98-105</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/140172</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Hilbert-Jacobi forms of a certain index of $\mathbb{Q}(\sqrt{5})$

S.Hayashida (Universität Siegen)
(joint work with N.-P.Skoruppa (Universität Siegen))

0 Introduction

The purpose of this survey is to give an example of a structure theorem of the space of Hilbert-Jacobi forms of a certain index with concerning to $K = \mathbb{Q}(\sqrt{5})$ (Theorem 1.2). We give also an example of a structure theorem of the space of Jacobi forms of a matrix index (Theorem 1.3). We used theorem 1.3 to show theorem 1.2.

1 Main theorem

In this section, we recall the definition of Hilbert-Jacobi forms, and give an example of a structure theorem of the space of Hilbert-Jacobi forms and of Jacobi forms of a matrix index.

1.1 Notations

Let K be a totally real field with degree n, let \mathfrak{o}^{-1} be the inverse of the different, and let \mathcal{O} be the principal order of K. We denote by \mathcal{H} the Poincaré upper half plane. For $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ we set $e(z) := e^{2\pi i \text{tr}(z)}$, where $\text{tr}(z) = z_1 + \cdots + z_n$. By abuse of language, we set $z^k := \prod_{i=1}^{n} z_i^{k_i}$ for $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ and $k = (k_1, \ldots, k_n) \in \mathbb{R}^n$.

1.2 Definition

For $k = (k_1, \ldots, k_n) \in \mathbb{Z}^n$ and for totally positive number $m \in \mathfrak{o}^{-1}$, we define Hilbert-Jacobi forms of weight k of index m as follows.

Definition 1. Let ϕ be a holomorphic function on $\mathcal{H}^n \times \mathbb{C}^n$. We say ϕ is a Hilbert-Jacobi form of weight k of index m if ϕ satisfies the following three conditions.
For any $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathcal{O})$, any $\tau = (\tau_1, ..., \tau_n) \in \mathfrak{h}^n$ and any $z = (z_1, ..., z_n) \in \mathbb{C}^n$, ϕ satisfies

$$\phi\left(\frac{a\tau + b}{c\tau + d}, \frac{z}{c\tau + d}\right) = e(m(c\tau + d)^{-1}cz^2)(c\tau + d)^k\phi(\tau, z).$$

(ii) For any $\lambda, \mu \in \mathcal{O}$,

$$\phi(\tau, z + \lambda\tau + \mu) = e(-m\lambda^2\tau - 2m\lambda z)\phi(\tau, z).$$

(iii) ϕ has the Fourier expansion:

$$\phi(\tau, z) = \sum_{u, r \in \mathfrak{y}^{-1}} c(u, r) e(u\tau + rz),$$

where in the above summation u and r run over all elements in \mathfrak{y}^{-1} such that $4um - r^2$ is totally positive or equals to 0.

When n is larger than 1, then because of Koecher principle the third condition of the definition follows automatically by the first and second conditions.

We denote by $J_{k,m}^K$ the space of Hilbert-Jacobi forms of weight k of index m with respect to $SL(2, \mathcal{O})$.

1.3 Results

We consider the case $K = \mathbb{Q}(\sqrt{5})$, $m = \epsilon/\sqrt{5}$, where $\epsilon = \frac{1+\sqrt{5}}{2}$ is the fundamental unit of the maximal order $\mathcal{O} = \mathbb{Z}[\epsilon]$ of K.

Let $k \in \mathbb{N}$. Now $M_{(k_1, k_2)}^K$ denotes the space of Hilbert modular forms of weight $(k_1, k_2) \in \mathbb{Z}^2$ with respect to $SL(2, \mathcal{O})$. We quote the following structure theorem of the space of Hilbert modular forms obtained by Gundlach [2].

Theorem 1.1 (Gundlach[2]).

$$\bigoplus_{k \in \mathbb{Z}} M_{(k,k)}^K = \mathbb{C}[G_2, G_5, G_6] \oplus G_{15}\mathbb{C}[G_2, G_5, G_6],$$

where G_2, G_5, G_6 and G_{15} are Hilbert modular forms of weight 2, 5, 6 and 15, respectively. There exists a polynomial $P(X_1, X_2, X_3)$ such that $G_{15}^2 = P(G_2, G_5, G_6)$.

The main theorem of this report is as follows.
Theorem 1.2. The space $\bigoplus_{k \in \mathbb{Z}} J_{(k,k),m}^{K}$ is a $\mathbb{C}[G_{2}, G_{5}, G_{6}]$-module generated by eight forms $F_k \in J_{(k,k),m}^{K}$ ($k = 2, 4, 5, 6, 7, 11, 14, 15$), and the dimension formula is given by
\[
\sum_{k \in \mathbb{Z}} \dim(J_{(k,k),m}^{K}) t^k = \frac{t^2 + t^4 + t^6 + t^7 + t^{11} + t^{14} + t^{15}}{(1-t^2)(1-t^5)(1-t^6)}.
\]
These eight forms F_k are obtained explicitly by using Hilbert modular forms G_{2}, G_{5}, G_{6}, G_{15} and differential operators (see subsection 2.5).

To show this theorem we need the following structure theorem of Jacobi forms of matrix index. We denote by $J_{k,12}$ the space of Jacobi forms of index $(\frac{1}{2}, \frac{1}{2})$ (cf. about the definition of Jacobi forms of matrix index, see Ziegler [4] page 193). We put $J_{*,12} := \bigoplus_{k \in \mathbb{Z}} J_{k,12}$, and $M_{*} := \bigoplus_{k \in \mathbb{Z}} M_{k}$, where M_{k} is the space of elliptic modular forms of weight k with respect to $SL(2, \mathbb{Z})$.

Theorem 1.3. The space $J_{*,12}$ is a free M_{*}-module with rank 4 and $\{\psi_{4}, \psi_{6}, \psi_{8}, \psi_{10}\}$ is a basis of $J_{*,12}$, and the dimension formula is given by
\[
\sum_{k \in \mathbb{N}} \dim(J_{k,12}) t^k = \frac{t^4 + t^6 + t^8 + t^{10}}{(1-t^4)(1-t^6)},
\]
where the forms $\psi_k \in J_{k,12}$ ($k = 4, 6, 8, 10$) are given in subsection 2.4.

2 Construction of Jacobi forms

In this section, we explain a construction of Hilbert-Jacobi forms from pair of Hilbert modular forms. The original idea of this construction in the case of usual Jacobi forms was given by N.-P.Skoruppa [3]. We shall also explain in this section the idea of the proof for Theorem 1.2.

2.1 Wronskian

In this subsection and the next subsection, we explain a construction of Hilbert-Jacobi forms from pairs of Hilbert modular forms for arbitrary totally real field K and for arbitrary index m.

Let $\phi \in J_{k,m}^{K}$. We take the theta expansion:
\[
\phi(\tau, z) := \sum_{\alpha \in \Theta^{-1}/2mO} f_{\alpha}(\tau) \vartheta_{m,\alpha}(\tau, z),
\]
where \(\vartheta_{m,\alpha}(\tau, z) = \sum_{r \equiv \alpha(2mO)} e^{r^2 \tau + rz} \).

Let \(l := |\mathfrak{d}^{-1}/2m\mathcal{O}| = N(2m)D_K \), where \(D_K \) is the discriminant of \(K \). We put \(\theta(\tau, z) := (\vartheta_{m,\alpha_0}(\tau, z), \ldots, \vartheta_{m,\alpha_{t-1}}(\tau, z)) \), where \(\tau = (\tau_1, \ldots, \tau_n) \in \mathbb{H}^n \), \(z = (z_1, \ldots, z_n) \in \mathbb{C}^n \), and where \((\alpha_0, \ldots, \alpha_{l-1}) \) is a complete set of the representatives of \(\mathfrak{d}^{-1}/2m\mathcal{O} \).

For \(u = (u_0, \ldots, u_{l-1}) \in (\mathbb{N}^n)^l \), we set

\[
W(\tau) := W_u(\tau) := \begin{pmatrix}
\partial_{z_0}^{u_0} \theta|_{z=0} \\
\vdots \\
\partial_{z_{n-1}}^{u_{l-1}} \theta|_{z=0}
\end{pmatrix},
\]

where we defined \(\partial_{z_i}^{u_i} := \partial_{z_1}^{u_{i,1}} \cdots \partial_{z_n}^{u_{i,n}} \) for \(u_i = (u_{i,1}, \ldots, u_{i,n}) \in \mathbb{N}^n \), and \(\partial_{z_i} := \frac{1}{2\pi i} \frac{\delta}{\delta i} \).

If \(u \) satisfies the following condition \([Cu]\), then \(\det(W) \) is a Hilbert modular form of weight \((l/2, \ldots, l/2) + \sum_{i=0}^{l-1} u_i \) with a certain character.

If \(v = (v_1, \ldots, v_n) \in \mathbb{N}^n \) satisfies \(v \leq u_j, v \equiv u_j \mod 2 \) with a \(j \in \{0, \ldots, l-1\} \), then \(v \in \{u_0, \ldots, u_{l-1}\} \). Here \(v \leq u_j \) means \(v_i \leq u_{j,i} \) for any \(i \in \{1, \ldots, n\} \).

2.2 Construction of Hilbert Jacobi forms

Let \(\phi \in J_{k,m}^K \). We have

\[
\phi(\tau, z) = \sum_{i=0}^{l-1} f_{\alpha_i}(\tau) \vartheta_{m,\alpha_i}(\tau, z) = \sum_{\nu \in \mathbb{N}^n} g_\nu(\tau) \frac{(2\pi i)^\nu z^\nu}{\nu!},
\]

where \(\nu! := \prod_{j=1}^n \nu_j! \), \(\nu = (\nu_1, \ldots, \nu_n) \), and \(g_\nu(\tau) = \partial_{z_0}^\nu \phi|_{z=0} = \sum_{i=0}^{l-1} f_{\alpha_i}(\tau) (\partial_{z_0}^\nu \vartheta_{m,\alpha_i})|_{z=0} \).

Thus for \(u = (u_0, \ldots, u_{l-1}) \in (\mathbb{N}^n)^l \) we have

\[
t^t(g_{u_0}(\tau), \ldots, g_{u_{l-1}}(\tau)) = W(\tau)^t(f_{\alpha_0}(\tau), \ldots, f_{\alpha_{l-1}}(\tau)).
\]

Now \((g_{u_0}, \ldots, g_{u_{l-1}}) \) satisfies a certain transformation formula, so there exists a pair of Hilbert modular forms \((G_{u_0}, \ldots, G_{u_{l-1}}) \in M_{k+u_0}^K \times \cdots \times M_{k+u_{l-1}}^K \) such that

\[
t^t(g_{u_0}(\tau), \ldots, g_{u_{l-1}}(\tau)) = D^t(G_{u_0}(\tau), \ldots, G_{u_{l-1}}(\tau)),
\]
where D is a certain matrix of differential operators depending only on k and u. Hence if $\det(W)$ is not identically zero, then

$$\phi = \theta^t(f_{a_0}, \ldots, f_{a_{l-1}}) = \theta W^{-1}(D^t(G_{u_0}, \ldots, G_{u_{l-1}})).$$

On the other hand, for any pair of Hilbert modular forms $(G_{u_0}, \ldots, G_{u_{l-1}}) \in M_{k+u_0}^K \times \cdots \times M_{k+u_{l-1}}^K$, by using the above identity, we can construct a meromorphic function on $\mathbb{H}^n \times \mathbb{C}^n$ which satisfies the transformation formula of Hilbert Jacobi forms (conditions (i), (ii) of the definition 1.) We denote this map by $\tilde{\lambda}_k$:

$$\tilde{\lambda}_k : M_{k+u_0}^K \times \cdots \times M_{k+u_{l-1}}^K \rightarrow J_{k,m}^{K,\text{mero}}$$

via

$$\tilde{\lambda}_k(G_{u_0}, \ldots, G_{u_{l-1}}) := \theta W^{-1}(D^t(G_{u_0}, \ldots, G_{u_{l-1}})).$$

Thus for constructing Hilbert-Jacobi forms in general, we need to know when $\det(W)$ is not identically zero, and when $\tilde{\lambda}_k(G_{u_0}, \ldots, G_{u_{l-1}})$ is holomorphic.

2.3 Example $K = \mathbb{Q}(\sqrt{5}), m = (5 + \sqrt{5})/10$

We fix $K = \mathbb{Q}(\sqrt{5})$, and $m = (5 + \sqrt{5})/10$. In this subsection we give explicitly the matrix D and construct Hilbert-Jacobi forms of index m.

By straightforward calculation we obtain $d^{-1} = mO$, $d^{-1}/2mO \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, and $|d^{-1}/2mO| = 4$.

We put $u := (u_0, u_1, u_2, u_3) \in (\mathbb{N}^2)^4$, where $u_0 := (0, 0)$, $u_1 := (0, 2)$, $u_2 := (2, 0)$ and $u_3 := (1, 1)$. Then, $\det(W) = c \cdot G_5$ with non zero constant c. Here G_5 is the Hilbert modular form of weight $(5, 5)$ denoted in Theorem 1.1.

Let $k = (k_1, k_2) \in \mathbb{N}^2$. For $(G_{u_0}, \ldots, G_{u_3}) \in M_{k+u_0}^K \times \cdots \times M_{k+u_{l-1}}^K$, we put

$$\tilde{\lambda}_k(G_{u_0}, \ldots, G_{u_{l-1}}) := \phi := \theta W^{-1}(D^t(G_{u_0}, \ldots, G_{u_{3}})),$$

where $D := \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{2m}{k_1} \partial_{\tau_1} & 0 & 0 & 0 \\ \frac{2m'}{k_2} \partial_{\tau_2} & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$, and m' is the Galois conjugation of m. Due to the consideration of the previous subsection we have $\phi \in J_{k,m}^{K,\text{mero}}$.

We denote by $J_{l,12}$ the space of Jacobi forms of weight $l \in \mathbb{N}$ of index $1_2 = (1 \ 0 \ 0 \ 1)$.

Now, for $k = (k_1, k_1) \in \mathbb{N}^2$ we consider the following map

$$\mathcal{D} : J_{k,m}^K \rightarrow J_{2k_1,12}$$
via
$$D(\phi)(\tau, (z_1, z_2)) := \phi((\tau, \tau), (z_1, z_2) \cdot V),$$
where \(\phi \in J_{k,m}^{K}(z_1, z_2) \in \mathbb{C}^2, \tau \in \mathfrak{H}, V = (1, 1 - 1), \epsilon = (1 + \sqrt{5})/2\) and \(\epsilon' = (1 - \sqrt{5})/2\).

2.4 The space of Jacobi forms of index 12

As for the structure of the space of Hilbert modular forms of index 12, we have the following theorem.

Theorem 2.1. For any \(k' \in \mathbb{Z}\), we have \(J_{k',12} \cong M_{k'} \times S_{k'+2} \times S_{k'+2} \times S_{k' + 4}\), where \(M_{k'} \) (resp. \(S_{k'} \)) is the space of elliptic modular forms (resp. cusp forms) of weight \(k'\) with respect to \(SL_2(\mathbb{Z})\).

The idea of the proof of the above theorem is as follows. By similar method as in the subsection 2.2, we have a similar map as \(\tilde{\lambda}_k\) in the subsection 2.2 for the space of Jacobi forms of index 12. We can construct meromorphic Jacobi forms of index 12. In this case, by choosing a suitable \(u \in (\mathbb{N}^2)^4\), the Wronskian is the Ramanujan-\(\Delta\) function. Hence we can check when the image of the map \(\hat{\nu}_{k'}\), which corresponds to \(\tilde{\lambda}_k\) in the case of Hilbert Jacobi forms, is holomorphic. The surjectivity of the map \(\hat{\nu}_{k'}\) follows from this fact. Thus we obtain theorem 2.1.

The idea for the proof of Theorem 1.3.

Due to Theorem 2.1, we have the dimension formula for \(\bigoplus_{k' \in \mathbb{Z}} J_{k,12}\), and we obtain Theorem 1.3 by constructing suitable basis of the space of Jacobi forms of index 12 as \(\bigoplus_{k \in \mathbb{Z}} M_k\)-module.

The basis of \(\bigoplus_{k' \in \mathbb{Z}} J_{k',12}\) is give by the following four forms: \(\psi_4 := \hat{\nu}_4((E_4, 0, 0, 0)) \in J_{4,12}\), \(\psi_6 := \hat{\nu}_6((E_6, 0, 0, 0)) \in J_{6,12}\), \(\psi_{10} := \hat{\nu}_{10}((0, 0, \Delta, 0)) \in J_{10,12}\), and \(\psi_8 := \hat{\nu}_8((0, 0, 0, \Delta)) \in J_{8,12}\). Here \(\hat{\nu}_{k'}\) is the map from \(M_{k'} \times S_{k'+2} \times S_{k'+2} \times S_{k' + 4}\) to \(J_{k',12}\), and \(E_{k'}\) are the Eisenstein series of weight \(k'\).

2.5 The space of Hilbert-Jacobi forms of index \(m\)

Let \(k = (k_1, k_1) \in \mathbb{N}^2\). We put
$$\tilde{J}_{k,m}^{K} := \tilde{\lambda}_k(M_{(k_1,k_1)}^{K} \times S_{(k_1,k_1+2)}^{K} \times S_{(k_1+2,k_1)}^{K} \times M_{(k_1+1,k_1+1)}^{K}),$$
where \(S_{(k_1,k_2)}^{K}\) is the space of Hilbert cusp forms of weight \((k_1, k_2)\) with respect to \(SL(2,\mathcal{O})\).
As for the space of Hilbert cusp forms $S^K_{(k_1, k_1+2)}$ the following theorem is known by H. Aoki [1].

Theorem 2.2 (Aoki). The structure of $\bigoplus_{k_1 \in \mathbb{Z}} S^K_{(k_1, k_1+2)}$ is given by

$$\bigoplus_{k_1 \in \mathbb{Z}} S^K_{(k_1, k_1+2)} = A_{7,9}B + A_{8,10}B + A_{11,13}B,$$

where $A_{7,9} := [G_2, G_5] := 2G_2(\tau G_5) - 5G_5(\tau G_2)$, $A_{8,10} := [G_6, G_2]$, $A_{11,13} := [G_5, G_6]$ and $B = \mathbb{C}[G_2, G_5, G_6]$. Here $A_{7,9}$, $A_{8,10}$ and $A_{11,13}$ satisfy the following Jacobi identity: $6G_6A_{7,9} + 5G_5A_{8,10} + 2G_2A_{11,13} = 0$. Except this identity, there are no relation among $A_{7,9}$, $A_{8,10}$ and $A_{11,13}$.

To show theorem 1.2, we need the following proposition.

Proposition 2.3. Let $\phi \in J^K_{k,m}$. Then $D(\phi) = 0$ if and only if $G_5|\phi$.

Thus we have the following short exact sequence:

$$0 \rightarrow J^K_{k,m} \rightarrow \hat{J}^K_{k,m} \rightarrow J_{2k_1+10,12},$$

where the second map is the embedding, and the last map is given via ϕ to $D(G_5 \cdot \phi)$ for $\phi \in \hat{J}^K_{k,m}$.

By using theorem 1.1 and theorem 2.2 we can calculate the dimension of $\hat{J}^K_{k,m}$, and also we have the dimension of the image of the above last map. Hence, we have the dimension formula for $\dim(J^K_{(k_1,k),m})$ written in Theorem 1.2. The basis of $\bigoplus_{k_1 \in \mathbb{Z}} J^K_{(k_1,k),m}$ as $\mathbb{C}[G_2, G_5, G_6]$-module is given as follows:

$$F_2 := \tilde{\lambda}_2(G_2, 0, 0, 0), \quad F_4 := \tilde{\lambda}_4(0, 0, 0, G_5),$$
$$F_5 := \tilde{\lambda}_5 \left(G_5, 0, 0, \frac{2}{5\sqrt{5}}G_6\right), \quad F_6 := \tilde{\lambda}_6(G_6, 0, 0, 0),$$
$$F_7 := \tilde{\lambda}_7(0, mA'_{7,9}, -m'A_{7,9}, 0), \quad F_{11} := \tilde{\lambda}_{11}(0, mA'_{11,13}, -m'A_{11,13}, 0),$$
$$F_{14} := \tilde{\lambda}_{14} \left(0, \frac{\epsilon}{2}A'_{8,10}, \frac{\epsilon'}{2}A_{8,10}, G_{15}\right), \quad F_{15} := \tilde{\lambda}_{15}(G_{15}, 0, 0, 0),$$

where $A'_{7,9} := 2G_2(\tau G_5) - 5G_5(\tau G_2)$, $A'_{8,10} := 6G_6(\tau G_2) - 2G_2(\tau G_6)$ and $A'_{11,13} := 5G_5(\tau G_6) - 6G_6(\tau G_5)$.
References

Fachbereich 6 Mathematik, Universität Siegen,
Walter-Flex-Str. 3, 57068 Siegen, Germany.
e-mail hayashida@mathematik.uni-siegen.de