Hilbert-Jacobi forms of a certain index of $\mathbb{Q}(\sqrt{5})$

S.Hayashida (Universität Siegen) (joint work with N.-P.Skoruppa (Universität Siegen))

0 Introduction

The purpose of this survey is to give an example of a structure theorem of the space of Hilbert-Jacobi forms of a certain index with concerning to $K = \mathbb{Q}(\sqrt{5})$ (Theorem 1.2). We give also an example of a structure theorem of the space of Jacobi forms of a matrix index (Theorem 1.3). We used theorem 1.3 to show theorem 1.2.

1 Main theorem

In this section, we recall the definition of Hilbert-Jacobi forms, and give an example of a structure theorem of the space of Hilbert-Jacobi forms and of Jacobi forms of a matrix index.

1.1 Notations

Let K be a totally real field with degree n, let \mathfrak{d}^{-1} be the inverse of the different, and let \mathcal{O} be the principal order of K. We denote by \mathfrak{H} the Poincaré upper half plane. For $z=(z_1,...,z_n)\in\mathbb{C}^n$ we set $e(z):=e^{2\pi i\operatorname{tr}(z)}$, where $\operatorname{tr}(z)=z_1+\cdots+z_n$. By abuse of language, we set $z^k:=\prod_{i=1}^n z_i^{k_i}$ for $z=(z_1,...,z_n)\in\mathbb{C}^n$ and $k=(k_1,...,k_n)\in\mathbb{R}^n$.

1.2 Definition

For $k = (k_1, ..., k_n) \in \mathbb{Z}^n$ and for totally positive number $m \in \mathfrak{d}^{-1}$, we define *Hilbert-Jacobi forms* of weight k of index m as follows.

Definition 1. Let ϕ be a holomorphic function on $\mathfrak{H}^n \times \mathbb{C}^n$. We say ϕ is a Hilbert-Jacobi form of weight k of index m if ϕ satisfies the following three conditions.

(i) For any $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathcal{O})$, any $\tau = (\tau_1, ..., \tau_n) \in \mathfrak{H}^n$ and any $z = (z_1, ..., z_n) \in \mathbb{C}^n$, ϕ satisfies

$$\phi\left(\frac{a\tau+b}{c\tau+d},\frac{z}{c\tau+d}\right) = e\left(m(c\tau+d)^{-1}cz^2\right)(c\tau+d)^k\phi(\tau,z).$$

(ii) For any λ , $\mu \in \mathcal{O}$,

$$\phi(\tau, z + \lambda \tau + \mu) = e(-m\lambda^2 \tau - 2m\lambda z)\phi(\tau, z).$$

(iii) ϕ has the Fourier expansion:

$$\phi(au,z) = \sum_{u,r \in \mathfrak{d}^{-1}} c(u,r) \, e(u au + rz),$$

where in the above summation u and r run over all elements in \mathfrak{d}^{-1} such that $4um - r^2$ is totally positive or equals to 0.

When n is larger than 1, then because of Koecher principle the third condition of the definition follows automatically by the first and second conditions.

We denote by $J_{k,m}^K$ the space of Hilbert-Jacobi forms of weight k of index m with respect to $SL(2,\mathcal{O})$.

1.3 Results

We consider the case $K = \mathbb{Q}(\sqrt{5})$, $m = \epsilon/\sqrt{5}$, where $\epsilon = \frac{1+\sqrt{5}}{2}$ is the fundamental unit of the maximal order $\mathcal{O} = \mathbb{Z}[\epsilon]$ of K.

Let $k \in \mathbb{N}$. Now $M_{(k_1,k_2)}^K$ denotes the space of Hilbert modular forms of weight $(k_1,k_2) \in \mathbb{Z}^2$ with respect to $SL(2,\mathcal{O})$. We quote the following structure theorem of the space of Hilbert modular forms obtained by Gundlach [2].

Theorem 1.1 (Gundlach[2]).

$$\bigoplus_{k \in \mathbb{Z}} M_{(k,k)}^K = \mathbb{C}[G_2, G_5, G_6] \oplus G_{15}\mathbb{C}[G_2, G_5, G_6],$$

where G_2 , G_5 , G_6 and G_{15} are Hilbert modular forms of weight 2, 5, 6 and 15, respectively. There exists a polynomial $P(X_1, X_2, X_3)$ such that $G_{15}^2 = P(G_2, G_5, G_6)$.

The main theorem of this report is as follows.

Theorem 1.2. The space $\bigoplus_{k \in \mathbb{Z}} J_{(k,k),m}^K$ is a $\mathbb{C}[G_2, G_5, G_6]$ -module generated by eight forms $F_k \in J_{(k,k),m}^K$ (k = 2, 4, 5, 6, 7, 11, 14, 15), and the dimension formula is given by

 $\sum_{k \in \mathbb{Z}} \dim(J_{(k,k),m}^K) t^k = \frac{t^2 + t^4 + t^5 + t^6 + t^7 + t^{11} + t^{14} + t^{15}}{(1 - t^2)(1 - t^5)(1 - t^6)}.$

These eight forms F_k are obtained explicitly by using Hilbert modular forms G_2 , G_5 , G_6 , G_{15} and differential operators (see subsection 2.5).

To show this theorem we need the following structure theorem of Jacobi forms of matrix index. We denote by $J_{k,1_2}$ the space of Jacobi forms of index $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (cf. about the definition of Jacobi forms of matrix index, see Ziegler [4] page 193). We put $J_{*,1_2} := \bigoplus_{k \in \mathbb{Z}} J_{k,1_2}$, and $M_* := \bigoplus_{k \in \mathbb{Z}} M_k$, where M_k is the space of elliptic modular forms of weight k with respect to $SL(2,\mathbb{Z})$.

Theorem 1.3. The space $J_{*,1_2}$ is a free M_* -module with rank 4 and $\{\psi_4, \psi_6, \psi_8, \psi_{10}\}$ is a basis of $J_{*,1_2}$, and the dimension formula is given by

$$\sum_{k \in \mathbb{N}} \dim(J_{k,1_2}) t^k = \frac{t^4 + t^6 + t^8 + t^{10}}{(1 - t^4)(1 - t^6)},$$

where the forms $\psi_k \in J_{k,1_2}$ (k = 4, 6, 8.10) are given in subsection 2.4.

2 Construction of Jacobi forms

In this section, we explain a construction of Hilbert-Jacobi forms from pair of Hilbert modular forms. The original idea of this construction in the case of usual Jacobi forms was given by N.-P.Skoruppa [3]. We shall also explain in this section the idea of the proof for Theorem 1.2.

2.1 Wronskian

In this subsection and the next subsection, we explain a construction of Hilbert-Jacobi forms from pairs of Hilbert modular forms for arbitrary totally real field K and for arbitrary index m.

Let $\phi \in J_{k,m}^K$. We take the theta expansion :

$$\phi(au,z):=\sum_{lpha\in \mathfrak{d}^{-1}/2m\mathcal{O}}f_lpha(au)artheta_{m,lpha}(au,z),$$

where
$$\vartheta_{m,\alpha}(\tau,z) = \sum_{\substack{r \in \mathfrak{d}^{-1} \\ r \equiv \alpha(2m\mathcal{O})}} e(\frac{1}{4m}r^2\tau + rz).$$

Let $l := |\mathfrak{d}^{-1}/2m\mathcal{O}| = N(2m)D_K$, where D_K is the discriminant of K. We put $\theta(\tau, z) := (\vartheta_{m,\alpha_0}(\tau, z), ..., \vartheta_{m,\alpha_{l-1}}(\tau, z))$, where $\tau = (\tau_1, ..., \tau_n) \in \mathfrak{H}^n$, $z = (z_1, ..., z_n) \in \mathbb{C}^n$, and where $(\alpha_0, ..., \alpha_{l-1})$ is a complete set of the representatives of $\mathfrak{d}^{-1}/2m\mathcal{O}$. For $u = (u_0, ..., u_{l-1}) \in (\mathbb{N}^n)^l$, we set

$$W(\tau) := W_u(\tau) := \begin{pmatrix} \partial_z^{u_0} \theta|_{z=0} \\ \vdots \\ \partial_z^{u_{l-1}} \theta|_{z=0} \end{pmatrix},$$

where we defined $\partial_z^{u_i} := \partial_{z_1}^{u_{i,1}} \cdots \partial_{z_n}^{u_{i,n}}$ for $u_i = (u_{i,1}, ..., u_{i,n}) \in \mathbb{N}^n$, and $\partial_{z_i} := \frac{1}{2\pi i} \frac{\delta}{\delta_{z_i}}$. If u satisfies the following condition [Cu], then $\det(W)$ is a Hilbert modular form of weight $(l/2, ..., l/2) + \sum_{i=0}^{l-1} u_i$ with a certain character.

[Cu] If $v = (v_1, ..., v_n) \in \mathbb{N}^n$ satisfies $v \le u_j$, $v \equiv u_j \mod 2$ with a $j \in \{0, ..., l-1\}$, then $v \in \{u_0, ..., u_{l-1}\}$. Here $v \le u_j$ means $v_i \le u_{j,i}$ for any $i \in \{1, ..., n\}$.

2.2 Construction of Hilbert Jacobi forms

Let $\phi \in J_{k,m}^K$. We have

$$\phi(\tau,z) = \sum_{i=0}^{l-1} f_{\alpha_i}(\tau) \vartheta_{m,\alpha_i}(\tau,z) = \sum_{\nu \in \mathbb{N}^n} g_{\nu}(\tau) \frac{(2\pi i)^{\nu} z^{\nu}}{\nu!},$$

where $\nu! := \prod_{j=1}^{n} \nu_{j}!, \nu = (\nu_{1}, ..., \nu_{n}), \text{ and } g_{\nu}(\tau) = \partial_{z}^{\nu} \phi|_{z=0} = \sum_{i=0}^{l-1} f_{\alpha_{i}}(\tau)(\partial_{z}^{\nu} \vartheta_{m,\alpha_{i}})|_{z=0}.$

Thus for $u = (u_0, ..., u_{l-1}) \in (\mathbb{N}^n)^l$ we have

$$^{t}(g_{u_{0}}(\tau),...,g_{u_{l-1}}(\tau)) = W(\tau)^{t}(f_{\alpha_{0}}(\tau),...,f_{\alpha_{l-1}}(\tau)).$$

Now $(g_{u_0},...,g_{u_{l-1}})$ satisfies a certain transformation formula, so there exists a pair of Hilbert modular forms $(G_{u_0},...,G_{u_{l-1}})\in M_{k+u_0}^K\times\cdots\times M_{k+u_{l-1}}^K$ such that

$$^{t}(g_{u_{0}}(\tau),...,g_{u_{l-1}}(\tau))=D^{t}(G_{u_{0}}(\tau),...,G_{u_{l-1}}(\tau)),$$

where D is a certain matrix of differential operators depending only on k and u. Hence if det(W) is not identically zero, then

$$\phi = \theta^{t}(f_{\alpha_0}, ..., f_{\alpha_{l-1}}) = \theta W^{-1}(D^{t}(G_{u_0}, ..., G_{u_{l-1}})).$$

On the other hand, for any pair of Hilbert modular forms $(G_{u_0},...,G_{u_{l-1}}) \in M_{k+u_0}^K \times G_{u_{l-1}}$ $\cdots \times M_{k+u_{l-1}}^K$, by using the above identity, we can construct a meromorphic function on $\mathfrak{H}^n \times \mathbb{C}^n$ which satisfies the transformation formula of Hilbert Jacobi forms (conditions (i), (ii) of the definition 1.) We denote this map by λ_k :

$$\tilde{\lambda}_k: M_{k+u_0}^K \times \cdots \times M_{k+u_{l-1}}^K \to J_{k,m}^{K,mero}$$

via

$$\tilde{\lambda}_k(G_{u_0},...,G_{u_{l-1}}) := \theta W^{-1}(D^t(G_{u_0},...,G_{u_{l-1}})).$$

Thus for constructing Hilbert-Jacobi forms in general, we need to know when $\det(W)$ is not identically zero, and when $\tilde{\lambda}_k(G_{u_0},...,G_{u_{l-1}})$ is holomorphic.

Example $K = \mathbb{Q}(\sqrt{5}), m = (5 + \sqrt{5})/10$ 2.3

We fix $K = \mathbb{Q}\sqrt{5}$, and $m = (5 + \sqrt{5})/10$. In this subsection we give explicitly the matrix D and construct Hilbert-Jacobi forms of index m.

By straightforward calculation we obtain $\mathfrak{d}^{-1} = m\mathcal{O}$, $\mathfrak{d}^{-1}/2m\mathcal{O} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, and $|\mathfrak{d}^{-1}/2m\mathcal{O}| = 4$.

We put $u := (u_0, u_1, u_2, u_3) \in (\mathbb{N}^2)^4$, where $u_0 := (0, 0), u_1 := (0, 2), u_2 := (2, 0)$ and $u_3 := (1,1)$. Then, $\det(W) = c \cdot G_5$ with non zero constant c. Here G_5 is the Hilbert modular form of weight (5,5) denoted in Theorem 1.1.

Let $k = (k_1, k_2) \in \mathbb{N}^2$. For $(G_{u_0}, ..., G_{u_3}) \in M_{k+u_0}^K \times \cdots \times M_{k+u_{l-1}}^K$, we put

$$\tilde{\lambda}_k(G_{u_0},...,G_{u_3}) := \phi := \theta W^{-1}(D \cdot {}^t(G_{u_0},...,G_{u_3})),$$

where $D := \begin{pmatrix} \frac{1}{2m} \partial_{\tau_1} & 1 & 0 & 0 \\ \frac{2m}{k_1} \partial_{\tau_2} & 1 & 0 & 0 \\ \frac{2m'}{k_2} \partial_{\tau_2} & 0 & 1 & 0 \end{pmatrix}$, and m' is the Galois conjugation of m. Due to the

consideration of the previous subsection we have $\phi \in J_{k,m}^{K,mero}$. We denote by $J_{l,1_2}$ the space of Jacobi forms of weight $l \in \mathbb{N}$ of index $1_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Now, for $k = (k_1, k_1) \in \mathbb{N}^2$ we consider the following map

$$\mathbb{D} : J_{k,m}^K \to J_{2k_1,1_2}$$

via

$$\mathbb{D}(\phi)(\tau,(z_1,z_2)) := \phi((\tau,\tau),(z_1,z_2)\cdot V),$$

where $\phi \in J_{k,m}^K$, $(z_1, z_2) \in \mathbb{C}^2$, $\tau \in \mathfrak{H}$, $V = \begin{pmatrix} 1 \\ \epsilon^{-1} & \epsilon' \end{pmatrix}$, $\epsilon = (1 + \sqrt{5})/2$ and $\epsilon' = (1 - \sqrt{5})/2$.

2.4 The space of Jacobi forms of index 1_2

As for the structure of the space of Hilbert modular forms of index 1₂, we have the following theorem.

Theorem 2.1. For any $k' \in \mathbb{Z}$, we have $J_{k',1_2} \cong M_{k'} \times S_{k'+2} \times S_{k'+2} \times S_{k'+4}$, where $M_{k'}$ (resp. $S_{k'}$) is the space of elliptic modular forms (resp. cusp forms) of weight k' with respect to $SL_2(\mathbb{Z})$.

The idea of the proof of the above theorem is as follows. By similar method as in the subsection 2.2, we have a similar map as $\tilde{\lambda}_k$ in the subsection 2.2 for the space of Jacobi forms of index 1_2 . We can construct meromorphic Jacobi forms of index 1_2 . In this case, by choosing a suitable $u \in (\mathbb{N}^2)^4$, the Wronskian is the Ramanujan- Δ function. Hence we can check when the image of the map $\hat{\nu}_{k'}$, which corresponds to $\tilde{\lambda}_k$ in the case of Hilbert Jacobi forms, is holomorphic. The surjectivity of the map $\hat{\nu}_{k'}$ follows from this fact. Thus we obtain theorem 2.1.

The idea for the proof of Theorem 1.3.

Due to Theorem 2.1, we have the dimension formula for $\bigoplus_{k'\in\mathbb{Z}} J_{k,1_2}$, and we obtain

Theorem 1.3 by constructing suitable basis of the space of Jacobi forms of index 1_2 as $\bigoplus M_k$ -module.

The basis of $\bigoplus_{k' \in \mathbb{Z}} J_{k',1_2}$ is give by the following four forms: $\psi_4 := \hat{\nu}_4((E_4,0,0,0)) \in J_{4,1_2}, \ \psi_6 := \hat{\nu}_6((E_6,0,0,0)) \in J_{6,1_2}, \ \psi_{10} := \hat{\nu}_{10}((0,0,\Delta,0)) \in J_{10,1_2}, \ \text{and} \ \psi_8 := \hat{\nu}_8((0,0,0,\Delta)) \in J_{8,1_2}.$ Here $\hat{\nu}_{k'}$ is the map from $M_{k'} \times S_{k'+2} \times S_{k'+2} \times S_{k'+4}$ to $J_{k',1_2}$, and $E_{k'}$ are the Eisenstein series of weight k'.

2.5 The space of Hilbert-Jacobi forms of index m

Let $k = (k_1, k_1) \in \mathbb{N}^2$. We put

$$\tilde{J}_{k,m}^K := \tilde{\lambda_k} (M_{(k_1,k_1)}^K \times S_{(k_1,k_1+2)}^K \times S_{(k_1+2,k_1)}^K \times M_{(k_1+1,k_1+1)}^K),$$

where $S_{(k_1,k_2)}^K$ is the space of Hilbert cusp forms of weight (k_1,k_2) with respect to $SL(2.\mathcal{O})$.

As for for the space of Hilbert cusp forms $S_{(k_1,k_1+2)}^K$ the following theorem is known by H.Aoki [1].

Theorem 2.2 (Aoki). The structure of $\bigoplus_{k_1 \in \mathbb{Z}} S_{(k_1,k_1+2)}^K$ is given by

$$\bigoplus_{k_1 \in \mathbb{Z}} S_{(k_1, k_1 + 2)}^K = A_{7,9}B + A_{8,10}B + A_{11,13}B,$$

where $A_{7,9} := [G_2, G_5] := 2G_2(\partial_{\tau_2}G_5) - 5G_5(\partial_{\tau_2}G_2)$, $A_{8,10} := [G_6, G_2]$, $A_{11,13} := [G_5, G_6]$ and $B = \mathbb{C}[G_2, G_5, G_6]$. Here $A_{7,9}$, $A_{8,10}$ and $A_{11,13}$ satisfy the following Jacobi identity: $6G_6A_{7,9} + 5G_5A_{8,10} + 2G_2A_{11,13} = 0$. Except this identity, there are no relation among $A_{7,9}$, $A_{8,10}$ and $A_{11,13}$.

To show theorem 1.2, we need the following proposition.

Proposition 2.3. Let $\phi \in J_{k,m}^K$. Then $\mathbb{D}(\phi) = 0$ if and only if $G_5|\phi$.

Thus we have the following short exact sequence:

$$0 \to J_{k,m}^K \to \hat{J}_{k,m}^K \to J_{2k_1+10,1_2},$$

where the second map is the embedding, and the last map is given via ϕ to $\mathbb{D}(G_5 \cdot \phi)$ for $\phi \in \hat{J}_{k,m}^K$.

By using theorem 1.1 and theorem 2.2 we can calculate the dimension of $\hat{J}_{k,m}^K$, and also we have the dimension of the image of the above last map. Hence, we have the dimension formula for $\dim(J_{(k,k),m}^K)$ written in Theorem 1.2. The basis of $\bigoplus_{k\in\mathbb{Z}} J_{(k,k),m}^K$ as $\mathbb{C}[G_2,G_5,G_6]$ -module is given as follows:

$$\begin{split} F_2 &:= \tilde{\lambda}_2(G_2,0,0,0), \ F_4 := \tilde{\lambda}_4(0,0,0,G_5), \\ F_5 &:= \tilde{\lambda}_5 \left(G_5,0,0,\frac{2}{5\sqrt{5}}G_6\right), \ F_6 := \tilde{\lambda}_6(G_6,0,0,0), \\ F_7 &:= \tilde{\lambda}_7(0,mA'_{7,9},-m'A_{7,9},0), \ F_{11} := \tilde{\lambda}_{11}(0,mA'_{11,13},-m'A_{11,13},0), \\ F_{14} &:= \tilde{\lambda}_{14} \left(0,\frac{\epsilon}{2}A'_{8,10},\frac{\epsilon'}{2}A_{8,10},G_{15}\right), \ F_{15} := \tilde{\lambda}_{15}(G_{15},0,0,0), \end{split}$$

where $A'_{7,9} := 2 G_2(\partial_{\tau_1} G_5) - 5 G_5(\partial_{\tau_1} G_2)$, $A'_{8,10} := 6 G_6(\partial_{\tau_1} G_2) - 2 G_2(\partial_{\tau_1} G_6)$ and $A'_{11,13} := 5 G_5(\partial_{\tau_1} G_6) - 6 G_6(\partial_{\tau_1} G_5)$.

References

- [1] H.Aoki: Estimate of the dimensions of mixed weight Hilbert modular forms, Comment. Math. Univ. St. Pauli, in printing.
- [2] K. B. Gundlach: Die Bestimmung der Funktionen zu einigen Hilbertschen Modulgruppen, J. Reine Angew. Math., 220, 1965, 109-153.
- [3] N.-P.Skoruppa: Über den Zusammenhang zwischen Jacobiformen und Modulformen halbganzen Gewichts, *Bonner Mathematische Schriften*, **159**, Bonn 1985.
- [4] C.Ziegler: Jacobi forms of higher degree, Abh. Math. Sem. Univ. Hamburg, 59, 1989, 191-224.

Fachbereich 6 Mathematik, Universität Siegen, Walter-Flex-Str. 3, 57068 Siegen, Germany. e-mail hayashida@mathematik.uni-siegen.de