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Abstmct. –Let $F$ be a non-Archimedean locally compact field, of residual characteristic
$p$, and $(G, G’)$ a reductive dual pair over $F$ of type II. In this article we show how the results
of $[Mi1|$ , [Mi2], [Mi3] and [MS] imply that the local theta correspondence is bijective for
l-modular representations if $l\neq p$ is a banal prime for $G$ and $G’$ . Moreover, we give some
counterexamples which show that the local theta correspondence can be non-bijective for
l-modular representations if $l$ is not banal.

Introduction

Let $F$ be a non-Archimedean locally compact field, of residual characteristic $p$ , and fix
$\psi$ : $Farrow \mathbb{C}$ a non-trivial additive character of F. Let $W$ be a finite-dimensional symplectic
vector space over $F$ and denote by Sp(W) the metaplectic group [MVW]: it is a group
which fits in the short exact sequence

$0arrow \mathbb{C}arrow\tilde{Sp}(W)arrow Sp(W)arrow 0$ ,

where Sp(W) is the symplectic group. It is equipped with a complex representation,
canonically attached to $\psi$ , the Weil representation, also called the mataplectic represen-
tation, which, in this introduction, will be denoted by $\sigma$ .

Let $G$ and $G’$ be two reductive subgroups of Sp$($W$)$ , each one the centraMzer of the
other in Sp(W) (we say that they form a dual (reductive) pair). Dual pairs $(G, G’)$ come
in two types:
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(I) $G,$ $G’$ are unitary groups defined over $F$ (or one is symplectic and the other ortho-
gonal);

(II) $G,$ $G^{l}$ are general linear groups over a p-adic division algebra D.

Denote by $\tilde{G}$ and $\overline{G^{l}}$ their pre-images in $\tilde{Sp}(W)$ . We are interested in the restriction
of the Weil representation to the product $\tilde{G}\cross\tilde{G’}$. Its irreducible quotients are of the
form $\pi\otimes\pi’$ where $\pi$ and $\pi’$ are irreducible smooth complex representations of $\tilde{G}$ and $\tilde{G^{l}}$

respectively. Roughly speaking, the local theta correspondence says that $\pi’$ is uniquely
detemined by $\pi$ .

More precisely, let $\pi$ be an irreducible smooth representation of $\tilde{G}$ . Consider the biggest
$\pi$-isotypic quotient of $\sigma$ . One proves that, as a $\tilde{G}xG’$-module, it is of the form $\pi\otimes\Theta(\pi)$ ,
where $\Theta(\pi)$ is a finite length smooth representation of $\tilde{G’}$ .

Howe and Waldspurger $[MVW|,$ $[Wa1|$ proved that, if the dual pair is of type I, $p\neq 2$

and $\Theta(\pi)\neq 0$ , then $\Theta(\pi)$ has a unique irreducible quotient, denoted by $\theta(\pi)$ . The map
$\pi\mapsto\theta(\pi)$ is caJled the local theta conrespondence (or the Howe correspondence).

The proofs of Howe and Waldspurger are non-constructive: they give the existence of
the theta correspondence without explicitly describing the bijection or when $\Theta(\pi)\neq 0$ .
In $[Mi1|$ a new method was given for proving the theta correspondence in the case of dual
pairs of type II. This proof is valid for $F$ of any (residual) characteristic (in particular,
it is permitted $p=2$) and aIlows the correspondenoe to be made explicit in terms of the
Langlands classification.

So far we have only been concemed with $\omega mplex$ representations. Recently, however,
the applications of the representation theory of p-adic reductive groups in number theory
have required considering l-modular representations also: that is, representations over an
arbitrary algebraically closed field $R$ of characteristic $l$ .

The study of these representations has been developed by Vign\’eras (see $[Vig|)$ , and
their behaviour is very different depending on whether $l=p$ or $l\neq p$ . We will only be
interested in the latter case, where Vign\’eras introduced the notion of banal characteristic:
for example, if $G=GL_{n}(F)$ then $l$ is banal if and only if it is coprime to $|GL_{n}(k_{F})|=$

$\prod_{i=0}^{n-1}(q_{F}^{n}-q_{F}^{i})$ , where $q_{F}$ is the cardmality of the residue field $k_{F}$ of F. $\ln$ general, $l$ is
banal for a p.adic reductive group $G$ if the l-modular representations of any compact open
subgroup of $G$ are all semisimple.

In this article we would like to answer to the following question: is the local theta
correspondence still bijective for l-modular representations? We will show that the proof
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given in $[Mi1|$ is also valid for l-modular representations in the banal case and even for
banal representations (see Section 5). The main theorem we prove is:

Theorem 0.1 (see Theorems 6.1 and 7.1). –Let $R$ be an algebraically closed field
of characteristic $l$ different from $p$ . Let $n,$ $m$ be a pair of integers such that $n\leq m$

and denote by $\sigma_{n_{2}m}$ the restriction of the metaplectic R-representation to the dual pair
$GL_{n}(D)xGL_{m}(D)$ .

Let $\pi$ be a m-banal imeducible R-representation of $GL_{n}(D)$ (see 5.9). There exists a
unique R-representation $\pi^{l}$ of $GL_{m}(D)$ such that

$Hom_{GL_{n}(D)xGL_{m}(D)}(\sigma_{n,m}, \pi\otimes\pi’)\neq 0$.

Moreover, we have Am $(Hom_{GL_{n}(D)xGL_{m}(D)}(\sigma_{n,m}, \pi\otimes\pi’))=1$ .
Write $\pi’=\theta_{m}(\pi)$ . The mapping $\pi\mapsto\theta_{m}(\pi)$ is a bijection between the set of m-banal

irreducible R-representations $\pi$ of $GL_{n}(D)$ such that $Hom_{GL_{n}(D)}(\sigma_{n,m}, \pi)\neq 0$ and the set
of banal irreducible R-representations $\pi’$ of $GL_{m}(D)$ such that $Hom_{GL_{m}(D)}(\sigma_{n,m}, \pi^{l})\neq 0$.

We deduce a fornula (see Theorem 7.1 for more details) giving the $\prime z_{elevimky^{f}’ pa-}$

rameters of $\theta_{m}(\pi)$ in terms of those of $\pi$ .

Intriguingly, however, the theta correspondence can be non-bijective when $l$ is not
banal-that is, given an irreducible R-representation $\pi_{1}$ of $GL_{n_{1}}(F)$ , there may be several
inequivalent R-representations $\pi_{2}$ of $GL_{n_{2}}(F)$ such that $\pi_{1}\otimes\pi_{2}$ occurs as a quotient of
the Weil representation.

We give now a brief account about the contents, section by section. In the first sec-
tion we introduce notation and the theory of R-representations. We recall the theory of
l-modular zeta functions of [Mi3] in Section 2: this theory provides us with an intertwining
operator between the metaplectic representation restricted to the pair $(GL_{m}(D), GL_{m}(D))$

and $\pi\otimes\tilde{\pi}$ for each irreducible R-representation $\pi$ of $GL_{m}(D)$ , where ff denotes the con-
tragredient representation of $\pi$ . In Sections 3 and 4, we recall the computations of $[Mi1|$

which will allow us, in Section 6, to prove that $\Theta(\pi)$ has a unique irreducible quotient.
In Section 5, we recall the classification of [MS], in terms of segments, of the set of banal

representations. With this classification in hand, we make the correspondence explicit in
Section 7. Finally, in the last section we give some examples of the failure of the theta
correspondence in the non-banal case.

I would like to thank G. Henniart for introducing me to the theory of the theta corre-
spondence and all his helpful conversations, H. Saito for his invitation to the University
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of Kyoto and his warm reception and K. Hiraga for inviting me to take part of the RIMS.
conference on automorphic forms and write this article for its proceedings. When the
final version of this paper was written I was supported by a JSPS grant and I would like
to acknowledge the JSPS.

1. Notation

1.1. Let $F$ be a non-Archimedean locally compact field, of residual characteristic $p$ . We
denote by $\theta_{F}$ its ring of integers, $\mathfrak{p}_{F}$ its maximal ideal and $k_{F}$ its residue field. We denote
by $q_{F}$ the cardinal of $k_{F}$ .

1.2. Let $R$ be an algebraically closed field of characteristic $l$ different from $p$ (eventuaUy
$l$ can be $0$ ) and let $G$ be the group of rational points of a reductive group defined over F.
By a smooth R-representation we understand a pair $(\pi, V)$ where V is a vector space over
$R$ and $\pi$ is a group morphism from $G$ into GL(V) such that the stabilizer of every vector
in V is an open subset of G. In this text all representations are supposed to be smooth.

A R-character of $G$ is a R-representation of dimension 1, that is, a morphism from $G$

into $R^{x}$ with open kernel.
We denote by $1rr_{R}(G)$ the set of all classes of irreducible R-representations of G. Given

$\pi\in Irr_{R}(G)$ we will denote by $\tilde{\pi}$ the contragredient representation of $\pi$ .

1.3. We suppose in this paragraph that $R$ is an algebraic closure of a local field. We
denote by $\theta$ the ring of integers of $R$ and by $k$ its residue field which is algebraically
closed and supposed of characteristic different from $p$.

A R-representation $\pi$ of $G$ in a R-vector space V is integral if it is admissible and it
possesses an integml structure, that is, a $sub-\rho$-module stable by $G$ and generated by
a basis of V over R. A R-representation $\pi$ of $G$ is integral if, and only if, its cuspidal
support is integral.

Let $\pi$ be an integral irreducible R-representation of G. Then, for every integral structure
$\Gamma$ of $\pi$ , the k-representation of $G$ in the k-vector space $\Gamma\otimes,$ $k$ is of ffiite length and its
semi-simplification does not depend on the choice of $\Gamma$ . We will call it the reduction of $\pi$

and denote it by $r_{R}(\pi)$ .
An integral irreducible R-representation is k-irreducible if its reduction is an irreducible

k-representation.
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1.4. Let $\pi$ and $\pi^{l}$ be two R-representations of G. We denote by

$Hom_{G}(\pi,\pi’)$

the space of intertwining operators $hom\pi$ into $\pi’$ . We will omit the index $G$ if there is
no confusion.

1.5. Let $D$ be a division algebra over $F$ of finite dimension over F. For any integers
$n,$ $m\geq 1$ , we denote by $\ovalbox{\tt\small REJECT}_{n_{2}m}(D)$ the F-algebra of $nxm$ matrices with coefficients in $D$ ,
by $\ovalbox{\tt\small REJECT}_{m}(D)$ the F-algebra of $mxm$ matrices with coefficients in $D$ and by $G_{m}=GL_{m}(D)$

its multiplicative group. For convenience, we denote by $G_{0}$ the trivial group.
Let $N_{m}$ (resp. $tr_{m}$ ) be the reduced norm (resp. reduced trace) of $\mathscr{M}_{m}(D)$ over $F$ and

let $||_{F}$ be the normalized absolute value of F. We see it as a R-character of $F^{x}$ . The map
$g\mapsto|N_{m}(g)|_{F}$ is a R-character of $G_{m}$ , which we simply denote by $\nu$ . Its order is the order
of $q_{F}$ in $R^{x}$ .

1.6. To every partition $\alpha=$ $(m_{1}, \ldots , m_{r})$ of the integer $m$ , we denote $M_{\alpha}$ the subgroup
of $G_{n}$ of invertible matrices which are diagonal by blocs of size $m_{i}$ and $P_{\alpha}$ (resp. $\overline{P}_{\alpha}$ ) the
subgroup of upper (resp. lower) triangular matrices by blocs of size $m_{i}$ .

1.7. We denote by $\#-r_{m_{1},\ldots,m_{r}}^{G_{m}}$ the non-normalized Jacquet functor associated to the
standard parabolic $P_{\alpha}$ and by $\#-\overline{r}_{m_{1},\ldots,m_{r}}^{G_{m}}$ the Jacquet functor associated to $P_{\alpha}$ .

Fix $q_{F}\#$ a square root of $q_{F}$ in R. We set

$r_{m_{1},\ldots,m_{f}}^{G_{m}}=\delta_{p_{\alpha}}^{-1/2}\#-r_{m_{1},\ldots,m_{f}}^{G_{m}}$ ,
$($resp. $\overline{r}_{m_{1},\ldots,m_{f}}^{G_{m}}=L_{P_{\alpha}}^{-1/2}\#-\overline{r}_{m_{1},\ldots,m_{r}}^{G_{m}}$ $)$ ,

the normalized Jacquet functor.
Given a R-representation $\rho_{i}$ of each $G_{\pi}4$

’ we denote by

$\#-Ind_{P_{\alpha}^{m}}^{G}(\rho_{1}\otimes\cdots\otimes\rho_{f})$ ,

the non-normalized parabolically induced R-representation.
We denote also by $\rho_{1}x\cdots\cross\rho_{\gamma}$ the R-representation

$Ind_{p_{\alpha}^{m}}^{G}(\rho_{1}\otimes\cdots\otimes\rho_{r})=\delta_{P_{\alpha}}^{1/2}\#-Ind_{P_{\alpha}^{m}}^{G}(\rho_{1}\otimes\cdots\otimes\rho_{r})$ ,

that is, the normalized parabolically induced R-representation.
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1.8. Let $n$ and $m$ be some positive integers. We denote by $S_{R}(\ovalbox{\tt\small REJECT}_{n_{2}m}(D))$ the R-vector
space of locally constant, compactly supported functions $\Phi$ from $\ovalbox{\tt\small REJECT}_{n,m}(D)$ to R.

Set $\sigma_{n,m}$ the natural R-representation of $G_{n}\cross G_{m}$ on $S_{R}(\ovalbox{\tt\small REJECT}_{n,m}(D))$ defined by

$\sigma_{n_{1}m}(g, g’)\Phi(x)=\Phi(g^{-1}xg’)$ ,

for $g\in G_{n},$ $g’\in G_{m},$ $x\in \mathscr{M}_{n,m}(D)$ and $\Phi\in S_{R}(\mathscr{M}_{n_{2}m}(D))$ .
Up to a character, this R-representation is isomorphic to the metaplectic representation

restricted to the dual pair $G_{n}\cross G_{m}$ (cf. [MVW, 2.II6]).

1.9. We have two linear groups acting by multiplication on the left and on the right in
a space of matrices. IFlirom now on, to distinguish these two actions, we will denote by $G’$

and $p/$ the linear and parabolic groups acting on the right and $G$ and $P$ the same groups
acting on the left. If there might be confusion we will also denote by $\nu$

‘ the R-character
$\nu$ when it acts on $G’$ . This notation is very useful, though it may seem artificial or weird.

2. l-modular zeta functions

In this section, following [Mi3] and generalizing the results of [GJ], we associate to each
irreducible R-representation $\pi$ of $GL_{m}(D)$ , two invariants $L(T,\pi),$ $\epsilon(T,\pi, \psi)$ , where $T$ is an
indeterminate and $\psi$ is a non-trivial R-character of F. It allows us to construct an explicit
intertwining operator between $\sigma_{m,m}$ and $\pi\otimes\tilde{\pi}$ for each irreducible R-representation $\pi$ of
$GL_{m}(D)$ .

2.1. We fix $F$ a non-Archimedean locally compact field, of residual characteristic $p$ and
$D$ a division algebra over $F$ of dimension $d^{2}$ over F. We also fix a positive integer $m$ and
set $n=md$.

Let $\psi$ be a non-trivial additive R-character of $F,$ $d\mu(x)$ a Haar measure on $\chi_{m}(D)$ with
values in $R$ and $d\mu^{x}(x)$ a Haar measure on $GL_{m}(D)$ with values in $R$ (see [Vig, $1.2.4|)$ .

For every function $\Phi\in S_{R}(\chi_{m}(D))$ , we denote by

$\hat{\Phi}(x)=\int_{A_{m}(D)}\Phi(y)\psi(tr_{m}(xy))d\mu(y)$

its Fourier transform. As usual, we suppose the Haar measure to be autodual.
Let $\pi$ be an irreducible R-representation of $G_{m}$ and $f$ a coefficient of $\pi$ . We denote by

$f$ the coefficient of $\tilde{\pi}$ defined by $f(g)=f(g^{-1})$ . Let $\Phi\in S_{R}(\mathscr{M}_{m}(D))$ and $N\in \mathbb{Z}$. Then
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the integral

$/G_{m},\nu(x)=q_{F}^{-N}\Phi(x)f(x)d\mu^{x}(x)$

is well defined, as $\{x\in G_{m}:\nu(x)=q_{F}^{-N}\}\cap supp(\Phi)$ is a compact subset of $G_{m}$ and $\Phi$

and $f$ are locally constant on it.
We can now define the formal sum (the zeta function):

$Z(\Phi, T, f)=\sum_{N\in Z}(/G_{m},\nu(x)=q_{F}^{-N}\Phi(x)f(x)d\mu^{x}(x))T^{N}$.

As $\Phi$ is compactly supported, for $N$ small enough, we have :

$/G_{m},\nu(x)=q_{F}^{-N}\Phi(x)f(x)d\mu^{x}(x)=0$ .

Hence, $Z(\Phi, T, f)\in R((T))$ .

2.2. In [Mi3] it is proved the following theorem:

Theorem 2.1. –Let $\pi$ be an irreducible R-representation of $G_{m}$ . Then ;

(1) There $e\dot{m_{d}}stsP_{0}(\pi, T)\in R[T|$ such that, for every coeff cient $f$ of $\pi$ and every
$\Phi\in S_{R}(\ovalbox{\tt\small REJECT}_{m}(D))$ , we have

$Z(\Phi,T, f)P_{0}(\pi, T)\in R[T,$ $T^{-1}]$ .

(2) There exists a gamma factor $\gamma(T,\pi, \psi)\in R(T)$ such that, for every coefficient $f$

of $\pi$ and every $\Phi\in S_{R}(\mathscr{M}_{m}(D))$ , we have

(2.1) $Z(\hat{\Phi},$ $q^{-\frac{1}{2}(n+1)}T^{-1},\check{f})=\gamma(T, \pi, \psi)Z(\Phi,$ $q^{-\frac{1}{2}(n-1)}T,$ $f)$ .

(3) Set $\mathscr{S}(\pi)$ the sub-R-vector space of $R(T)$ generated by the functions $Z(\Phi,$ $Tq^{\frac{1-\mathfrak{n}}{2}},$ $f)$

with $f$ coefficient of $\pi$ and $\Phi\in S_{R}(\mathscr{M}_{m}(D))$ . Then $\mathscr{X}(\pi)$ is a ffactional ideal $R[T,$ $T^{-1}|$

containing the $\omega nstants$ . It admits a generator of the $f_{07}m$

$L(T,\pi)=\frac{1}{P_{0}(\pi,T)}$

with $P_{0}(\pi, T)\in R[T|$ and $P_{0}(\pi, 0)=1$ .
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Set
$\gamma(T,\pi,\psi)=\epsilon(T,\pi, \psi)\frac{L(q^{-1}T^{-1},\tilde{\pi})}{L(T,\pi)}$ .

Then the functional equation (2.1) reads:

$\frac{Z(\hat{\Phi},T^{-1}q^{\frac{-1-\hslash}{2}},\check{f})}{L(q^{-1}T^{-1},\tilde{\pi})}=\epsilon(T, \pi,\psi)\frac{Z(\Phi,Tq^{\underline{1}}\overline{?}^{\underline{n}},f)}{L(T,\pi)}$ .

2.3. The zeta functions allow us to construct a non-trivial intertwining operator between
$\sigma_{m,m}$ and $\pi\otimes\tilde{\pi}$ , for each irreducible R-representation $\pi$ of $G_{m}$ . It is defined by:

$Z_{\pi}$ : $S_{R}(\ovalbox{\tt\small REJECT}_{m}(D))arrow V\otimes\tilde{V}$

.

$Z_{\pi}(\Phi)(f)$ $= \lim_{Tarrow 1}\frac{Z(\Phi\rangle T,f)}{L(Tq^{-(n-1)/2},\pi)}$ ,

for every $\Phi\in S_{R}(\ovalbox{\tt\small REJECT}_{m}(D)),$ $f\in V\otimes\tilde{V}$ coefficient of $\pi$ and where $\lim_{Tarrow 1}\frac{Z(\Phi,T,\pi)}{L(Tq^{-(n-1)/2},\pi)}$ is the

evaluation of the polynomial $\frac{Z(\Phi,T,f)}{L(Tq-(n-1)/2\pi)}$ at $T=1$ .
A classical argument (cf. [MVW, 3.III $5|$ which is also valid for R-representations,

see [MiThe, 5.7.3], for more details), shows now that, for all $m\geq n$ , there exists an
irreducible composition factor $\pi’$ of the induced R-representation $\#-Ind_{p_{m-nn}^{m}}^{G^{l}},(1_{m-n})\otimes\tilde{\pi})$

such that

(2.2) $Hom_{G_{n}xG_{m}’}(\sigma_{n,m}, \pi\otimes\pi’)\neq 0$.

Remark 2. 2. –Hence, for any algebraically closed field $R$ of characteristic $l\neq p,$ $n\leq m$

and $\pi$ irreducible R-representation of $G_{n}$ there exists at least one R-representation $\pi’$ of
$G_{m}’$ such that (2.2) is satisfied.

The problem is now to prove that, under some other assumptions, this irreducible
R-representation is unique.

3. The boundary of the metaplectic representation

3.1. Let
$0=S_{t+1}\subset S_{t}\subset\cdots\subset Si\subset S_{0}=S_{R}(.\mathscr{K}_{n,m})$ ,

be the Mtration of $\sigma_{n,m}$ by support (cf. [Mil, \S 2]), and set

$\sigma_{k}=S_{k}/S_{k+1}\simeq\#-Ind_{P_{n-k.k^{P_{m-k.k}’}}}^{G_{n}G_{m}’}(\mu_{k})$ ,
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where $\mu_{k}$ is the R-representation of $\overline{P}_{n-k_{r}}{}_{k}P_{m-k_{\partial}k}’$ on $S_{R}(G_{k})$ defined by:

$\mu_{k}(p,p’)\Phi(h)=\Phi(p_{4}^{-1}hp_{4}’)=\rho k(p_{4},p_{4}^{l})\Phi(h)$ ,

for all $\Phi\in S_{R}(G_{k}),$ $h\in G_{k},$ $p=(\begin{array}{ll}p_{1} 0p_{3} p_{4}\end{array})$ , $p’=(_{0}p_{1}’p_{4}^{l}p_{2}’$ and $\rho_{k}$ the natural

R-representation of $G_{k}xG_{k}’$ on $S_{R}(G_{k})$ deffied by

(3.1) $\beta k(p_{4},p_{4}^{l})\Phi(h)=\Phi(p_{4}^{-1}hp_{4}’)$ .
Deflnition S. 1. –We say that an irreducible R-representation $\pi\in Irr_{R}(G_{n})$ occurs on
the boundary of $\sigma_{n,m}$ if there exists $k<n$ such that $Hom_{G_{n}}(\sigma_{k}, \pi)\neq 0$ .

3.2. In [Mil, Corollaire 2.3] we prove the following lemma, which is vahd for any $R$:

Lemma S.2. –Let $\pi\in Irr_{R}\#G_{n}$ ). The following $\omega nditions$ are equivalent:
(1) The R-representation $\pi$ does not occur on the $bounda\eta$ of $\sigma_{n_{2}m}$ .
(2) For every integer $k<n$ , there doesn’t exist a R-representation $\tau\in 1rr_{R}(G_{k})$ , such

that
$Hom_{G_{n}}(\#-Ind_{F_{n-k_{1}k}^{n}}^{G}(1_{n-k}\otimes\tau),$ $\pi)\neq 0$ .

Remark S. S. –One can prove that, for banal R-representations (see Section 5), these
conditions are equivalent to the following:

(2’) The L-function $L(\pi, T)$ does not have a pole at $T=q^{-\frac{\mathfrak{n}-1}{2}}$

3..3. We deduce as in [Mil, 2.4]

Theorem S.4. –Let $n,$ $m$ be some positive integers $n\leq m$ . Let $\pi\in Irr_{R}(G_{n})$ and
$\pi’\in Irr_{R}(G_{m}’)$ such that

$H_{om_{G_{\hslash}xG_{m}’}}(\sigma_{n_{1}m}, \pi\otimes\pi’)\neq 0$ .
Suppose that $\pi$ does not occur on the boundaw of $\sigma_{n_{1}m}$ . Then $\pi^{l}$

’

is a quotient of the
induced R-representation $\#-1nd_{P_{m-n,n}}^{G_{m}’},(1_{m-n}\otimes\tilde{\pi})$ . Moreover,

&m $(Hom_{G_{n}xG_{m}’}(\sigma_{n_{t}m},\pi\otimes\pi’))=1$.
Remark S.5. –In particular, if the representation $\#-Ind_{P_{m-n,n}}^{G_{m}’},(1_{m-n}\otimes\tilde{\pi})$ has a unique
irreducible quotient (for example if $\pi$ is a cuspidal R-representation or, more generaUy
see Section 5), then there exists a unique $\pi’$ such that

$Hom_{G_{n}xG_{m}’}(\sigma_{n_{i}m},\pi\otimes\pi^{l})\neq 0$ .
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4. Kudla’s flltration

4.1. The computations of [Mil, \S 3] are valid for any algebraically closed field $R$ of
characteristic $l\neq p$ . We have then:

Proposition 4.1. –Let $t$ be an integer $0\leq t\leq n$ . The Jacquet module $r_{t,n-t}^{G_{n}}(\sigma_{n_{2}m})$

has $\omega mposition$ factors $\tau_{i}$ for $i=0,$ $\ldots$ , $\min\{t,$ $m\}_{f}$ where

$\tau_{i}\simeq 1nd_{P_{t-:.l}xG_{n-t}xP_{jm-i}’}^{M_{(,n-t)}xG_{m}’},(\xi_{t,i}\otimes\rho_{i}\otimes\sigma_{n-t,m-i})$ ,

$\rho_{i}$ is defined by (3.1) and $\xi_{t,i}$ is the R-character

$\xi_{t,i}=\{\begin{array}{ll}\nu^{R_{2}^{t-}}- on G_{t-i}\nu\frac{2m-n+2t-}{2} on G_{i}\nu^{t}\tau on G_{n-t}\nu\frac{-m-2t+}{2} on G_{i}’\nu^{\frac{-2t+:}{2}} on G_{m-i}’.\end{array}$

We have a similar proposition (see [Mil, 3.3]) for the Jacquet functor acting on $G_{m}’$ .

4.2. This computation is used to prove the following proposition:

Propoaition 4. 2. –Let $n,$ $m,$ $r$ be some positive integers and $\pi\in kr_{R}(G_{n}),$ $\pi’\in$

$kr_{R}(G_{m}’)$ such that $\pi\otimes\pi’$ is a quotient of $\sigma_{n_{\mathfrak{j}}m}$ . Let $\chi$ be an irreducible cuspidal R-
representation of $G_{f}$ non isomorphic to the R-chamcters of $D^{x},$

$\nu^{\frac{n+1}{2}}$ and $\nu\frac{2m-n+1}{2}$ Then
$a=b$ where $a$ and $b$ are defined by the following $\omega nditibns$ :

(1) There ezists $\rho\in kr_{R}(G_{n-ra})$ such that $\pi$ is a subrepresentation of

where $a$ is maximal.
(2) There exists $\rho’\in kr_{R}(G_{m-rb}’)$ such that $\pi’$ is a subrepresentation of

where $b$ is maximal.
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Moreover we have
$Hom(\sigma_{n-ra;m-ra},$ $\nu^{\frac{-ra}{2}}\rho\otimes\nu^{\underline{r}_{2}g}\rho’)\neq 0$ .

Proof. – The proof of Proposition 4.4 in $[Mi1|$ is valid in this setting, we will give an
idea of how we use Proposition 4.1 to prove it.

Let $\pi\in Irr_{R}(G_{n}),$ $\pi^{l}\in 1rr_{R}(G_{m}’)$ and $\chi$ a cuspidal R-representation of $G_{r}$ as in the
proposition and let $a$ be a positive integer such that there exists $\rho\in Irr_{R}(G_{n-ra})$ with $\pi$

a subrepresentation of

We suppose $a$ to be maximal $satis\mathfrak{b}^{r}ing$ to these conditions.
As the Jacquet functor is exact, we get a surjectif morphism from $r_{ra,n-ra}^{G_{n}}(\sigma_{n,m})$ onto

$r_{ra_{2}n-ra}^{G_{n}}(\pi)\otimes\pi’$ and hence by $\mathbb{R}obenius$ reciprocity we get a non-trivial morphism from
$r_{ra_{t}n-ra}^{G_{n}}(\sigma_{n,m})$ onto $\chi x\chi x\cdots x\chi\otimes\rho\otimes\pi’$ .

By Proposition 4.1, there exists $i\in\{0, \ldots, ra\}$ such that

$Hom(\tau_{i}, \chi x\chi x\cdots\cross\chi\otimes\rho\otimes\pi’)\neq 0$ .

As we have supposed that $\chi\not\simeq\nu\frac{2m-n+1}{2}$ it is easy to check that only $\tau_{ra}$ can have such
a quotient so we get:

$Hom(\tau_{ra}, \chi x\chi x\cdots x\chi\otimes\rho\otimes\pi’)\neq 0$ .

Then, by Proposition 4.1

$Hom(1nd_{M_{(r\Leftrightarrow,n-ra)}xP_{ra,m-\tau a}’}^{M_{(ra.n-ra)}xG_{m}’}(\xi_{ra_{1}ra}\otimes\rho_{ra}\otimes\sigma_{n-ra,m-ra}),$ $\chi x\cdots x\chi\otimes\rho\otimes\pi’)\neq 0$ .

Using again Flrobenius reciprocity, after some simplifications, we get

$Hom(Ind_{p_{ra,m-ra}^{m}}^{G’},(\nu\frac{m-n}{2}\tilde{\chi}x\cdots x\nu\frac{m-n}{2}\tilde{\chi}\otimes\nu^{\frac{ra}{2}}\sigma_{n-ra_{t}m-ra}\nu^{\prime\frac{-ra}{2}}),$ $\rho\otimes\pi’)\neq 0$ .

Let $b\geq 0$ be now a maximal integer such that there exists $\beta’\in Irr_{R}(G_{m-rb}’)$ with $\pi’$ a
subrepresentation of

By Robenius reciprocity, after conjugation, we get a non-trivial morphism from
$\overline{r}_{rb_{1}m-rb}^{G_{m}’}(\pi’)$ onto $\nu^{\frac{m-n}{2}}\tilde{\chi}\cross\cdots x\nu^{L_{2}^{-\underline{n}}}\tilde{\chi}\otimes\rho’$ .
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Hence, as before, we get:

$Hom(\overline{r}_{rb,m-rb}^{G_{m}’}oInd_{P_{ra,n-fa}}^{G_{m}’},(\nu\frac{m-n}{2}\tilde{\chi}x\ldots x\nu^{m}-\overline{n}^{\underline{n}}\tilde{\chi}\otimes\nu\yen\sigma_{n-ra,m-ra}\nu^{l\frac{-ra}{2}})$ ,

$\rho\otimes\nu^{\frac{m-n}{2}}\tilde{\chi}x\cdots x\nu^{\underline{m}}\overline{z}^{\underline{n}}\tilde{\chi}\otimes\rho’)\neq 0$ .

Now we use the maximality of $b$ , the fact that $\chi$ is not isomorphic to the R-character
$\nu^{\frac{n\neq 1}{2}}$ and Proposition 3.3 of [Mil] to see that $b=a$ and finish the proof. For all details
see [Mil, Proposition 4.4].

5. Banal representations: Zelevinsky parameters

In this section we will make a brief account of the results in [MS] and [Mi2]. We define
the set of banal representations and then we classify it in terms of segments.

5.1. Let fix $R$ an algebraically closed field of characteristic $l\neq p$ . Let $C$ be a field of
characteristic $0$ such that it is an algebraic closure of a local field and its residue field is
isomorphic to R. For example, if $R$ is of characteristic $0$ we can choose $C$ to be an algebraic
closure of the field $R((T))$ of formal series with coefficients in $R$; if the characteristic of $R$

is positive, we can choose $C$ to be an algebraic closure of the fraction field of the ring of
Witt vectors of R. If $l$ is a prime number different $homp$ and if $R$ is an algebraic closure

$\overline{\mathbb{F}}_{l}$ of $\mathbb{F}_{I}$ , it is enough to take $C$ as the algebraic closure $\overline{\mathbb{Q}}_{l}$ of $\mathbb{Q}_{I}$ .

5.2. Let $r$ be a positive integer and $\rho$ a cuspidal R-representation of $G_{r}$ . In [MS] we
prove that there exists a R-character $\nu_{\rho}$ of the form $\nu^{b_{\rho}}$ , where $b_{\rho}$ is an integer, such that
if $r$

‘ is a positive integer and $\rho’$ is a cuspidal R-representation of $G_{f}/$ , the parabolically
induced R-representation

$\rho\cross\rho^{l}$

is irreducible if, and only if, $\rho’$ is not isomorphic to $\rho\nu_{\rho}$ or $\rho\nu_{\rho}^{-1}$ . For example, if $R=\mathbb{C}$

and $D=F$ , then, for any cuspidal R-representation $\rho$ , we can take $b_{\rho}=1$ .
We denote by $\rho \mathbb{Z}$ the set of classes of cuspidal R-representations of the fom $\rho\nu_{\rho}^{k}$ where

$k$ is an integer. We remark that if $l>0,$ $\rho \mathbb{Z}$ is a finite set.
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5.3. We say that the group $G_{m}$ is banal if $l$ does not divide the cardinal of the finite
group $GL_{m}(k_{D})$ .

Let $\pi$ be an irreducible R-representation. We denote by $supp(\pi)$ its cuspidal support.
We will see it as a set (with multiplicities) of cuspidal R-representations

$supp(\pi)=\{\rho_{1}, \rho_{2}, \ldots,\rho_{k}\}$ .
We say that $\pi$ is a banal $R$-repoesentation if
(1) For all $\rho\in supp(\pi),$ $\rho$ is a R-representation of a banal group.
(2) for all $1\leq i\leq k,$ $\rho_{i}\mathbb{Z}\not\subset supp(\pi)$ .

5.4. Let $r$ be a positive integer and $\rho$ a cuspidal R-representation of $G_{n}$ . Suppose $G_{n}$

is a banal group. We need to fix a choice of $b_{\rho}$ . As $G_{n}$ is a banal group, there exists an
integral cuspidal C-representation $\rho\dagger$ such that $\rho\simeq r_{C}(\rho\dagger)$ (see 1.3). To fix $b_{\rho}$ we choose
$b_{\rho\dagger}>0$ and suppose that $b_{\rho^{1}}=b_{\rho}$ in R.

5.5. Let $\rho$ be a cuspidal R-representation of $G_{n},$ $a,$ $b\in \mathbb{Z},$ $a\leq b$ . We set

$\Delta=\{\nu_{\rho}^{a}\rho,$ $\nu_{\rho}^{a+1}\rho,$
$\ldots,$

$\nu_{\rho}^{b}\rho\}$ .
We say that $\Delta$ is a segment and we will denote it often by $\Delta=\{a, b\}_{\rho}$ .

A segment $\Delta=\{a, b\}_{\rho}$ is said to be banal if $\rho$ is a R-representation of a banal group
and $\rho \mathbb{Z}\not\in\Delta$ .

We say that $\{a, b\}_{\rho},$ $\{a’, b’\}_{t}$ are linked if $\{a, b\}_{\rho}\cup\{a’, b’\}_{\rho}$ , is still a segment and
$\{a, b\}_{\rho}\not\leqq\{a^{l}, b’\}_{\rho}$ , and $\{a^{l}, b’\}_{\rho},$ $\not\in\{a, b\}_{\rho}$ . We say that $\{a, b\}_{\rho}$ precedes $\{a’, b’\}_{\rho}$, if they
are linked and there exists $\tau\in\{a, b\}_{\rho}$ such that $\rho’\nu_{\mu}^{a-1}\simeq\tau$ .

To each banal segment $\Delta=\{a, b\}_{\rho}$ it corresponds an irreducible R-representation,
denoted by $\langle\Delta\rangle$ , defined as the unique quotient of the R-representation

$\nu_{\rho}^{a}\rho x\nu_{\rho}^{a+1}\rho\cross\cdots x\nu_{\rho}^{b}\rho$ .
For example, if $R=\mathbb{C}$ , then, for every segment $\Delta$ , the R-representation $\langle\Delta\rangle$ is essen-

tially square integrable and, in fact, all essentially square integrable representations are
of this form.

If $\Delta=\{a, b\}_{\rho}$ is a banal segment we denote by $\tilde{\Delta}=\overline{\{a,b\}_{\rho}}$ the segment $\{-b, -a\}_{\tilde{\rho}}$, so
that we have

$\langle\tilde{\Delta}\rangle$ $=$
$\overline{\langle\Delta\rangle}$ .
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5.6. A multisegment is a multi-set of segments as above. We will usually see a multi-
segment $m$ as an indexed set (with multiplicities) $(\Delta_{1}, \ldots, \Delta_{N})$ , where $N$ is a positive
integer.

We denote by supp(m) the support of the multisegment $m=(\Delta_{1}, \ldots, \Delta_{N})$ , that is,
the multiset of cuspidal R-representations defined by:

supp(m)
$( \rho)=\sum_{\rho\in\Delta}m(\Delta)$

,

for all cuspidal R-representations $\rho$ . We will usually see it as an indexed set (with multi-
plicities) $\{\rho_{1}, \ldots, \rho_{t}\}$ .

A multisegment $m$ is banal if for all $\rho\in supp(m),$ $\rho$ is a cuspidal R-representation of
a banal group and for each cuspidal R-representation $\rho$ , we have $\rho \mathbb{Z}\not\subset supp(m)$ .

5.7. In [MS] it is proved the following theorem:

Theorem 5.1. – (1) Let $(\Delta_{1}, \ldots, \Delta_{N})$ be a banal multisegment. Suppose that for
each pair of indices $i,j$ such that $i<j,$ $\Delta_{i}$ does not precede $\Delta_{j}$ . Then the R-representation
$\langle\Delta_{1}\rangle x\cdots x\langle\Delta_{N}\rangle$ has a unique irreducible quotient. We denote it by $\langle\Delta_{1},$

$\ldots,$
$\Delta_{N}\rangle$ . It is

a banal R-representation.
(2) The R-representations $\langle\Delta_{1},$

$\ldots,$
$\Delta_{N}\rangle$ and $\langle\Delta_{1}’,$

$\ldots,$
$\Delta_{N}’,\rangle$ are isomorphic if, and only

if, $(\Delta_{1}, \ldots, \Delta_{N})$ and $(\Delta_{1}’, \ldots, \Delta_{N}^{l},)$ are equal up to a rearrangement.
(3) Any banal R-representation of $G_{m}$ is isomorphic to some representation of the form

$\langle\Delta_{1},$

$\ldots,$
$\Delta_{N}\rangle$ .

5.8. To prove the local theta correspondence for R-representations we will need some
results of [Mi2] which are valid in this setting.

Theorem 5.2. –Let $\pi=$ $\langle\Delta_{1},$

$\ldots,$
$\Delta_{N}\rangle$ be a banal R-representation. Let $\rho=$

$\langle\Delta_{1},$

$\ldots,$
$\Delta_{r}\rangle$ be a banal R-representation such that one the folloUtng $pmpe\hslash ies$ is

satisfied:
(1) The R-representation $\rho$ is a R-character of a banal group, $or$

(2) the multisegment $(\Delta_{1}’, \ldots, \Delta_{r}’)$ is banal and for each pair of indices $i,j$ such that
$i\neq j,$ $\Delta_{i}’=\Delta_{j}^{l}$ or $\Delta_{i}^{l}\cap\Delta_{j}^{l}=\emptyset$ .

Suppose moreover that the multisegment $(\Delta_{1}, \ldots, \Delta_{N}, \Delta_{1}’, \ldots, \Delta_{r}’)$ is banal.
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$Ti_{l}en$ the R-representation $\pi x\rho$ (resp. $\rho x\pi$) has a unique irreducible quotient and a
unique irreducible subrepresentation and they appear with multiplicity 1 in the pambolically
induced R-representation $\pi x\rho$ (resp. $\rho\cross\pi$).

5.9. We need a last lemma which is proved in $[Mi1|$ using the results in the ap-
pendix of [Mi2] and it is valid for R-representations with some modifications. Let
$n,$ $m$ be a pair of positive integers such that $m\geq n$ and let $\pi=\langle\Delta_{1},$

$\ldots,$
$\Delta_{N}\rangle$

be a banaJ R-representation of $G_{n}$ . We say that $\pi$ is m-banal if the multisegment
$(\{\nu^{-\underline{n}}\overline{\tau}^{\underline{n-1}}\},$

$\ldots,$
$\{\nu\frac{n-n-1}{2}\},\tilde{\Delta_{1}},$

$\ldots,$
$\overline{\Delta_{N}})$ is still banal. In this case we denote by $\theta_{m}^{*}(\pi)$

the banal R-representation of $G_{m}$ :

$\theta_{m}^{*}(\pi)=\langle\{\nu^{-\frac{m-n-1}{2}\}},$
$\ldots,$

$\{\nu^{\underline{m}}\overline{\nabla}^{\underline{n-1}}\},\tilde{\Delta_{1}},$ $\ldots,\overline{\Delta_{N}}\rangle$ .

In particular, if $m=n$ then $\theta_{m}^{*}(\pi)\simeq\tilde{\pi}$ .
The following result is proved in [Mil, Corollaire $6.5|$ :

Lemma 5.3. –Let $\chi$ be a banal cuspidal R-representation of $G_{r}$ , non isomorphic to the
R-characters of $D^{x}\nu^{\frac{n+1}{2}}$ and $\nu\frac{2m-n+1}{2}$ Let $a$ be a positive integer and $\rho=\langle m\rangle$ a banal
R-representation of $Irr_{R}(G_{n-ra})$ such that $m+\{\chi\}$ is still a banal multisegment. Denote
by $\pi$ the unique irreducible subrepresentation of

Suppose $\pi$ is m-banal and let $\pi’$ be the unique subrepresentation of

Then
$\pi^{l}\simeq\theta_{m}^{*}(\pi)$ .

6. The proof, part I: uniqueness of the quotient

We are now ready to prove the bijectivity of the local theta correspondence for l-modular
representations. The goal of this section is to prove the following theorem:

77



ALBERTO $MfNGUEZ$

Theorem 6.1. –Let $n,$ $m$ be a pair of integers such that $n\leq m$ . Let $\pi$ be a m-banal
imducible R-representation of $G_{n}$ . There esists a unique R-representation $\pi’$ of $G_{m}’$ such
that

$Hom_{G_{n}xG_{m}’}(\sigma_{n,m}, \pi\otimes\pi’)\neq 0$.
Moreover, we have $\dim(Hom_{G_{n}xG_{m}’}(\sigma_{n,m},\pi\otimes\pi^{l}))=1$

Proof. –The proof is the same as for Theorem 5.1 of $[Mi1|$ . Let us sketch it.
By induction hypothesis we can suppose that the theorem is true for all dual pair

$(G_{i},$ $G_{j}’)$ , such that $ij<nm$ . We prove it for the pair $(G_{n}, G_{m}’)$ .
Let $\pi’\in Irr_{R}(G_{m}’)$ such that $\pi\otimes\pi’$ is a quotient of $\sigma_{n,m}$ (we know that there exists such

a quotient by Remark 2.2). We will prove that $\pi’$ is uniquely determined by $\pi$ .
Case 1. Suppose that there exists a triple $(a, \chi,\rho)$ where $a>0$ is an integer, $\chi$ is

a cuspidal R-representation of $G_{r}$ ($r$ being a positive integer) non isomorphic to the R-
characters of $D^{x}\nu^{\frac{n+1}{2}}$ and $\nu\frac{2m-n+1}{2}$ and $\rho\in Irr_{R}(G_{n-ra})$ such that $\pi$ is a subrepresentation
of

We suppose $a$ to be maxunal satisfying to these conditions.
Then, by Proposition 4.2, there exists $\rho’\in kr_{R}(G_{m-ra}’)$ such that $\pi’$ is a subrepresen-

tation of

Moreover, we have:
$Hom(\sigma_{n-ra,m-ra},$ $\nu^{-\tau^{r\underline{a}}\yen}-\rho\otimes\nu\rho’)\neq 0$ .

By induction hypothesis, $\rho’$ is uniquely determined by $\rho$ and, by Theorem 5.2, $\pi^{l}$ is
then the unique irreducible subrepresentation of

Case 2. If there doesn’t exist such a triple, it is very easy to see, using Lemma 3.2 that
$\pi$ does not occur on the boundary of $\sigma_{n,m}$ . Then by Theorem 3.4, $\pi’$ is an irreducible
quotient of $\#-Ind_{p_{m-n,n}^{m}}^{G’},(1_{m-n}\otimes\tilde{\pi})$ . But, by Theorem 5.2, such a representation have just
one irreducible quotient.
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7. The proof, part II: explicit correspondence

Theorem 7.1. – (1) Let $n,$ $m$ be a pair of integers such that $n\leq m$ . Let $\pi$ be a m-
banal irreducible $R$-repres\‘entation of $G_{n}$ . Denote by $\theta_{m}(\pi)$ the unique R-representation
of $G_{m}^{l}$ given by Theorem 6.1. Then $\theta_{m}(\pi)=\theta_{m}^{*}(\pi)$ (see 5.9).

(2) The mapping $\pi\mapsto\theta_{m}(\pi)$ is a bijection between the set of m-banal irreducible R-
representations $\pi$ of $G_{n}$ such that $Hom_{G_{n}}(\sigma_{n_{2}m}, \pi)\neq 0$ and the set of banal imeducible
R-oepoesentations $\pi’$ of $G_{m}^{l}$ such that $Hom_{G_{m}’}(\sigma_{n_{2}m}, \pi’)\neq 0$ .

Proof. –The second par of the theorem is a consequence of the first one and Theorem
5.1. The idea of the proof of the first part is the same as for Theorem 6.1 of $[Mi1|$ . As in
the previous theorem, by induction hypothesis, we can suppose that the theorem is tme
for all dual pairs $(G_{i},$ $G_{j}’)$ , such that $ij<nm$ . Let us prove it for the pair $(G_{n}, G_{m}’)$ .

Let $\pi$ be a m-banal irreducible R-representation of $G_{n}$ . Let us see that $\theta_{m}(\pi)\simeq\theta_{m}^{*}(\pi)$ .
We have again two cases.

Case 1. Suppose that there exists a triple $(a, \chi, \rho)$ where $a>0$ is an integer, $\chi$ is
a cuspidal R-representation of $G_{r}$ ( $r$ being a positive integer) non isomorphic to the R-
characters of $D^{x}\nu^{\frac{n+1}{2}}$ and $\nu\frac{2m-n+1}{2}$ and $\rho\in Irr_{R}(G_{n-ra})$ such that $\pi$ is a subrepresentation
of

$arrow_{atimes}^{X\chi\cross x}\chi x\rho$

.

We suppose $a$ to be maximal satisfying to these conditions.
Then, by Proposition 4.2, there exists $\rho’\in 1rr_{R}(G_{m-ra}’)$ such that

(7.1)

Moreover, we have:
$Hom(\sigma_{n-ra,m-ra},$ $\nu^{=}F_{\rho\otimes\nu^{\frac{ra}{2}}\rho’)}\neq 0$.

By induction hypothesis, we get

(7.2) $\rho’\simeq\nu^{-}*\theta_{m-ra}^{*}(\nu^{\frac{\sim ra}{2}}\rho)$ .
In this case, the theorem is now a consequence of equations (7.1), (7.2) and Lemma 5.3.
Case 2. If there doesn’t exist such a triple, the proof is the same as [Mil, \S 9]: such

representations have very particular Jacquet modules; using careffly the properties of
the classification, in tems of segments, of banal R-representations, we get the remaining
part of the theorem. We omit the details. :
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8. Some examples in the non-banal case

In this last section we study the local theta correspondence in the non-banal case and
its behavior by reduction modulo $l$ .

8.1. We use the notations of paragraph 5.1. Let fix $R$ an algebraically closed field of
characteristic $l\neq p$ . Let’ $C$ be a field of characteristic $0$ such that it is an algebraic closure
of a local field and its residue field is isomorphic to R. Denote by $\mathcal{O}_{C}$ its ring of integers.

8.2. First, let us give some counterexamples to the bijectivity of the local theta corre-
spondence in the non-banal case. The theta correspondence may fail in two ways:

(1) For $\pi$ an irreducible R-representation of $G_{n}$ , there might exist $\pi^{l}$ an irreducible
R-representation of $G_{m}$ such that

dm $(Hom_{G_{n}xG_{m}}(\sigma_{n,m}, \pi\otimes\pi’))>1$ .
The easiest example appears already when $n=m=1,$ $\pi$ and $\pi^{l}$ are the trivial R-
characters of $F^{x}$ and $qp\equiv 1mod l$ . In this case we find two non-proportional intertwining
operators between $\sigma_{1,1}$ and $\pi\otimes\pi’$ defined by:

$\Phi$ $\mapsto\Phi(0)$ ,
$\Phi$ $\mapsto$ $Z(\Phi, 1,1)$ .

See that this implies that $S_{R}’(F)$ , the R-vector space of $F^{x}$ -equivariant distributions on
$S_{R}(F)$ , is, when $q_{F}\equiv 1mod l$ , of dimension 2.

(2) For $\pi$ an irreducible R-representation of $G_{n}$ , there might exist several $\pi’$ irreducible
R-representations of $G_{m}$ such that

$H_{om_{G_{n}xG_{m}}}(\sigma_{n,m}, \pi\otimes\pi’)\neq 0$ .

For $\pi$ an irreducible R-representation of $G_{n}$ , denote by $\mu_{m}(\pi)$ the number of irreducible
R-representation $\pi’$ of $G_{m}$ (with multiplicities) such that $\pi\otimes\pi’$ is a quotient of $\sigma_{n,m}$ .

Let us study in detail the theta correspondence for the dual pair $(GL_{1}(F), GL_{m}(F))$ .

Theorem 8.1. –Let $\xi$ be a C-chamcter of $GL_{1}(F)$ utth values in $p_{C}$ . Denote by $\overline{\xi}$ its
reduction. Then $\mu_{m}\cap=1$ but when

$L(\xi, -m)\not\in g_{C}$ ;

in this case $\mu_{m}\cap=2$ .
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Proof. –The proof is similar to $[$MiThe, \S 4.5 $]$ . We omit the details. 口

Remark 8.2. –We dispose of similar results for the dual pair $(GL_{2}(F), GL_{m}(F))$ . It
would be interesting to have a formula relating the multiplicities appearing in the theta
correspondence to the integrality of some special values of the L-functions of Godement-
Jacquet.

8.3. Let $n,$ $m$ be a pair of integers such that $n\leq m$ . Let $\pi$ be an integral irreducible
C-representation of $G_{n}$ . Suppose, just for the sake of simplicity, that it is R-irreducible.
As the characteristic of $C$ is $0,$ $\theta_{m}(\pi)$ is a well defined irreducible C-representation of $G_{m}$ .
It is an integral C-representation as, by Theorem 7.1, its cuspidal support is integral. It
might not be R-irreducible.

Write now $\overline{\pi}=r_{C}(\pi)$ and suppose first that $\overline{\pi}$ is m-banal (see 5.9). Then, by Theo-
rem 6.1, $\theta_{m}(\overline{\pi})$ is a well defined irreducible R-representation of $G_{m}$ and it appears as a
composition factor of $r_{C}(\theta_{m}(\pi))$ . That is, we have a commutative diagram:

C-representations

$\prime c\{$

R-representations

Suppose finally that we are in the non-banal case. Now $\theta_{m}(\overline{\pi})$ is not well defined.
Still there is one irreducible R-representation $\overline{\pi}’$ , appearing as a composition factor of
$r_{C}(\theta_{m}(\pi))$ , such that $\overline{\pi}\otimesarrow\pi$ is a quotient of the metaplectic R-representation $\sigma_{n,m}$ . In
the non-banal case it can appear some semi-simplification: for example Theorem 5.2 is
no longer true. But it appears already at the level of $\Theta(\pi)$ (see introduction), that is
why there might exist some irreducible R-representation $\overline{\pi}_{0}’$ which is not isomorphic to
any composition factor of $r_{C}(\theta_{m}(\pi))$ such that $\overline{\pi}\otimesarrow\pi_{0}$ is a quotient of the metaplectic
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R-representation $\sigma_{n,m}$ . Now, the picture is:

C-representations
$rc\downarrow$

R-representations
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