<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>ラプラス変換の実逆変換への再生核空間の応用 (II) (再生核の応用についての研究)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Kajino, Naotaka; Sawano, Yoshihiro; Fujiwara, Hiroshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2008), 1618: 189-191</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/140182</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
1 Introduction

The present paper contains new results on the modified Laplace transform
\[\mathcal{L}f(p) = pL f(p) = \int_0^\infty p e^{-pt} f(t) \, dt. \]

The results are intended to publish elsewhere.

2 Preliminaries

Theorem 2.1. The following estimates hold.

\[\sup_{p>0} |\mathcal{L}f(p)| \leq \sup_{t>0} |f(t)| \]
\[\int_0^\infty |\mathcal{L}f(p)| \, dp \leq \int_0^\infty \frac{|f(t)|}{t^2} \, dt. \]

If we interpolate the results above, we obtain the following inequality.

Theorem 2.2.
\[\int_0^\infty |\mathcal{L}f(p)|^2 \, dp \leq 4 \int_0^\infty |f(t)|^2 \frac{dt}{t^2}. \]

Proof. By using the distribution function, we have
\[\int_0^\infty |\mathcal{L}f(p)|^2 \, dp = 4 \int_0^\infty \lambda |\{p > 0 : |\mathcal{L}f(p)| > 2\lambda\}| \, d\lambda. \]
By the L^∞-estimate, we obtain

$$
\int_0^\infty |\mathcal{L}f(p)|^2 \, dp \leq 4 \int_0^\infty \lambda \{p > 0 : |\mathcal{L}[\chi_{\{|f|\leq \lambda\}}f](p) > \lambda\} \, d\lambda.
$$

Next, we invoke the L^1-estimate and the Chebychev inequality. The result is

$$
\int_0^\infty |\mathcal{L}f(p)|^2 \, dp \leq 4 \int_0^\infty \left(\int_0^\infty |\mathcal{L}[\chi_{\{|f|\leq \lambda\}}f](p)| \, dp \right) \, d\lambda.
$$

Having used up our estimates which were already proved, we have only to calculate the integral elaborately.

$$
\int_0^\infty |\mathcal{L}f(p)|^2 \, dp \leq 4 \int_0^\infty \left(\int_0^\infty \chi_{\{|f(t)|\leq \lambda\}}|f(t)| \frac{dt}{t^2} \right) \, d\lambda \leq 4 \int_0^\infty |f(t)|^2 \frac{dt}{t^2}.
$$

The power 2 is best possible in the following sense.

Example 2.3. Let us establish that

$$
\int_\mathbb{R} |\mathcal{L}f(p)|^2 \, dp \leq \int_\mathbb{R} |f(t)|^2 \frac{dt}{t^{1+\beta}}
$$

fails for $0 < \beta < 1$. Take $\alpha \in \mathbb{R}$ so that $\frac{\beta}{2} < \alpha < \frac{1}{2}$. Then

$$
f_{\alpha}(x) = (\chi_{[0,1]}(x)x)^\alpha
$$

satisfies

$$
\mathcal{L}f_{\alpha}(p) = p \int_0^1 t^\alpha e^{-tp} \, dt
= p \int_0^p (p^{-1}s)^\alpha e^{-s} \, d(p^{-1}s)
\simeq p^{-\alpha}
$$
as $p \to \infty$. As a result, we have $f_{\alpha} \in L^2 \left((0, \infty), \frac{dt}{t^{1+\beta}}\right)$, $0 < \beta < \alpha$, while $\mathcal{L}f \notin L^2(0, \infty)$.

In the rest of this paper, we consider

$$
H_K = \{f : [0, \infty) \to [0, \infty) : f(0) = 0, f \text{ is absolutely continuous and } \|f\|_{H_K} < \infty\},
$$

where the norm is given by

$$
\|f\|_{H_K} = \left(\int_0^\infty |f'(t)|^2 e^t \frac{dt}{t} \right)^{\frac{1}{2}}.
$$

To prove that \mathcal{L} is compact, we have only to establish the following.

Theorem 2.4. $H_K \subset L^2 \left((0, \infty), \frac{dt}{t^2}\right)$ in the sense of compact embedding.
Proof. This is because

\[H_K \subset L^\infty((0, \infty), \max(|t|^{-1}, 1)) \]

is a continuous embedding and

\[L^\infty((0, \infty), \max(|t|^{-1}, 1)) \subset L^2 \left((0, \infty), \frac{dt}{t^2} \right) \]

is a compact embedding. \(\square \)